

National College of Ireland
Computing Project

Software Development

2022/2023

Sean Fulton

x19518013

x19518013@student.ncirl.ie

Pressfeed

Technical Report

mailto:x19518013@student.ncirl.ie

1

Contents
Executive Summary ... 3

1.0 Introduction .. 3

1.1. Background ... 3

1.2. Aims ... 4

1.3. Technologies ... 4

1.4. Structure ... 6

2.0 System ... 7

2.1. Requirements .. 7

2.1.1. Functional Requirements .. 7

2.1.1.1. Use Case Diagram ... 7

2.1.1.2. Requirement 1 – User Authentication .. 7

2.1.1.1.1. Description & Priority: .. 7

2.1.1.1.2. Use Case – Register: ... 8

2.1.1.1.2. Use Case – Login: ... 10

2.1.1.1.3. Use Case – Logout: ... 11

2.1.1.1.4. Use Case – Change Username/Password:.. 12

2.1.1.1.5. Use Case – Delete Account: ... 14

2.1.1.3. Requirement 2 – News Aggregation ... 15

2.1.1.2.1 Description & Priority: ... 15

2.1.1.2.2. Use Case – Retrieve/Update Articles: ... 15

2.1.1.2.3. Use Case – Subscribe/Unsubscribe to news sources: ... 16

2.1.1.2.4. Use Case – View Articles: .. 17

2.1.1.3. Requirement 3 – Social Functionality ... 18

2.1.1.3.1 Description & Priority: ... 18

2.1.1.3.2. Use Case – Like/Dislike Articles: .. 18

2.1.1.3.3. Use Case – Comment on articles: ... 20

2.1.1.3.4. Use Case – Edit comment: .. 21

2.1.1.3.5. Use Case – Delete comment: .. 22

2.1.2 Data Requirements ... 23

2.1.3 User Requirements ... 25

2.1.4 Environmental Requirements ... 25

2.1.5 Usability Requirements ... 26

2.1.6 Design & Architecture ... 27

2.1.6.1. Entity Relationship Diagram .. 27

2.1.6.2. Class Diagram .. 29

2

2.1.6.3. Sequence Diagram .. 30

2.1.7 Implementation .. 31

2.1.7.1. News Aggregation System: ... 31

2.1.7.2. Application’s Main Views / Templates .. 33

2.1.8 Graphical User Interface (GUI) .. 36

2.1.8.1. Landing Page: .. 36

2.1.8.2. Register & Login Pages .. 37

2.1.8.3. Subscriptions Page .. 38

2.1.8.4. Feed Page .. 39

2.1.8.5. Account Page... 39

2.1.9 Testing ... 40

2.1.9.1. Unit testing ... 40

2.1.9.2. System & Acceptance Tests ... 41

2.1.9.3. CI/CD / Integration Tests .. 42

2.1.10 Evaluation .. 43

2.1.10. Performance ... 43

3 Conclusions ... 45

4 Further Development or Research ... 45

5.0 References .. 46

5 Appendices .. 46

5.1 Project Proposal .. 46

Objectives.. 48

Background ... 48

State of the Art .. 48

Technical Approach ... 49

Technical Details ... 50

Special Resources Required .. 50

Project Plan ... 51

Testing ... 52

5.2 Reflective Journals .. 52

5.2.1. October: .. 52

5.2.2. November: .. 53

5.2.3. December: ... 54

5.2.4. January: ... 55

5.2.5. February: ... 56

5.2.6. March: ... 57

3

5.2.7. April: .. 58

Executive Summary
This document outlines the implementation of Pressfeed, a social media focused news aggregation
web application built using the Python based web framework Django. Throughout this document I
will outline the requirements specification of the application’s development, UML diagrams,
explanations of core functionality code snippets, testing and continuous integration approaches. All
technologies included are listed with clear reasons for why they are implemented in the application
and what purpose they provide to the application.

The forefront of Pressfeeds goals are to deliver a platform for users to curate the news they would
like to keep up to date on, offering features such as a direct message system to allow discourse on
articles recommended by the system, focusing on a younger demographic Pressfeed aims to attract
frequent users of social media in which they would rely on to stay up to date on news, Pressfeed
provides a way to keep the features of social media platforms but deliver real world news sources to
its users.

The aim of this document is to showcase the methodologies and approaches taken to implement
such an application while also looking at the future of the product.

