\-
\ National

Collegef
Ireland

Configuration Manual

MSc Research Project
Cloud Computing

Student Name: Basanti Pun
Student ID; 21130931

School of Computing
National College of Ireland
Supervisor: Dr. Shivani Jaswal

National College of Ireland

MSc Project Submission Sheet
School of Computing

“'—
\ National

Collegeof
Ireland

Student Name: Basanti Pun

Student ID: 21130931

Programme: IMSc in Cloud Computing Year: [|2023
IModule: Research Project

Supervisor: Dr. Shivani Jaswal

Submission Due Date:

25/04/2023

Project Title:

and XAl Techniques

Sentiment Analysis of Ireland Housing Problem using Ensemble Learning

\Word Count:

1361

Page Count

15

I hereby certify that the information contained in this (my submission) is information pertaining to
research | conducted for this project. All information other than my own contribution will be fully referenced
and listed in the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required to use the
Referencing Standard specified in the report template. To use other author's written or electronic work is illegal
(plagiarism) and may result in disciplinary action.

Sighature:

Basanti Pun

Date:

25/04/2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies)

copy on computer.

O
Attach a Moodle submission receipt of the online project submission, to each O
project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for your O

own reference and in case a project is lost or mislaid. It is not sufficient to keep a

Assignments that are submitted to the Programme Coordinator Office must be placed into the
assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Basanti Pun
21130931

1 Introduction

The setup guide elucidates the process of executing the developed code relevant to the current
study. By adhering to these instructions, the smooth and error-free operation of the code is
guaranteed. Additionally, it encompasses details concerning the hardware requirements for the
system on which the code will be executed, including the recommended minimum
specifications. Adhering to these guidelines will facilitate the duplication of the project's
results, enabling further analysis and seamless continuation of research.

2 System Configuration

2.1 Hardware and Software Configuration

As the project is implemented on AWS by using the service Amazon SageMaker there is no
specific requirement for the local system. The main required tool is a browser and reliable
internet connection.

For creating the instance of Jupyter notebook on Amazon SageMaker follow the following
steps:

1. Loginto AWS console

Console Home s Reset to defautt ayout | [IEEHREIRENEE

Recently visited 1nfo : Welcome to AWS

Amazon SageMaker

Learn the fundam s and find valuzble

” information to get the most out of AWS.

Amazon Comprehend

Training and ce ation [

BEHEEEBRRA

View all services

AWS Health info : Cost and usage nfo

Figure 1

2. From service section select Amazon SageMaker.

jices Q

Fay @ Ireland ¥

Lifecycle configurations
Amazon SageMaker > Domains
Search

Domains we

Is @ A domain includes an associated Amazon Elastic File System (EFS) volume; a list of authorized users; and a variety of security, application, policy, and Amazon Virtual Private Cloud

¥ JumpStart

Foundation

Comp sion mo (VPC) configurations. Each user in a domain receives a personal and private home directory within the EFS for notebooks, Git repositories, and data files.
mputer vision madels

Natural language processing

models » Domain structure diagram
» Governance
» Ground Truth
¥ Notebook)

Notebook instances I

)
Git repasitories / n\
[\ Q
Ldi
» Processing User Profile Personal Apps
A user profile represents a single A Studio instance with a private
» Training user within a domain, and is the EFS directory and shared
main way to reference a “person” for SageMaker Resources across
» Inference Domain the purposes of sharing, reporting, domain users.
A domain consists of an and other user-oriented features
» Edge Manager associated Amazon EFS
volume; a list of authorized
» Augmented Al users; and a variety of
security, application, policy,

» AWS Marketplace and Amazon VPC

configurations.

Figure 2

3. From the left panel click on Notebook -> Notebook Instances -> create notebook

instance.
- Qs 3 B 4 @ ireendv

vices

Lifecycle configurations

Amazon SageMaker » Notebook instances

Search
w JumpStart Notebook instances info c
Q s tebook instance 1 &

Natural language processing e i Istance A v P) Actions

models

Figure 3

4. Enter the instance name and then choose the instance type “ml.t3.medium”, platform
identifier -> Amazon Linux 2, Jupyter Lab 3. Other configurations are optional and can
be done as per the requirement.

