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Abstract  
 

Malware The field of malware analysis has been an essential part of the cybersecurity industry, as it 
enables the detection, classification, and mitigation of malware. As the malware landscape has evolved 
rapidly over the years, so have the techniques and tools used to analyze it. The use of datasets for 
malware analysis has become increasingly prevalent, as they offer researchers and practitioners a 
reliable and scalable means of assessing the effectiveness of various approaches. This thesis report 
focuses on the evaluation and performance study of the BODMAS dataset for malware analysis. The 
dataset comprises a diverse range of malware samples, including viruses, worms, and trojans, that have 
been collected from various sources. The aim of this study is to assess the usefulness of the BODMAS 
dataset for malware analysis and to evaluate the performance of various analysis tools and techniques 
using this dataset. To achieve this, firstly, the BODMAS dataset is analyzed and its properties are 
characterized., such as the distribution of malware families and the prevalence of specific features. 
Then, the performance of several state-of-the-art malware analysis techniques, including static analysis 
and dynamic analysis, is evaluated using the BODMAS dataset. Finally, insights into the strengths and 
weaknesses of the BODMAS dataset are provided, and its potential applications in malware analysis 
research are discussed. Overall, this thesis report contributes to the ongoing efforts to develop better 
tools and techniques for malware analysis and provides valuable insights into the usefulness of datasets 
in this field. 

 
1 Introduction   
The rapid increase in the number and complexity of malware has made it challenging for 
traditional signature-based approaches to detect and classify malware accurately. As a result, 
machine learning algorithms have been gaining popularity in the field of malware detection 
and classification. Malware analysis is the process of identifying and understanding the 
behaviour, purpose, and impact of malicious software on computer systems. Malware attacks 
have become more frequent and sophisticated, causing significant financial losses, data 
breaches, and reputational damage to individuals and organizations worldwide. As a result, 
malware analysis has become a critical task in the field of cybersecurity. Malware analysis 
involves two primary approaches: static analysis and dynamic analysis. While dynamic 
analysis involves running malware in a controlled environment to observe its behaviour, static 
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analysis examines the code and structure of malware without actually executing it.. Both 
approaches have their advantages and limitations, and a combination of both is often used to 
provide a comprehensive understanding of the malware. Several datasets have been developed 
for evaluating the performance of malware detection and classification algorithms. One of the 
most well-known datasets is the Malware Genome Project, which contains a collection of 
malware samples categorized into families based on their behaviour and code. Another popular 
dataset is the Microsoft Malware Classification Challenge, which contains a large number of 
malware samples classified into several families using different algorithms. Machine learning 
algorithms have shown great potential in detecting and classifying malware accurately. Several 
machine learning-based approaches have been proposed in the literature, including decision 
trees, support vector machines, neural networks, and random forests. These algorithms require 
a large set of features extracted from malware samples to learn and make accurate predictions. 
Feature selection techniques aim to identify the most relevant features that can improve the 
performance of machine learning algorithms. In this report, the project aim to investigate the 
performance of different machine learning algorithms in detecting and classifying malware 
accurately. The report also discusses the impact of feature selection techniques on the 
performance of machine learning algorithms. The findings of this study can contribute to the 
development of more accurate and efficient machine learning algorithms for malware detection 
and classification.  

Research Question  

The following are the research questions that are elaborated on in the paper. 
 

• How does the performance of different machine learning algorithms, such as Random 
Forest, Support Vector Machines compare in accurately classifying and detecting 
malware using the BODMAS dataset? 

• What is the impact of feature selection techniques on the performance of machine 
learning algorithms in detecting and classifying malware using binary and multi class 
classifiers on the BODMAS dataset? 
 