1.0 Introduction
1.1. Background
I chose to create Pressfeed as I feel there is a growing need for real news sources to be available
to people through the medium of a social media platform. A lot of the news people are
consuming today are coming from unreliable user accounts that frequent the feeds of Twitter,
Facebook and Instagram and can even spread misinformation on topics.

In 2020 a survey was conducted by the Trusted Web Foundation on a group of 1000 people in
Europe, with ages ranging from 16 to over 54:

Figure 1 – Survey of users primary news source Figure 2 - Survey of accidental sharing of misinformation,

4

Figures 1 and 2 are pie charts on the results of a study that concluded people of all ages even the
young demographic of users of social media have difficulty identifying misleading news through
their use of various social media platforms. Roughly 38.2% of people claim they have reshared
false information on social media. (Trusted Web Foundation, 2021)

A core goal for Pressfeed is to mitigate the amount of misinformation being shared by people
online without removing the social discourse functionality provided by current social media
platforms.

1.2. Aims
I believe a solution such as Pressfeed can lead to more accurate information being available to
users by providing direct sources to users while still providing social media features on other
platforms to allow for the discourse of topics users of Pressfeed can subscribe to.

1.3. Technologies

Software / Service Technology

Development Environment (IDE) Visual Studio Code

Programming Language Python 3.11.0

Web Framework Django 4+

Relational Database / Persistent Storage PostgreSQL

Application Programming Interfaces NewsAPI

Hosting Fly.io

Front-End Technologies
Bootstrap 5

JavaScript

Version Control
Git

GitHub

Django - Python rest web framework:

Django is a fast web framework for the Python programming language it offers a fast
development cycle for developers to get web applications from design to code efficiently. I
chose Django to quickly develop Pressfeed’s and easily interconnect both backend and frontend
functionality.

Python (3.11.0):

Python is an object oriented programming language. I will be using Python version 3.11 to
implement the majority of the application. This is a great choice for me as a developer due to
Python natively supporting a Windows 11 environment which I am using for Pressfeeds
development. Python excels in backend development which will be a core focus of handling the
logic for my PostgreSQL database models with the purpose of the delivery of news data to
Pressfeeds users.

5

NewsAPI:

NewsAPI advertised as a replacement for the deprecated Google News API is the primary news
article aggregator implemented into Pressfeed, this API returns metadata on articles in a JSON
format, which is easily manipulated using Python and Django. This allows Pressfeed to
seamlessly deliver news data in a well-structured format alongside the Bootstrap CSS
framework.

PostgreSQL:

PostgreSQL is an open source object-relational database that uses and extends the SQL
language. I have chosen PostgreSQL as the database system for Pressfeed due to both Django
and my deployment platform (Fly.io) supporting PostgreSQL databases. My application requires
a way to retain news data from NewsAPI , and also User authentication data. My solution to this
is to design a database structure utilising PostgreSQL allowing me to perform fast and effective
queries on Pressfeeds data due to PostgreSQL incorporating a vast number of indexing
algorithms.

Git, GitHub & GitHub Actions (Version Control)

Pressfeeds implementation is strictly managed using version control software

1. Git:

Git is a distributed version control system which in the development of Pressfeed I am
using to track the changes of its implementation and to easily revert to older version of
the application

2. GitHub:

GitHub is a web-based hosting platform for Git repositories. Since I am the sole
developer of Pressfeed the main features of GitHub I use is for backup purposes. In the
event of losing the application from my local development environment I can always
retrieve my last pushed commit to my remote repository on GitHub. Branche Pull
Requests are also a very useful feature to run checks (builds, test plans) on new features
before merging to my main branch

3. GitHub Actions

GitHub Actions is the Continuous Integration & Deployment platform of Pressfeed.
GitHub Actions automates the workflow jobs I have defined for both the build criteria
and Deployment steps for Pressfeed.

6

1.4. Structure
The structure of this document is to detail the key headings below:

• 2.0 System – The System section contains all implementation and design models of the
application

o 2.1 Requirements – outlines the functional and non-functional requirements of
the system
 2.1.6 Design & Architecture - details the design processes undertaken to

discover the best implementation of the application.
 2.1.7 Implementation – Documents the final implementation of the

application and its core systems
 2.1.8 – Graphical User Interface – Screenshots of the final

implementation of the application
 2.1.9 – Testing – Documents the testing techniques undertaken to

ensure the stability of the application through its development lifecycle
 2.1.10 – Evaluation – A final evaluation of the application’s performance

and the more efficient approach to news aggregation.