H @ ielandvy bamv

Amazon SageMaker » Notebook instances » Create notebook instance

Create notebook instance

Amazon SageMaker provides pre-built fully managed notebook instances that run Jupyter notebooks. The notebook instances
include example code for common model training and hosting exercises. Learn more [4

Notebook instance settings

Notebook instance name

IrelandHousing

Notebook instance type

ml.t3.medium v

Elastic Inference Learn more [4

none v

Platform identifier Learn more [4

Amazon Linux 2, Jupyter Lab 3 v

» Additional configuration

Figure 4

5. Click on the create notebook instance.

Services Q

B 4 @ Ireland ¥

1AM role
AmazonSageMakerFull Access IAM

SageMaker-DataScientist

Create role using the role creation wizard [
Root access - optional
© Enable - Give users root access to the notebook

Disable - Don't give users root access to the notebook
Encryption key - optional

No Custom Encryption

» Network - optional
» Git repositories - optional

» Tags - optional

Cancel Create notebook instance

Figure 5

6. After creating the notebook instance, it will come in ready state.

B £ @ ireandv bz

X Amazon SageMaker » Notebook instances

Notebook instances info

Q - book 1 o]
Studio Lab [4
Canva Name s Instance Creation time v Status 4 Actions
RStudio
relandHosuing ml.t3.medium 4/22/2023, 211:04 PM @ InService Open Jupyter | Open JupyterLab
_ sentimentAnalysis ml.t3.medium 4/16/2023, 8:56:08 PM @ InService Open Jupyter | Open JupyterLab
Domains

Figure 6

7. Click on the open Jupyter button. Following interface will appear

" Jupyter

Open JupyterLab Quit Logout

Files Running Clusters SageMaker Examples Conda

Select items to perform actions on them. Upload New~ &
oo -~ W/ Name ¥ Last Modified File size
O & Ireland_Housing_Sentiments ipynb Running an hourago 4.12 MB
O [doud png 5 days ago 706 kB
D [weetesv 5 hours ago 316 kB
(@S| wc.png 5 hours age 424 kB

Figure 7

Click on the new button and choose the conda_python3 environment to start writing the
python code.

3 Project Development

For the implementation of the Machine Learning model some libraries are required to be
installed which can be done by using pip command. In the Jupyter notebook, the library can
be installed by using this command “!!pip install <library name>".

Following libraries are needed to be install in Jupyter notebook

matplotlib - Matplotlib is a data visualization library and is commonly used for data
analysis. It provides a variety of tools for creating static, animated, and interactive
visualizations in Python.

seaborn — Seaborn is a well-known Python library for data visualization that builds
upon Matplotlib and offers a user-friendly interface for generating visually appealing
and informative statistical graphics.

numPy — NumPYy is a software library for Python that is utilized in scientific
calculations and the analysis of data. It provides a robust object for N-dimensional
arrays, as well as an assortment of functions to manipulate these arrays.

pandas - Pandas is a library in Python that is designed for the purpose of analysing
and manipulating data. It offers a robust collection of tools that are specifically meant
to handle structured data like time series data, series, and data frames.

nitk - NLTK, which stands for Natural Language Toolkit, is a Python library that is
utilized in the field of natural language processing. It presents a collection of
techniques and resources for examining textual data, encompassing tokenization,
stemming, identifying the grammatical category of words, recognizing named entities,
gauging the sentiment of text, and additional functionalities.

textblob - TextBlob enables the analysis of a text's sentiment, which can reveal
whether the text conveys positive, negative, or neutral emotions. The resulting
sentiment score is a floating-point number ranging between -1 and 1, where a score of
-1 indicates very negative sentiment, and a score of 1 indicates very positive
sentiment.