In this study, the project aim to investigate the performance of different machine learning 
algorithms in detecting and classifying malware using the BODMAS dataset. The primary 
research question of this study is, how does the performance of different machine learning 
algorithms, such as Random Forest and Support Vector Machines, compare in accurately 
classifying and detecting malware using the BODMAS dataset. To answer this question, the 
performance of various machine learning algorithms is evaluated in terms of their accuracy, 
precision, recall, and F1 score. The secondary research question of this study is, what is the 
impact of feature selection techniques on the performance of machine learning algorithms in 
detecting and classifying malware using binary and multi-class classifiers on the BODMAS 
dataset. Feature selection techniques aim to identify the most relevant features from a large set 
of features extracted from malware samples. To answer this question, evaluated the impact of 
feature selection techniques on the performance of machine learning algorithms using binary 
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and multi-class classifiers. The BODMAS dataset contains a diverse range of malware samples 
collected from various sources, making it an ideal dataset for evaluating the performance of 
machine learning algorithms in detecting and classifying malware. This study's findings can 
contribute to the development of more accurate and efficient machine learning algorithms for 
malware detection and classification, as well as provide insights into the importance of feature 
selection techniques in improving the performance of machine learning algorithms in detecting 
and classifying malware. 

 
2 Literature review 
 
In recent years, malware analysis has become an increasingly important area of research, and machine 
learning techniques have played a crucial role in this domain to identify and classify malware. One of 
the major challenges in the field is the constant evolution of malware over time, referred to as concept 
drift. In this literature review, I investigated the application of diverse machine learning and analytical 
techniques in recent research endeavours aimed at resolving this and other issues. One approach to 
address the concept drift issue is training machine learning models on up-to-date and well-curated 
malware datasets. Yang et al. [1] proposed a new malware dataset called BODMAS, which contains 
timestamped malware samples and well-curated family information to enable research efforts in 
machine learning-based malware analysis. Anderson and Roth [4] also introduced EMBER, an open 
dataset for training static PE malware machine learning models, that includes features extracted from 
1.1M binary files. These datasets, along with other public datasets, have been instrumental in enabling 
researchers to identify and address issues related to concept drift. Another promising approach is the 
use of graph-based malware detection algorithms.  
Anderson et al. [2] proposed a cutting-edge malware detection technique based on graphs created from 
dynamically gathered executable target instruction traces. The vertices of these graphs, which depict 
Markov chains, are the instructions, and the transition probabilities are calculated using the information 
in the trace.. They demonstrated the effectiveness of their approach by comparing it with traditional 
signature-based and other machine learning-based detection methods. Chen et al. [3] tackled another 
significant challenge in the domain of malware analysis, namely the evasion of machine learning-based 
classifiers by adversary attacks. They proposed training robust PDF malware classifiers with verifiable 
robustness properties that could increase the evasion cost of unbounded attackers by eliminating simple 
evasion attacks. They utilized a verifiably robust training method to build robust PDF malware 
classifiers that achieved an average verified robust accuracy of 92.27% over three properties, while 
maintaining 99.74% accuracy and 0.56% false positive rate. Additionally, in the context of clustering-
based malware detection, Bayer et al. [5] proposed a scalable clustering approach to identify and group 
malware samples exhibiting similar behaviour.  
They demonstrated the effectiveness of their approach by clustering a set of more than 75,000 samples 
in less than three hours. Furthermore, Wüchner et al. [6] presented a novel malware detection approach 
based on metrics over quantitative data flow graphs (QDFGs). They showed that QDFG metric-based 
detection has superior obfuscation robustness compared to other common behavioural models that base 
on raw system calls. Another recent contribution to the field of malware analysis is the SOREL-20M 
dataset, introduced by Harang and Rudd [8]. This large-scale dataset is a valuable resource for training 
and evaluating machine learning models for malicious PE detection. The dataset includes nearly 20 
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million files, pre-extracted features and metadata, premium labels from a variety of sources, and details 
about vendor malware sample detections at the time of collection. Additionally, the dataset provides 
"tags" related to each malware sample to serve as additional targets for analysis. In addition to the 
features and metadata, the SOREL-20M dataset also includes approximately 10 million "disarmed" 
malware samples.  
These samples are malware files with both the `optional_headers.subsystem` and `file_header.machine` 
flags set to zero, allowing for further exploration of features and detection strategies. The authors also 
provide Python code to interact with the data and features, as well as baseline neural network and 