• 3.0 Conclusions – Conclusions outline the analysis of the final implementation of
application and the overall concepts the document has demonstrated

• 4.0 Further Development or Research – Outlines the paths Pressfeed can take on further
development of the application and what areas were researched to improve the
applications implementation.

• 5.0 References – Contains all cited sources which are used in the application and
document.

• 6.0 Appendices

o Project Proposal – includes the updated application proposal for Pressfeed.
o Ethics Approval Application – outlines the ethical aspects of the application and

approval from external sources.
o Reflective Journals – includes all reflective journals which keep track of

Pressfeeds development on a monthly basis

7

2.0 System
2.1. Requirements

2.1.1. Functional Requirements
2.1.1.1. Use Case Diagram

 Figure 3 – HIGH LEVEL USE CASE DIAGRAM

Figure 3 outlines the top level use case diagram of the application. The diagram outlines all Actors,
which include the User, System, and Database and the main uses cases I intend to implement within
the application. The purpose of this diagram is to provide a structure for user functionality and to aid
in identifying the functional requirements to ensure users can effectively use the application.

2.1.1.2. Requirement 1 – User Authentication
2.1.1.1.1. Description & Priority:

[PRIORITY MEDIUM]

User Authentication should allow Users to register an account with a unique username and
password, login to their accounts with those credentials, change their account details and delete
their accounts if they choose to.

8

User Authentication should be secure and ensure the correct validation of the User’s username and
password inputs.

2.1.1.1.2. Use Case – Register:

Description

This use case describes a user registering an account
through the System’s frontend

Scope

Registering allows users to create a new account on the
System with a username and password.

It does not allow the user to login, delete their account,
or change their username or password

Pre-Condition

 The User must be logged out

Activation

 The User navigates to the Register page by

clicking the ‘Register’ link located on the navbar
of the System.

Main Flow

1. The User clicks the ‘Register’ link on the navbar

of the application

2. The System returns the Register view and
template

3. The User enters a unique username

4. The User enters valid password:

• Password must be no less than 8 characters
• The password should not contain the Users

username
• It must not be entirely numeric
• It should not be a commonly used password

5. The User confirms their password

9

6. The User clicks the Register button
7. The System creates a new user record with the

entered credentials and saves the Users
password using a salting / hashing algorithm to
store passwords

8. The User is logged in, redirected to the home
page and a success message is displayed

Alternate Flow N/A

Exceptional Flow

• Not unique username:
1. The user navigates to the Register view
2. The User enters an already used username
3. The User fills out both password fields

correctly

4. The User clicks the Register button

5. The System redirects to the Register page and
an error message is displayed indicating that
the User’s chosen username is already used

• Passwords do not match:
1. The User navigates to the Register page
2. The User enters a unique username
3. The user enters password
4. The user does not enter the same password for

the ‘confirm password field’
5. The user clicks the register button

6. The System redirects to the Register page and an

error message is displayed indicating that the
User’s enter password fields do not match.

Termination

• The system completes User registration by
redirecting the User to the home page when the
User clicks the Register button

• User registration terminates unsuccessfully when
the user enters insufficient criteria for the fields.
When clicking the Register button, the System
will redirect to the Register page

10

Post Condition

The System either successfully creates a new user record
in the Database user’s

2.1.1.1.2. Use Case – Login:

Description
 This use case describes the User’s ability to login to an
existing account registered on the System

Scope

• The Login use case allows users to Login to an
existing account

• It does not allow users to Register,
• Changing username/password is included in this

use case
• Deleting a user account is included in this use

case
• Must be logged in to Logout

Pre-Condition

• The user must be logged out

Activation

• Login begins once the User navigates to the login
page when logged out of the System

Main Flow

1. The User navigates to the login page
2. The User enters their login credentials
3. The User clicks the Login button
4. The System authenticates the User
5. The user is successfully logged in

Alternate Flow N/A

11

Exceptional Flow

• Invalid username
1. The User navigates to the Login page
2. The User enters an invalid username
3. The User enters their password
4. The User clicks the Login button
5. The System redirects to the Login page and

displays an error messaging indicating the
login credentials provided were incorrect