pycountry - The pycountry library is a software module written in Python that offers
a user-friendly approach to retrieve the 1SO databases associated with various
categories such as countries, subdivisions, languages, currencies, and scripts.
langdetect - The langdetect is a Python library that utilizes n-gram frequency analysis
and machine learning methods to detect the language of a particular text in an
automated manner.

tweepy - Tweepy is a library for Python that offers a user-friendly approach to
connect with and engage with the Twitter API. It streamlines the authentication
process and presents a range of classes and methods to help access different features
of the Twitter API.

wordcloud - The wordcloud library is a Python package that is commonly utilized to
generate word clouds. These clouds are graphic depictions of text information,
wherein more commonly appearing words are depicted in bigger font sizes, while less
frequently occurring words are displayed in smaller font sizes.

lime - LIME (Local Interpretable Model-Agnostic Explanations) is a library in Python
used for explaining the predictions of machine learning models. It helps in
understanding the reasoning behind the predictions made by a model, especially for
complex models like deep neural networks. LIME is designed to work with any
machine learning model, whether it is a classification or a regression model.

After installing the libraries, the code can be run block by block.

3.1 Data Extraction and Pre-Processing

import tweepy
import pandas as pd

function to display data of each tweet

def printtweetdata(n, ith_tweet):
print()
print{f“"Tweet {n}:")
print{f“Tweet Text:{ith_tweet[@]}")
print{f“Location:{ith_tweet[1]}")
print(f"Following Count:{ith_tweet[2]}")
print{f"Follower Count:{ith_tweet[3]}")
print({f“Total Tweets:{ith_tweet[5]}")

function to perform data extraction
def scrape(words, date_since, numtweet):

Creating DataFrame using pandas

df = pd.DataFrame(columns=["text’,
*location’,
*following"®,
"*followers®,
"totaltweets"])

We are using .Cursor() to search

through twitter for the required tweets.

The number of tweets can be

restricted using .items(number of tweets)

tweets = tweepy.Cursor{api.search_tweets,
words, lang="en",
since_id=date_since,

the iterator has various attributes
that you can access to

get information about each tweet
ist_tweets = [tweet for tweet in tweets]

#

Counter to maintain Tweet Count
i=1

we will iterate over each tweet in the
List for extracting information about each tweet
for tweet in list tweets:

text = tweet.user.text

location = tweet.user.location
following = tweet.user.friends_count
followers = tweet.user.followers_count

hashtags = tweet.entities['hashtags"]

tweet_mode="extended’).items(numtweet)

.Cursor() returns an iterable object. Each item in

Retweets can be distinguished by

a retweeted_status attribute,

in case it is an invalid reference,
except block will be executed

ry:

Lt

except AttributeError:
text = tweet.full_text

hashtext = list()

for j in range(@, len(hashtags)):
hashtext.append(hashtags[j]["text'])

Here we are appending all the

extracted information in the DataFrame

ith_tweet = [text, location, following,
followers, totaltweets]

db.loc[len(db)] = ith_tweet

Function call to print tweet data on screen
printtweetdata(i, ith_tweet)
i=1ia1

filename = ‘twitter.csv’

we will save our database as a CSV file.
db.to_csv(filename)

text = tweet.retweeted_status.full_text

if __name__ == '_ _main__

Enter

fro
consumer_key = "g2IxHTaaiMBASATK3uDwlXcow"

consumer_secret = "hnEUuhcxBFrBEnGnamBogq8D8kPZgZoPsvX5rd821IYpa30e8gs”
access_key = "2243994841-WrjmErWEdfNZXBsBDDWBGR1SNegfplit65xg7X8e”
access_secret = "fsmeNbAakCNYgRDKiUm1IPupWSTGsArhCeEqjmjldVhm2™

auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_key, access_secret)
api = tweepy.API(auth)

Enter Hashtags and initial date

print("Enter Twitter HashTags separated by commas to search for")
hashtags_input = input()

hashtags_list = [hashtag.strip() for hashtag in hashtags_input.split(',")]
words = ' OR '.join([f'#{hashtag}’ for hashtag in hashtags_list])

print("Enter Date since The Tweets are required in yyyy-mm-dd™)
date_since = input()

number of tweets you want to extract in one run
numtweet = 18666

scrape(words, date_since, numtweet)
print(’'Scraping has completed!’)