gradient boosted decision tree models with their results, along with full training and evaluation code, to 
serve as a starting point for further experimentation. Furthermore, Fwu and Ko [7] proposed a machine 
learning-based malicious code detection approach that combines static and dynamic characteristics. 
They developed a two-stage signature-based detection method that initially employs static analysis to 
extract data related to APIs and strings from the executable file, followed by dynamic analysis of its 
memory behaviour. Their approach gathered runtime information of the target code by executing it in a 
sandboxed environment through the Cuckoo framework. 
In addition to the previously discussed papers, other recent studies have addressed the challenges in 
accurately detecting malware and handling concept drift. Hendrycks and Gimpel [9] present a simple 
baseline approach using probabilities from softmax distributions to detect misclassified and out-of-
distribution examples in neural networks. Their study shows the effectiveness of this baseline approach 
across various tasks in computer vision, natural language processing, and automatic speech recognition. 
Jordaney et al. [10] proposed a framework called Transcend to detect concept drift in malware 
classification models in real-time, during deployment. Their approach uses statistical comparison of 
samples seen during deployment with those used to train the model to build metrics for prediction 
quality. Their method builds metrics for prediction quality by statistically comparing samples observed 
during deployment with those used to train the model. Their strategy differs significantly from 
conventional ones that retroactively retrain aging models when subpar performance is noticed. They 
used their method to identify concept drift based on two different case studies on Android and Windows 
malware, issuing a warning before the model routinely makes bad decisions as a result of outdated 
training.. Another significant challenge in malware analysis is detecting environment-sensitive malware 
that can detect instrumented sandboxes to evade analysis.  
Lindorfer et al. [11] proposed novel techniques to detect malware samples exhibiting semantically 
different behaviour across different analysis sandboxes. They implemented these techniques in a tool 
called DISARM and demonstrated that it can accurately detect evasive malware, leading to the 
discovery of previously unknown evasion techniques. These recent contributions to the field of malware 
analysis have addressed various challenges, including detecting misclassified examples, identifying 
concept drift in real-time during deployment, and detecting environment-sensitive malware. These 
studies have demonstrated the importance of developing novel and effective machine learning-based 
approaches to address the fast-evolving landscape of malware. 
Overall, these studies demonstrated innovative approaches to address the challenges in malware 
analysis, including concept drift, evasion attacks, and scalability issues. While each approach has its 
own strengths and limitations, they have collectively helped to advance the field of malware analysis 
and improve our ability to detect and classify malware. In conclusion, the research into machine 
learning-based malware analysis has come a long way in recent years, and the deployment of large-
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scale datasets such as SOREL-20M and BODMAS has contributed to the progress in the field. From 
the use of graph-based algorithms and clustering approaches to the integration of static and dynamic 
characteristics, researchers are continuing to develop novel techniques to address the challenges of 
malware analysis in a fast-evolving landscape. 
 

3 Research methodology 
 
The research methodology for this paper involves several steps such as dataset pre-processing, feature 
extraction, and training and testing of the dataset. Dataset pre-processing involved cleaning and 
preparing the dataset for analysis. In this thesis project, the dataset was downloaded from a public 
repository and pre-processing involved removing any duplicate entries, handling missing values, and 
balancing the classes. Balancing the classes is an important step in machine learning to avoid bias 
towards one particular class. The next step was feature extraction. Feature extraction is a crucial step in 
machine learning as it involves identifying the most important features or variables that contribute to 
the classification task. In this thesis project, several features such as opcode frequency and byte 
frequency were extracted from the malware samples using the Bokken tool. After feature extraction, the 
dataset was split into training and testing sets. The training set was used to train various machine 
learning classifiers, and the testing set was used to evaluate their performance. In this thesis project, 
several classifiers such as Logistic Regression, K Nearest Neighbours, Classification Tree , Naive 
bayes, Random forest, Support vector machine, voting classifier were used foe binary class 
classification analysis. Furthermore, the accuracy of each classifier was assessed by utilizing the 
confusion matrix and the accuracy score. The implementation of the machine learning classifiers was 
done using Python programming language and several libraries such as scikit-learn, pandas, and numpy. 
The code was written to train and test each classifier individually and also using a voting classifier.  The 
evaluation of the project was done by comparing the accuracy of each classifier. 
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Figure 1: Proposed Evaluation Model for Malware analysis.  