• Incorrect password
1. The User navigates to the login page
2. The User enters an existing username
3. The User enters an incorrect password
4. The System redirects to the Login page
indicating the login credentials provided were
incorrect

Termination
The System successfully authenticates the user or
returns an error message due to incorrect login
credentials provided

Post Condition The System has successfully activated a session with
User account

2.1.1.1.3. Use Case – Logout:

Description
 This use case describes the User’s ability to Logout of
their currently active account

Scope

• The Logout use case allows users to Logout of
their logged in account and destroy their user
session

Pre-Condition

The System can logout a user account when a current
user session is active

Activation

• The User clicks the logout button

12

Main Flow

1. The User clicks the logout button
2. The System destroys the active User session

Alternate Flow N/A

Exceptional Flow

N/A

Termination • The User clicks the logout button

Post Condition • The System destroys the User sessions

2.1.1.1.4. Use Case – Change Username/Password:

Description

This use case describes the editing of both the Users
Username and Password

Scope

• This use case enables the functionality of editing
a User’s username and password

Pre-Condition

• The User has logged in and has an active user
session

Activation

• The User navigates to the account page
• The either updates their username or password

by filling out their respective fields and clicking
the change username / change password button

13

Main Flow

1. The User logs in
2. The User navigates to the account page
3. The User:

a. opts to change their username
b. opts to change their password

4. The User submits the changes
5. The System saves the updated User

information

Alternate Flow N/A

Exceptional Flow

• Updated username is not unique:
1. The username the User has chosen is not

unique
2. The User attempts to submit their changes
3. The System refuses and displays an error

message indicating the username was not
unique

• Update passwords did not match
1. The password and confirm password fields

for the new password were not matching
2. The User attempts to submit their changes
3. The System refuses and displays an error

message indicating the users password fields
did not match

Termination

• The System updates the username or password
for the User successfully

• The System throws an error and displays it to the
user on the frontend

Post Condition

• The Users username and/or password is updated
successfully

• The Users username and/or password is not
updated successfully due to invalid inputs

14

2.1.1.1.5. Use Case – Delete Account:

Description

This use case describes the functionality for Users to be
able to delete their account and remove all of their User
data related to their account

Scope

• This use case completely removes all data of a
User upon the users request

Pre-Condition • The User must be logged in.

Activation • The User navigates to the User account page

Main Flow

1. The User clicks the delete account button on
the account page.

2. The User is prompt to confirm or cancel their
request by The System

3. The User clicks ‘Confirm’
4. The System successfully deletes the User’s

account data
5. Redirects the User back to the home page
6. Displays an message indicating the account

has been deleted successfully

Alternate Flow

• The User cancels account deletion:
1. The User navigates to the User account page
2. The User clicks the delete account button
3. The User is prompted to Confirm or Cancel

account deletion
4. The User clicks Cancel
5. The System aborts account deletion action

Exceptional Flow N/A

Termination • The User’s account deletion process has
completed after the user clicks the delete

15

account button and either chooses to confirm or
cancel their request

Post Condition

• The User’s account has been successfully deleted
by the System

• The System has aborted the deletion of the
User’s account

2.1.1.3. Requirement 2 – News Aggregation
2.1.1.2.1 Description & Priority:

[PRIORITY HIGH]

The core functionality of Pressfeed lies within its processes of news aggregation. How I aim to
achieve this will be outlined in this requirement. Pressfeed needs to deliver news articles to its user’s
in a streamlined manner, with it easy to navigate through the many articles and sources that will be
available to users upon using the system.

2.1.1.2.2. Use Case – Retrieve/Update Articles:

Description

The ability for the System to aggregate to Article
metadata from NewsAPI and store it in the Database

Scope

• The System and Database are the only actors of
this use case, the User does not interact with
processes of news data retrieval within the
System

Pre-Condition
• The System must be running
• A Database connection must be established
• NewsAPI endpoints must be live

Activation
• When the System starts
• Scheduled task should execute article retrieval on

a regular basis throughout the day

Main Flow

1. The System is running and executes article
retrieval from NewsAPI

2. Transforms JSON response into SQL Model to be
persisted in the Database

3. While the System is running a scheduled task
should retrieve news periodically

16

Alternate Flow N/A

Exceptional Flow

• A Database connection is lost
1. The System attempts to execute retrieval of

articles.
2. The Database connection cannot be

established
3. The System throws an error due to it being

unsuccessful of retrieval of article data

Termination • The System is terminated

Post Condition • The System persists the previous retrieval of
news data until being executed

2.1.1.2.3. Use Case – Subscribe/Unsubscribe to news sources:

Description

This use case describes the functionality to allow Users
to select which news sources available on the System
they would to subscribe or subsequently unsubscribe to.