Twitter data is extracted using the twitter API and the below hashtags are used to retrieve
relevant data from twitter.

Enter Twitter HashTags separated by commas to search for

#IrelandHousingCrisis, #HousingShortage, #AffordableHousingIreland, #RentCrisisIreland, #HomelessnessIreland, #IrishPropertyMar
ket, #HousingForAll, #RisingRentIreland, #IrishHousingIssues, #HousingPolicyIreland, #HousingProtest, #HousingFirstIreland, #Ho
usingSupplyIreland, #HousingBubbleIreland, #IrelandIsFull, #HouseTheIrish

Enter Date since The Tweets are required in yyyy-mm-dd

| 2009-01-01

Dataframe head below shows the data on the top 5 tweets -

In [13]: import pandas as pd
df = pd.read_csv('tweet.csv',encoding="MacRoman')
df.head()
Out[13]:
Unnamed: 0 location text I ing foll s totaltweets
0 0 Ireland @SligoLeitLabour @labour An alternative to Sin... ['HousingForAll'l 1010 1806 7522
1 1 Dublin, Ireland The @LDA_Ireland has identified the potential... ['HousingForAlll 2518 210 29360
2 2 Dublin, Ireland @KitMurray @paulmurphy_TD Have you an issue wi... [housingforall] 1286 1254 8804
3 3 Limerick, Ireland Want to give your vacant property a new lease ... ['oldhousenewhome', 'housingforall', 'Limerick'] 183 282 14910
4 4 West of Ireland Calling on all political figures to stop evect... ['evections', 'HousingCrisis', 'housingforall’] 706 300 1021

Use of Lambda function to remove special characters, ‘RT@’ and mentions from the dataset

df["text"] =tweet_list
#tweet_List.drop duplicates(inplace =
tw_list = pd.DataFrame(tweet_list)
tw_list['text'] = tw_list[e]
#Removing RT, Punctuation etc

True)

#Removing RT, Punctuation etc

remove_rt = lambda x: re.sub(RT @\w+: »X)

rt = lambda x: re.sub("(@[A-Za-z8-9]+)|(["@-9A-Za-z “t])| (s VWS, LX)
tw_list["text"] = tw_list.text.map(remove_rt).map(rt)

tw_list["text"] = tw_list.text.str.lower()

tw_list.head(20)

0 text
[] The situation with affordable rent and housing... the situation with affordable rent and housing..
1 Dublin's Housing market continue to burn red h dublin s housing market continue to burn red h
2 @KitMurray @paulmurphy_TD Have you an issue wi... td have you an issue with peaceful protest..
3 Want to give your vacant property a new lease ... want to give your vacant property a new lease ..
4 Calling on all political figures to stop evect... calling on all political figures to stop evect..
5 A first-of-its-kind report on the potential of... a first of its kind report on the potential of..

3.2 Data Transformation

#Determining positive,negative and neutral tweets

def percentage(part,whole):
return 100 * float(part)/float(whole)
positive = @
negative = @
neutral = @
polarity = @
tweet_list = []
neutral_list = []
negative_list = []
positive list = []
for tweet in df["text™]:
tweet_list.append(tweet)
analysis = TextBlob(tweet)
score = SentimentIntensityAnalyzer().polarity_scores(tweet)

neg = score['neg']
neu = score['neu']
pos = score['pos’]
comp = score['compound’]