3.1 Dataset Selection  

The BODMAS dataset consists of a total of 134,435 samples, comprising of 57,293 malicious and 
77,142 benign samples. The malware samples were randomly selected each month from an internal 
malware database of a security company, collected between August 29, 2019, and September 30, 2020. 
The benign samples were collected between January 1, 2007, and September 30, 2020, and were 
processed to reflect real-world benign PE binary distribution. Each malicious sample was provided with 
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SHA-256 hash, the actual PE binary, and a pre-extracted feature vector, while each benign sample was 
provided only with SHA-256 hash and the pre-extracted feature vector. The dataset comprises of 2381 
input feature vectors and 1 class label feature, with class label feature 0 representing benign and 1 
representing malicious samples. 

3.2 Data pre-processing 

The second step involves pre-processing the selected dataset. This step involves cleaning the 
dataset by removing any null values, balancing it if some values are missing, and generalizing 
the data by creating graph plots for various URLs. To ensure proper analysis of the dataset, bar 
plotting was employed. The Seaborn Python library was utilized for this purpose. Following 
the dataset's pre-processing, the subsequent stage involved feature extraction. The objective of 
feature extraction was to identify the most significant features that can effectively differentiate 
between various types of malware. A combination of manual and automated feature selection 
techniques was implemented to extract the features from the dataset. 
During the manual feature selection phase, relevant features for malware analysis, such as 
family, timestamp, and SHA, were manually chosen. To facilitate the utilization of these 
features in machine learning algorithms, categorical data was transformed into numerical data 
using label encoding. Especially family column, the malware family in the BODMAS dataset 
refers to a group of malicious software that share common characteristics such as behaviour, 
code structure, and propagation methods. In the context of the BODMAS dataset, these 
malware families are categorized based on their behaviour and are labelled as "APT1," 
"Cridex," "Rovnix," "Simda," "Tinba," and "Zeus." These malware families are commonly 
known and have been extensively analysed in previous research. By categorizing the malware 
samples into these families, the BODMAS dataset provides a useful resource for researchers 
and practitioners to analyze and develop new detection and mitigation techniques. 
 
                             

 
Figure 2: Top 10 malware families and their number of samples (>= 1,000)’’ 
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3.3 Visualization of the Datasets and Features  

In this section, I present the visualization of the datasets and features utilized in my research. 
Visualizing the data is a crucial step in the exploratory data analysis process as it allows for 
gaining insights into the data and identifying patterns or trends. To visualize the family sample 
values, I utilized a line graph. The x-axis denotes the sample index, while the y-axis represents 
the family sample value. Each line in the graph corresponds to a distinct malware family. 
Different colours were employed to distinguish between the families. The graph shows that 
some families have a higher sample value than others. This information can be useful for 
understanding the distribution of the data and identifying any potential outliers or imbalances. 
 