Scope

• This use case allows users to choose which
sources they would like to see on their feed page

• This use case dictates which articles will be
shown to users in the View Articles use case

Pre-Condition • The User must be registered and logged in to the
System

Activation • The User navigates to the Subscriptions page

Main Flow

1. The User’s account is logged in and active
2. The User navigates to the Subscriptions
3. The User chooses which articles to subscribe

/ unsubscribe to
4. The User submits their changes
5. The System updates the Database to include

which sources the User is subscribed to

17

Alternate Flow N/A

Exceptional Flow

• No news sources are available in the database
1. The User navigates to the Subscriptions page
2. The User cannot subscribe nor unsubscribe to

articles due to their none being available

Termination • The User submits the updated subscription list

Post Condition • The System persists the Users subscriptions

2.1.1.2.4. Use Case – View Articles:

Description

This use case describes the functionality for User’s to be
able to view the available articles from news sources
they have subscribed to

Scope

• The scope of this use case is to provide Users
with the functionality to view articles available to
the System & Database

• Comment on articles, edit comment, like/dislike
articles are extensions of this use case

Pre-Condition
• The User must be logged in
• The User must have subscribed to at least one

news source

Activation • The User navigates to their Feed page

Main Flow
1. The User navigates to their Feed page
2. The User can view articles from their subscribed

news sources

18

Alternate Flow

• The user has not subscribed to any news sources
1. The User navigates to their Feed page
2. The System indicates to the user there are no

articles to display due to them not being
subscribed to any news sources

3. The User navigates to their Subscriptions
page

4. The User updates their news sources
5. The User navigates to the Feed page
6. The User can now view articles from their

newly subscribed to news sources

Exceptional Flow N/A

Termination • The user navigates away from the Feed page

Post Condition
• The System does not query anymore articles

from the Database and serves the newly selected
use case to the user

2.1.1.3. Requirement 3 – Social Functionality
2.1.1.3.1 Description & Priority:

[PRIOTITY MEDIUM]

The Pressfeeds goal to bring social discourse to accurate news sources lies within its requirement to
provide similar features to popular Social Media applications. This requirement details the
functionality of how Pressfeeds Users can interact with Articles provided by the System and provide
a reaction through a like/dislike system, and also give the users extended functionality to provide
their opinion through the ability to leave comments on articles. These features should not be forced
upon User’s in the case they would like to use the application for pure news aggregation purposes

2.1.1.3.2. Use Case – Like/Dislike Articles:

Description
This use case describes the ability for Users to be able to
provide their reaction by leaving either a Like or Dislike
on articles

Scope

• Like / Disliking allows users to select whether
they Like (approve of) or Dislike (Disapprove of)
an article and display their reaction to other
users of the System

Pre-Condition • The User must be logged in

19

Activation
• The User clicks either Like or Dislike button on an

article

Main Flow

1. The User navigates to the Feed page
2. The User clicks the Like or Dislike button on an

article
3. The System logs there logs there like / dislike and

subsequently displays it in the pool of total likes /
dislikes the article has accumulated

Alternate Flow

• User likes or dislikes from the detailed view of
the article:

1. The User navigates to the Feed page
2. The User clicks the view comments button
3. The User either clicks the Like or Dislike button
4. The System saves their reaction

• User removes their existing reaction

1. The User navigates to an article they have
previously liked or disliked and removes their
old reaction by clicking the same reaction
which

2. The System removes their reaction

• User changes their reaction
1. The User navigates to an article they have

previously liked or disliked and changes their
reaction by clicking the opposite reaction

2. The System updates their reaction

Exceptional Flow N/A

Termination
• The User leaves the article view or Feed page

after leaving a reaction, changing or removing a
reaction

Post Condition The System updates the respective action to the reacted
to articles by the User