polarity += analysis.sentiment.polarity

if neg > pos:
negative_list.append(tweet)
negative += 1

elif pos > neg:
positive_list.append(tweet)
positive += 1

elif pos == neg:
neutral_ list.append(tweet)
neutral += 1

positive = percentage(positive, 327)
negative = percentage(negative, 327)
neutral = percentage(neutral, 327)
polarity = percentage(polarity, 327)
positive = format(positive, ".1f")
negative = format(negative, '.1f")
neutral = format(neutral, ".1f")
tw_list[['polarity’, 'subjectivity']] = tw_list['text'].apply(lambda Text: pd.Series(TextBlob(Tesxt).sentiment))
for index, row in tw_list['text'].iteritems():
score = SentimentIntensityAnalyzer().polarity_scores(row)
neg = score['‘neg’]
neu = score['neu’]
pos = score['pos’]
comp = score['compound’]
if neg > pos:
tw_list.loc[index, 'sentiment’] = "negative”
elif pos > neg:
tw_list.loc[index, ‘'sentiment’'] = "positive”
else:
tw_list.loc[index, ‘sentiment’'] = "neutral”
tw_list.lec[index, 'neg'] = neg
tw_list.loc[index, 'neu'] = neu
tw_list.loc[index, 'pos'] = pos
tw_list.loc[index, "compound’'] = comp
tw_list.head(1@)
0 text polarity subjectivity sentiment neg neu pos compound
0 The siluation with affordable rent and housing.. (L2 EMET W'thaﬁordab'igi!“fg“d 0333333 0678571 posiive 0.000 0.977 0023 0.0258
1 Dublin's Housing market continue to bum reg h, 201 S MOUSIg marketcontinue OBUM 10 p65509 0352500 posiive 0.000 0936 0.064 02263
g IR EE T R R RS.€ tdhave you an issue wilh peaceful profest.. 0250000 0500000 posiive 0092 0645 0263 05713
3 Wanttogive your vacant property a new lease . Wantioge yourvacantpropemy 20V g 950091 033863 postive 0000 077 0423 04215
4 Calling on all political figures to stop evect.. calling on all political figures to stop evect.. 0.000000 0.100000 negative 0.167 0.833 0.000 -0.2960

Pie chart for the twitter sentiment:

positive

neutral

negative

Figure 8

Count values for sentiment:

#Count_values for sentiment
count_values_in_column(tw_list,"sentiment")

Total Percentage

positive 650 5412

negative 317 26.39

neutral 234 19.48
Figure 9

WordCloud:

m euewlopw ent

need
de hted

Figure 10

Word Cloud for Positive Sentiment

say
decelfcei ldhousmgcrlsls

e L amp
“dublin e

housingforall

next
take

housing-crisis >
homes:

Commun i tytime o

PEOP

homeles's ?

traveller

us
emakel ent

‘need
living

Figure 11

Word Cloud for Negative Sentiment

Top 5 locations in Ireland with the most negative sentiment tweets -

Top 5 Locations with the Most Negative Sentiment Tweets

= = = =
" ~ =] o} & al
o @ -] u] w

Number of Negative Sentiment Tweets

N
]

o

& & &
& & «&
o . o
< < &*
&
Locations

Figure 12

3.3 Data Mining

Logistic Regression

from sklearn.linear_model import LogisticRegression

Load the dataset
data = tw_list

Split the dataset into train and test sets
X_train, X_test, y_train, y test = train_test_split(data['text'], data['sentiment'], test_size=8.3, random_state=42)

Create feature vectors using CountVectorizer and TfidfTransformer
count_vect = CountVectorizer()

X_train_counts = count_vect.fit_transform(X_train)

tfidf transformer = TfidfTransformer()

X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts)

Train the model using logistic regression
clf = LogisticRegression(random_state=42)
clf fit(X_train_tfidf, y_train)

Test the model on the test set

X_test_counts = count_vect.transform(X_test)
X_test_tfidf = tfidf transformer.transform(X_test_counts)
y_pred = clf.predict(X_test_tfidf)

Calculate accuracy

accuracy = accuracy_score(y_test, y pred)
print("Accuracy:™, accuracy)

Accuracy: ©.6398891966759003

Classification Report:
precision recall fl-score support

negative .79 8.37 @.51 99
neutral 8.73 @8.16 8.26 69
positive 0.61 8.95 0.74 193
accuracy 0.64 361
macro avg 0.71 9.49 .50 361
weighted avg 0.68 0.64 8.59 361