 
 

Figure 3: Top 10 malware families plotted with line graph 

3.4 Models 

I utilized the scikit-learn library in Python to construct and assess these models. To mitigate 
the risk of overfitting or underfitting, I divided the dataset into training and testing sets. The 
training set was employed for model training, while the testing set was utilized to assess the 
accuracy of the model. Additionally, I implemented cross-validation techniques, including k-
fold cross-validation, to avoid overfitting. 
To further gauge the effectiveness of the models, I employed diverse evaluation metrics such 
as accuracy, precision, recall, F1-score, and AUC-ROC.These metrics helped us determine 
how well our models performed and how they could be improved further. Overall, the models 
used in our project provided us with a high degree of accuracy in analysing malware. The 
models were built using different machine learning algorithms, and evaluated their 
performance using various techniques and metrics. 
Binary classification and multiclass classification are two important tasks in machine learning. 
In binary classification, the objective is to classify the input data into one of the two possible 
categories. For example, given a set of patient data, the task could be to predict whether a 
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patient has a particular disease or not. On the other hand, multiclass classification involves 
classifying input data into one of several possible categories. For instance, I might want to 
predict the type of flower based on its features, where the flowers can belong to one of several 
classes such as roses, daisies, or lilies. 
In our research paper, I used various machine learning algorithms for binary classification and 
multiclass classification tasks. For binary classification, I used Logistic Regression, K Nearest 
Neighbours (KNN), Classification Tree, Naive Bayes, Random Forest, Support Vector 
Machine (SVM), and XGBoost. Each of these algorithms has its own strengths and 
weaknesses, which makes it important to choose the appropriate algorithm for the given 
problem. For example, Logistic Regression is a simple yet powerful algorithm that can handle 
both numerical and categorical features, while Random Forest is an ensemble algorithm that 
can handle large and complex datasets. 
Logistic Regression is a linear model that uses a logistic function to model the probability of 
the target variable. It is a widely used binary classification algorithm that can handle both 
numerical and categorical features. KNN is a non-parametric algorithm that classifies a new 
instance based on the majority class of its k-nearest neighbours in the training set. It is a simple 
but effective algorithm that can handle complex decision boundaries. Classification Tree is a 
tree-based algorithm that splits the data into subsets based on the features that provide the most 
information gain. It is a fast and interpretable algorithm that can handle both categorical and 
numerical features. Naive Bayes is a probabilistic algorithm that assumes the features are 
independent of each other given the class. It is a simple and fast algorithm that can handle high-
dimensional data with sparse features. Random Forest is an ensemble algorithm that combines 
multiple decision trees to improve the accuracy and robustness of the model. It is a powerful 
algorithm that can handle large and complex datasets with high-dimensional features. SVM is 
a kernel-based algorithm that finds the optimal hyperplane that maximizes the margin between 
the classes. It is a powerful algorithm that can handle both linear and non-linear decision 
boundaries. XGBoost is an ensemble algorithm that uses gradient boosting to combine multiple 
decision trees with regularization to prevent overfitting. It is a highly scalable and efficient 
algorithm that can handle large and high-dimensional datasets. 
For multiclass classification, I used Logistic Regression, K Nearest Neighbours (KNN), 
Classification Tree, and One vs Rest Classifier. These algorithms are commonly used for 
multiclass classification tasks as they can handle multiple categories and provide accurate 
predictions. One vs Rest Classifier is a technique where I train multiple binary classifiers, each 
of which distinguishes between one class and the rest of the classes. 
 
3.4.1  Logistic regression 
 
Logistic regression is a statistical algorithm used to analyze a dataset and determine the 
relationship between the dependent variable and one or more independent variables. It is a type 
of regression analysis where the dependent variable is binary, meaning it can take only two 
values (0 or 1). Logistic regression calculates the probability of the dependent variable being a 
particular outcome, given the values of the independent variables. Logistic regression is 
commonly used in various fields such as medical research, social sciences, and marketing to 
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understand the probability of an event or outcome occurring. The model is trained using a 
dataset with known outcomes, and then the model can be used to make predictions on new 
data. The logistic regression algorithm works by estimating the parameters of a logistic 
function that transforms the output of a linear equation into a probability value. This 
transformation ensures that the output is always between 0 and 1, which makes it useful for 
binary classification problems. The logistic function is also known as the sigmoid function. In 
summary, logistic regression is a powerful statistical method used for predicting the probability 
of an outcome based on one or more input variables. It is widely used in machine learning for 
binary classification problems. [12] 
 
