

Configuration Manual

MSc Research Project MSc Cyber Security

Bhargav Chowdary Rayankula X21138508

School of Computing National College of Ireland

Supervisor: Dr. Arghir-Nicolae Moldovan

National College of Ireland

MSc Project Submission Sheet

	School of Computing Bhargav Chowdary Rayankula		
Student Name:			
	x21138508		
Student ID:			
	MSc Cyber Security		2023
Programme:	MSc Research Project	Year:	
Module:	-		
	Dr. Arghir-Nicolae Moldovan		
Lecturer:			
Submission Due Date:	29 th May 2023		
	An Evaluation and Performance study on BC	DMAS d	ataset for Malware
Project Title:	Analysis		
Word Count:		5	

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature	Bhargav Chowdary
Signature.	29 th May 2023
Date:	

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple	
copies)	
Attach a Moodle submission receipt of the online project	
submission, to each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project,	
both for your own reference and in case a project is lost or mislaid. It is	
not sufficient to keep a copy on computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Bhargav Chowdary Rayankula X21138508

1 Introduction

The handbook contains documentation on all of the relevant tools and technologies that are needed to put the research model into action. The handbook is broken up into a few different parts for your convenience. In Section 2, we discuss the necessary configuration of the environment. In Section 3, we discuss the instruments and programmes that were used, and in Section 4, we discuss the actual execution of the project

2 Environment Setup

Below mentioned configuration was used to implement the model.

- Processor: MacOS m1
- Memory: 8GB RAM
- Programming language: Python3
- Python Environment: Jupyter Notebook, Google collab

3 Tools and Software Used

Software from the list below was utilized to put the model into practice. • For programming purposes, Python 3.9.13 was utilized.

• For performing operations on datasets, we have been using jupyter, a free and open-source Python programme. The Python kernel is used to perform processing and other operations on the datasets

Figure 2. Python Jupyter

• For building models and evaluating accuracy scores we have used Google collab since we had less computation resources

4 Implementation of the Model

Step 1: - We have used google collab, to use python notebook files. Go to <u>https://colab.research.google.com/</u> URL and sign in with your account

• •	• • < >	0	🔒 cola	b.research.goog	le.com	S				Û	+
	🔥 My Drive - Google Drive	CO BODMAS	i(Multi class classifiers).ipynb - Colab	ior 😶 E	BODMAS(Binary	classifiers).ipynb - Colabo	ratory	0	Making the Most of y	our Colab Subscri	iption - Co
CO PRO	Making the Most of your Co File Edit View Insert Runtime	lab Subscription Tools Help	n							G⊃ Share 🕻	* C
=	+ Code + Text A Copy to D	Examples	Recent	Google Drive	÷	GitHub	Uploa	ad		Connect	• .
Q {x}	Making the Most o	Filter notebooks		Ŧ	Last opened	▲ First opened ▼		ŧ:			
• •	Faster GPUs	CO Making the	Most of your Colab Subscription		5:41 AM	April 2			untime		
	> Change runtime type in th a V100 or A100 Nvidia GPU.	BODMAS(B	inary classifiers).ipynb		4:34 AM	March 26	۵	Ø	ess to		
	The free of charge version of C You can see what GPU you've	🔥 BODMAS(N	lulti class classifiers).ipynb		4:30 AM	March 26	۵		elow is		
	"Not connected to a GPU", you and then re-execute the code c	🛆 🛛 API Call sed	quences dataset.ipynb		April 16	April 7			lerator,		
<>	<pre>[] gpu_info = !nvidia-sm gpu_info = '\n'.join(if gpu_info.find('fai print('Not connecte else: print(gpu_info)</pre>	📐 surpass_en	nber.ipynb		April 7	March 25	۵	Z			
=	In order to use a GPU with you					New notebo	ok C	Cancel	pdown		

Figure 3. Google collab

Step 2: - Open the file "BODMAS (Binary classifiers).ipynb" and BODMAS (Multi class classifiers).ipynb in the google collab.

PR)	스 E File	3ODMAS(Multi class classifiers).ipynb ☆ Edit View Insert Runtime Tools Help <u>All changes saved</u>	E Comment	👪 Share	\$	В
≔	+	Code	e + Text		••• RAM Disk	-	^
Q	√ [2]	from google.colab import drive				
{ <i>x</i> }			drive.mount(' <u>/content/gdrive</u> ')				
			Mounted at /content/gdrive				
	✓ (1s	D	<pre>import numpy as np import pandas as pd import time</pre>				
			<pre># Visualization import matplotlib.pyplot as plt import seaborn as sns</pre>				
			# Preprocessing from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import MinMaxScaler				
<>			<pre># Modeling from sklearn.linear_model import LogisticRegression # Ensemble Models and CLF-Voting from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import VotingClassifier</pre>				
□			from sklearn.naive_bayes import MultinomialNB, CategoricalNB, GaussianNB from sklearn.multiclass import OneVsRestClassifier from sklearn.ensemble import RandomForestClassifier				

Figure 4. Ipynb file launched in Google collab

Step 3: - From here, we begin the model's implementation. We begin by importing all the model's required libraries.

Figure 5. Libraries Imported for the Model

Step 4: -. After importing the libraries connect to the Google Compute Engine backend (GPU) and make sure connection is established or not.

Figure 6. Connection to Network GPU

Step 5: - We use the pandas libraries to load the dataset, which is stored on Google Drive and accessible through Google Collab.

Step 6: - Features extracted from the dataset.

1. sfone: 4729
2. wacatac: 4694
3. upatre: 3901
4. wabot: 3673
5. small: 3339
6. ganelp: 2232
7. dinwod: 2057
8. mira: 1960
9. berbew: 1749
10. sillyp2p: 1616

Figure 8. Dataset Features Extracted

Step 6: - Training the pretrained model with the test data and getting accuracies

Figure 9. Evaluation

Step 7: - If we click Restart and run all in the Google Collab interface from the file menu in runtime, users can execute the code.

20	^	BODMAS(Binary	classifiers).ipynb 🖒	7
	File	Edit View Insert	Runtime Tools Help	Last edited on May 2
:=	+ Coo	de + Text	Run all	೫/Ctrl+F9
			Run before	策/Ctrl+F8
Q	O	#Github referen	Run the focused cell	೫/Ctrl+Enter
(r)		<pre>#https://github</pre>	Run selection	₩/Ctrl+Shift+Enter
<i>[A]</i>	[]]	from google col	Run after	第/Ctrl+F10
	LJ		Interrupt execution	晞/Ctrl+M I
		drive.mount(' <u>/c</u>	Restart runtime	೫/Ctrl+M.
		Mounted at /con	Restart and run all	
			Disconnect and delete r	untime
	[]	<pre>import numpy as import pandas a</pre>	Change runtime type	
		<pre>import time</pre>	Manage sessions	
		<pre># Visualization</pre>	View resources	
		<pre>import matplotl import seaborn</pre>	View runtime logs	
		<pre># Preprocessing</pre>		
		from sklearn.pr	eprocessing import L	abelEncoder
		# Modeling		
<>		<pre>trom sklearn.li # Ensemble Mode</pre>	near_model import Lo ls and CLF-Voting	ogisticRegression
		from sklearn.ne	ighbors import KNeig	hborsClassifier
=:		from sklearn.tr	ee import DecisionTr	reeClassifier

Figure 10. Code Execution in Google collab