Decision Tree

from sklearn.tree import DecisionTreeClassifier

Load data from CSV file
data = tw_list

Split the dataset into train and test sets
X_train, X_test, y_train, y_test = train_test_split(data['text'], data['sentiment'], test_size=0.3, random_state=42)

Create feature vectors using CountVectorizer and TfidfTransformer
count_vect = CountVectorizer()

X_train_counts = count_vect.fit_transform(X_train)
tfidf_transformer = TfidfTransformer()

X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts)

Train a Decision Tree classifier on the training data
clf = DecisionTreeClassifier()
clf.fit(X_train_tfidf, y_train)

Test the classifier on the test data

X_test_counts = count_vect.transform(X_test)
X_test_tfidf = tfidf_transformer.transform(X_test_counts)
y_pred = clf.predict(X test_tfidf)

Fvaluate the performance of the classifier

accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy}")

Accuracy: ©.631578947368421

Classification Report:
precision recall fl-score support
negative .57 8.56 B.56 99
neutral 0.48 .57 2.52 69
positive 0.69 @.65 8.67 193
accuracy 0.6l 361
macro avg 0.58 8.59 9.58 361
weighted avg B.62 8.61 .61 361

Ensemble Model

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression

from sklearn.tree import DecisionTreeClassifier

from sklearn.svm import SVC

from sklearn.ensemble import VotingClassifier

import lime
from lime.lime_text import LimeTextExplainer
import shap

X = tw_list['text']
y = tw_list['sentiment']

vectorizer = TfidfVectorizer()
X_train_tfidf = vectorizer.fit_transform(X_train)
X_test_tfidf = vectorizer.transform(X_test)

logistic_regression = LogisticRegression(random_state=42)
decision_tree = DecisionTreeClassifier(random_state=42)
support_vector_machine = SVC(random_state=z42, probability=True)

ensemble classifier = VotingClassifier(
estimators=[
("1r', logistic_regression),
("dt', decision_tree),
('svm', support_vector_machine)
]}

voting="'soft’

ensemble classifier.fit(X_train_tfidf, y_train)
y_pred = ensemble_classifier.predict(X_test_tfidf)

print(“Accuracy: ", accuracy_score(y_test, y_pred))

from sklearn.metrics import accuracy_score, classification_report

X_train, X_test, y_train, y_test = train_test _split(X, y, test size=0.2,

random_state=42)

print("\nClassification Report:\n", classification_report(y_test, y_pred))

Evaluation:

Accuracy: ©.6680497925311203

Classification Report:

precision recall fl-score support

negative 0.60 0.50 @.55 64
neutral 0.64 0.56 0.60 a5
positive 0.70 0.79 9.74 132
accuracy 8.67 241
macro avg .65 8.61 8.63 241

weighted avg 0.66 8.67 @.66 241

Ensemble model with hyperparameter tuning

import numpy as np

from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.linear_model import LogisticRegression

from sklearn.tree import DecisionTreeClassifier

from sklearn.svm import SVC

from sklearn.ensemble import VotingClassifier

from sklearn.metrics import accuracy_score, classification_report
import lime

from lime.lime_text import LimeTextExplainer

import shap

X
3/

tw_list["text']
tw_list['sentiment']

X_train, X_test, y_train, y test = train_test_split(X, y, test_size=0.2, random_state=42)

vectorizer = TfidfVectorizer()
X_train_tfidf = vectorizer.fit_transform(X_train)
X_test_tfidf = vectorizer.transform(X_test)

logistic regression = LogisticRegression(random statez42)
decision tree = DecisionTreeClassifier(random statez42)
support vector machine = SVC(random statez42, probability=True)

ensemble_classifier = VotingClassifier(
estimators=[
('1r', logistic_regression),
('dt', decision_tree),
("svm', support_vector_machine)
1,
voting="soft’

)

define parameter grid for hyperparameter tuning
param_grid = {

‘lr_C': [8.1, 1.0, 10.0],

'dt__max_depth': [Nene, 5, 18],

'swm__C': [0.1, 1.8, 10.0]