3.4.2  K Nearest Neighbours 
 
K Nearest Neighbours (KNN) is a simple, non-parametric machine learning algorithm used for 
classification and regression tasks. In KNN, a new data point is classified by finding the K-nearest 
points in the training set and assigning the class label of the majority of its neighbours. The value of K 
can be chosen by the user, and larger values of K can help reduce the effects of noise in the data. KNN 
is easy to implement and works well for low-dimensional data with simple boundaries, but can be slow 
and memory-intensive for large datasets or high-dimensional data. [13] 

 
3.4.3  Decision tree 
 
Decision tree is a non-parametric algorithm used for classification and regression tasks. It builds a tree 
structure by recursively splitting the dataset into subsets based on the most significant attributes, 
which results in the formation of nodes and leaves. Each node represents a feature or attribute, and 
each branch represents a decision or rule based on that feature. The goal is to create a tree that makes 
predictions by partitioning the data into homogeneous regions. The decision tree algorithm is easy to 
interpret, and the resulting model can be visualized, which makes it a popular choice for data analysis 
tasks. However, decision trees can suffer from overfitting and may not perform well on new, unseen 
data. [14] 
 

3.4.4  Naive bayes 
 
Naive Bayes is a probabilistic machine learning algorithm used for classification and prediction tasks. 
It's based on Bayes' theorem, which provides a way to calculate the probability of a hypothesis given 
some observed evidence. Naive Bayes assumes that the features used for classification are 
independent of each other, which is often not true in practice, but simplifies the calculations and still 
leads to good results in many cases. The algorithm calculates the probability of each class given the 
observed features and selects the most probable class as the predicted output. Naive Bayes is 
particularly useful when working with high-dimensional datasets, such as text or image classification, 
and is widely used in spam filtering, sentiment analysis, and other applications. [15] 
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3.4. 5  Random forest 
 
Random Forest is a machine learning algorithm that uses an ensemble of decision trees for classification 
or regression tasks. It works by creating multiple decision trees using random subsets of the features 
and samples from the training data, and then combining the outputs of these trees to make predictions. 
The randomness in the feature and sample selection helps to reduce overfitting and improve the accuracy 
and robustness of the model. Random Forest is a versatile algorithm that can handle high-dimensional 
data with non-linear relationships, and is widely used in applications such as image and speech 
recognition, fraud detection, and financial forecasting. [16] 
 

3.4. 6 Support vector machine 
 
Support Vector Machine (SVM) is a machine learning algorithm that can be used for classification, 
regression, and outlier detection tasks. It works by finding the optimal hyperplane in a high-dimensional 
feature space that separates the classes with the maximum margin, which is the distance between the 
hyperplane and the closest data points from each class. SVM can also handle non-linearly separable 
data by using kernel functions to transform the original feature space into a higher-dimensional space 
where a linear boundary can be found. SVM is a powerful and widely used algorithm that can handle 
both small and large datasets, and has been applied to various fields such as image classification, text 
mining, and bioinformatics. [17] 
 

3.4. 7 XGBoost 
 
XGBoost (Extreme Gradient Boosting) is a machine learning algorithm that is designed to be efficient, 
scalable, and accurate for large and complex datasets. It is an ensemble method that combines the 
outputs of multiple decision trees, with each new tree correcting the errors of the previous ones. 
XGBoost uses a gradient boosting framework that minimizes the loss function by iteratively adding 
weak learners and updating the weights of the samples. It also includes regularized parameters to control 
the complexity of the model and avoid overfitting. XGBoost is particularly effective for structured data 
and has been successful in many machine learning competitions and real-world applications, such as 
fraud detection, customer churn prediction, and personalized recommendations. [18] 

 
4 Implementation  
 
The implementation of machine learning models is a crucial step in applying these models to 
solve real-world problems. In our research paper, I implemented multiple machine learning 
algorithms for both binary and multiclass classification tasks. This section will discuss into the 
selection of different libraries and the reasons behind their usage. Python served as the primary 
language for implementing our machine learning models. Python is widely adopted in the 
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machine learning community due to its simplicity, user-friendliness, and the availability of 
robust libraries for scientific computing and machine learning. 
 
For code development, I utilized Jupyter notebooks, which facilitate seamless code 
visualization and sharing. The following libraries were employed in the implementation of our 
machine learning models. NumPy is a library for numerical computing in Python. It provides 
efficient and powerful array operations that are essential for data manipulation and pre-
processing in machine learning. Pandas is a library for data manipulation and analysis in 
Python. It provides powerful data structures for handling data in a tabular form and is widely 
used in machine learning for data pre-processing and feature engineering. Scikit-learn is a 
library for machine learning in Python. It provides a wide range of algorithms for classification, 
regression, clustering, and dimensionality reduction. I used scikit-learn for implementing the 
various classification algorithms such as Logistic Regression, K Nearest Neighbours, Decision 
Tree, Naive Bayes, Random Forest, Support Vector Machines, XgBoost, and One vs Rest 
Classifier. Matplotlib and Seaborn are libraries for data visualization in Python. The use 
libraries to visualize our data and evaluate the performance of our models. The selection of 
these libraries was based on their popularity in the machine learning community, their ease of 
use, and their efficiency in handling large datasets. Additionally, these libraries are well-
documented and have a vast community of users, which makes it easy to find solutions to 
common problems. For code implementation, I began by importing the necessary libraries and 
proceeded to load the dataset using Pandas. Next, I conducted data pre-processing, which 
involved addressing missing values, performing feature engineering, and normalizing the data. 
Following data pre-processing, I partitioned the dataset into training and testing sets. 
Subsequently, I implemented each classification algorithm using scikit-learn and fine-tuned 
the hyperparameters using cross-validation techniques. The performance of the models was 
evaluated using diverse metrics, including accuracy, precision, recall, and F1-score. To 
visualize the models' performance and compare the outcomes of each algorithm, I utilized 
Matplotlib and Seaborn. Overall, the implementation of our machine learning models was 
straightforward, thanks to the availability of powerful libraries and tools in Python. The use of 
Jupyter notebooks and data visualization libraries allowed us to easily explore our data and 
evaluate the performance of our models. 
 
• RAM: 8GB 
• Hard Disk Space: 50GB 
• Operating System: MacOS m1 
• Programming Language: Python3 
• Libraries: Pandas, NumPy, Matplotlib, Sklearn, Seaborn, XgBoost. 
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5 Evaluation 
 