¥

create GridSearchCV object with the defined parameter grid
grid_search = GridSearchCV(ensemble_classifier, param_grid=param_grid, cv=5)
grid_search.fit(X train_tfidf, y_train)

get the best hyperparameters and evaluate the model
best_params = grid_search.best_params_

ensemble classifier.set_params(**best_params)
ensemble classifier.fit(X_train_tfidf, y_train)
y_pred = ensemble_classifier.predict(X_test_ tfidf)

print("Best Parameters: ", best_params)
print("Accuracy: ", accuracy_score(y_test, y pred))
print("\nClassification Report:\n", classification_report(y_test, y pred))

e This code is designed to analyse the sentiment of a dataset of tweets by combining three
machine learning algorithms: Logistic Regression, Decision Tree, and Support Vector
Machine (SVM), into an ensemble classifier using a "soft" voting strategy.

e The dataset is loaded into variables X and y, where X contains the tweet text and y contains
the corresponding sentiment labels.

e The dataset is then split into training and testing sets using the train_test_split() function from
scikit-learn.

e The tweet text is transformed into a numerical format using the TfidfVectorizer() function to

create a matrix of TF-IDF features.

e A parameter grid is defined for hyperparameter tuning using the GridSearchCV() function,
which fits the VotingClassifier to the training set with the defined parameter grid and uses
cross-validation to evaluate the model's performance.

e The best hyperparameters are extracted using the best_params__ attribute of the GridSearchCV
object.

e The VotingClassifier is then retrained using the best hyperparameters and evaluated on the

test set using the accuracy_score() and classification_report() functions.

Finally, the best hyperparameters and evaluation metrics are displayed in the console.

Evaluation:
Best Parameters: {'dt_ max_depth': 18, 'lr_C': 108.@, 'svm__C': 10.0}
Accuracy: ©.6970954356846473
Classification Report:
precision recall fl-score support
negative B.64 @8.508 8.56 64
neutral B.74 0.58 0.65 45
positive 0.71 0.83 0.76 132
accuracy e.7e 241
macro avg 8.78 8.64 8.66 241
weighted avg 0.69 08.70 0.69 241
Comparison of the implemented models
Model accuracy |precision |recall fl-score
Logistic Regression 0.64 0.68 0.64 0.59
Decission Tree 0.61 0.62 0.61 0.61
Ensemble
Model(SVM,Logistic
Regression and Decision
Tree) 0.67 0.66 0.67 0.66
Ensemble
Model(SVM,Logistic
Regression and Decision
Tree) with
hyperparameter tuning 0.70 0.69 0.70 0.69

Data Interpretation with LIME

Initialize the explainer
explainer = LimeTextExplainer(class_names=['Negative', "Positive'])

Choose a sample from the test set for explanation
sample_idx = 20
sample_text = X_test.iloc[sample_idx]

Define a custom predict_proba function to handle the input format for LIME
def custom_predict_proba(texts):

transformed_texts = vectorizer.transform(texts)

return ensemble_classifier.predict_proba(transformed_texts)

Explain the prediction for the chosen sample
explanation = explainer.explain_instance(sample_text, custom_predict_proba, num_features=10, top_labels=2)
explanation.show_in_notebook(text=True)

The Individual tweets below are interpreted by using LIME.

Prediction probabilities Negative

[housingforall Text with highlighted words
Negative [001] s coco ireland fousingforall carlow housing
Positive [0.97 ireland
Other o
0.02
carlow
0.0z
housing
0.01

Prediction probabilities Negative . R
P homeless Text with highlighted words
Negative o3 in some local authority areas for example galway city
Positive tm}}llfs traveller families make up 50 of the IHIGIEEN familics
Other : of while accounting for just over 1 of the overall
0.05 population said mr joyce mnoendinsite
Just travellerhomesmatter
0.05H

make

0.05
the

0.04

city

0.03

example

0.03

OVET

0.03

for

0.03

	1 Introduction
	2 System Configuration
	3 Project Development
	3.1 Data Extraction and Pre-Processing
	3.2 Data Transformation
	3.3 Data Mining