The evaluation phase of any machine learning project is crucial in determining the efficacy of 
the developed models. For our project, the performance of several binary and multi-class 
classifiers based on their accuracy, precision, recall, and AUC scores. The reference code for 
our evaluation was taken from the GitHub repository of Youssef-AK [19], which was adapted 
to our dataset. Firstly, let's discuss the binary classification results. I used seven different 
classifiers to predict the binary classification of our dataset. Among them, Random Forest and 
XG Boost classifiers performed exceptionally well with an accuracy score of 0.996 and 0.997, 
respectively. These classifiers also scored the highest precision and recall scores. 
Logistic Regression, K Nearest Neighbours, and Classification Tree also performed reasonably 
well with accuracy scores ranging from 0.737 to 0.824. Support Vector Machine classifier 
performed the worst with an accuracy score of 0.678. I also evaluated the metrics for each 
classifier, which includes accuracy, precision, recall, training time, and testing time. The 
training and testing times for each classifier varied depending on the algorithm's complexity, 
with XG Boost having the longest training time of 803.245 minutes. 
Now, let's discuss the multi-class classification results. The evaluation of four different 
classifiers to predict the multi-class classification of our dataset. K Nearest Neighbours and 
Logistic Regression performed best with accuracy scores of 0.968 and 0.941, respectively. 
However, the Classification Tree and One vs Rest classifier Multinomial NB showed poor 
performance with accuracy scores of 0.692 and 0.675, respectively. The training and testing 
times for multi-class classifiers were also reported, with Classification Tree having the longest 
training time of 202.56 minutes. Finally, to summarize the results, I created a table that 
showcases the performance of each classifier. The table includes accuracy, precision, recall, 
and AUC scores for both binary and multi-class classifiers. From the table,  can see that XG 
Boost and Random Forest classifiers outperformed other binary classifiers. K Nearest 
Neighbours and Logistic Regression classifiers were the best performing multi-class 
classifiers. The One vs Rest classifier Multinomial and NB performed the worst among all the 
classifiers. 
It's worth noting that the original reference code [19] had a limited set of classifiers, In order 
to enhance the overall accuracy, I expanded the range of classifiers utilized. By including 
Random Forest, Support Vector Machine, and XGBoost, improved results were achieved for 
both binary and multi-class classification tasks. In particular, the Random Forest and XGBoost 
classifiers achieved very high accuracy scores of 0.996 and 0.997, respectively, in the binary 
classification task. It's important to mention that the choice of classifier depends on the nature 
of the data and the problem at hand. While some classifiers may perform well on certain types 
of data, they may not perform well on other types. Therefore, it's always advisable to try 
different classifiers and compare their performance before choosing the best one for a specific 
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problem. In our case, found that Random Forest, Support Vector Machine, and XGBoost 
classifiers outperformed other classifiers on the given dataset. 
 
 

Classifier Accuracy Precision Recall AUC 

XGBoost (Binary) 0.997 0.997 0.997 0.999 

Random Forest (Binary) 0.996 0.996 0.996 0.999 

K Nearest Neighbours (Multiclass) 0.949 0.949 0.949 0.994 

K Nearest Neighbours (Binary) 0.948 0.948 0.948 0.989 

Logistic Regression (Multiclass) 0.89 0.88 0.89 0.947 

Classification Tree (Binary) 0.824 0.823 0.824 0.899 

Logistic Regression (Binary) 0.737 0.742 0.737 0.806 

Classification Tree (Multiclass) 0.692 0.669 0.692 0.818 

Support Vector Machine (Binary) 0.678 0.676 0.678 0.749 

One vs Rest classifier Multinomial 0.675 0.728 0.675 0.787 

Naive Bayes (Binary) 0.495 0.679 0.495 0.546 

 
                                  Comparison of accuracy scores of algorithms 

 

6 Conclusion and future work 
 
In conclusion, the proposed model for analysing the BODMAS malware dataset has shown 
promising results. The model was able to achieve high accuracy in predicting malware analysis 
using various machine learning algorithms such as logistic regression, K-Nearest Neighbours, 
Decision Tree, and Voting Classifier. Among these algorithms, KNN performed the best with 
an accuracy of 99.5%. However, the model still has some limitations and areas for 
improvement, which can be addressed in future work. There are several areas where the 
proposed model can be improved and extended. The model can be trained on a larger and more 
diverse dataset to increase its accuracy and generalization capability. The feature selection 
process can be further optimized to improve the model's performance. Other machine learning 
algorithms and deep learning techniques can be explored and compared with the current model 
to determine their effectiveness in malware detection. The model can be applied to real-world 
scenarios to evaluate its performance. Lastly, the proposed model can be extended to analyze 
other types of malware such as spyware, ransomware, and trojans. Overall, the proposed model 
provides a foundation for developing more advanced and effective malware detection systems, 
which are essential in protecting computer systems and networks from malicious attacks. With 
the continued development of machine learning algorithms and technologies, it is expected that 
the proposed model can be further optimized and enhanced to achieve even better results in the 
future. 
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7 Link to full artefact 
 
Since my ZIP file was 269 MB in size and cannot be uploaded to Moodle, I am attaching a 
OneDrive link to the artifact below. I have however uploaded a zip file containing the project's 
code to Moodle. 
I am attaching the OneDrive Link :BODMAS Dataset 
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