20

2.1.1.3.3. Use Case – Comment on articles:

Description

This use case describes the functionality for User’s to
comment on respective articles available to them by the
System

Scope

• The scope of this use case is to allow user to
leave comments on articles

• Editing of comments and deleting comments use
cases are included within this use case

Pre-Condition
• The User is logged in
• There are Articles available to the System in the

Database

Activation
• The user navigates to the comment / detailed

page of the article

Main Flow

1. The User navigates to the Feed page
2. The User clicks on the comment button attached

to any of the articles displayed
3. The User writes their comment in the text box

under the article
4. The User clicks the send/comment button
5. The System returns the detailed view of the

article
6. The user leaves a comment on the article

Alternate Flow N/A

Exceptional Flow N/A

Termination

The System successfully saves the comment to the
Database comment model

Post Condition The System displays the comment on the detailed article
view page

21

2.1.1.3.4. Use Case – Edit comment:

Description

This use case describes functionality for Users to be able
to Edit a previously submitted comment on an article

Scope

• This use case allows Users to edit the text of the
comment they have left on an article previously

• This use case does not allow you to delete a
comment (Handled by Delete comment use case)

Pre-Condition

• The User must be logged
• The System must have available articles to

comment on
• The User must have commented on an article

Activation
• The User clicks the comment button on an article

on the Feed page

Main Flow

1. The User navigates to the detailed view of an
article that they have previously left a comment
on

2. The User clicks the edit button on one of their
comments

3. The User updates their comment in the text area
4. The User submits the changes by click the check

mark button
5. The System updates the comment

Alternate Flow

• The user edits a comment but cancels the action
1. The User navigates to an article they have

previously left a comment on
2. The User clicks the edit button on one of their

comments
3. The User changes their mind and clicks the

cancel / x button on the comment box

Exceptional Flow N/A

Termination • The User either submits their changes or closes
the edit form

22

Post Condition • The System updates the edited comment and
displays the original detailed view of the article

2.1.1.3.5. Use Case – Delete comment:

Description

This use case describes the functionality to enable Users
to delete a previously left comment on an article

Scope • The scope of this use case allows user to delete
their own comments on articles

Pre-Condition • The User must be logged in
• The User must have commented on an article

Activation
• The User navigates to the comment view of an

article they have commented on previously

Main Flow

1. The User navigates to a comment they have left
on an article

2. The User clicks the delete comment button on
their comment

3. The User is prompted to confirm or cancel the
deletion process

4. The User clicks confirm
5. The System deletes the comment record from

the Database
6. The page is refreshed and displays the newly

updated comments on the detailed article view

Alternate Flow

• The User cancels the delete comment process
1. The User navigates to a comment they have

left on an article
2. The User clicks the delete comment button

on their comment
3. The User is prompted to confirm or cancel

the deletion process
4. The User clicks the cancel button
5. The System aborts the delete comment

process

23

Exceptional Flow N/A

Termination
• The System either aborts the deletion process or

deletes the comment from the Database
comment model

Post Condition • The System displays the detailed article view of
the comment

2.1.2 Data Requirements
Pressfeed’s implementation will require a Database Management System (DBMS). I have researched
industry standard DBMS and have chosen PostgreSQL for the Systems data storage capabilities due
to the Postgres being an Object-Relational SQL Database Management System. This allows me to
form key relationships with the systems data. This will allow the system to accurately and efficiently
query article data. Postgres offers many more indexing algorithms for data when compared to other
DBMS such as MySQL. Indexing can be very useful when data needs to retrieved frequently in a
specific order, the System will be delivering data most of the time based on date to display the most
recent article (descending order) in the Systems database. Indexing the models in the Systems
database, based on article date columns will allow the system to query articles more efficiently.

The system requires a method of collecting news metadata. There are various services and tools
which can scrape news data from the internet which can come in the form of scraping libraries and
API’s. When I conceptualised Pressfeed I had researched the Google News API which I planned to be
the primary source of the systems news data source. However this API is not available to the public
for development purposes, another API I have looked into which is advertised as a replacement for
Google’s News API is NewsAPI. NewsAPI returns metadata on news articles in a JSON format which is
updated daily.

24

Figure 4 NewsAPI Request to top-headlines endpoint

Figure 4 is a GET request I initiated to NewsAPI’s ‘Top Headlines’ endpoint through Postman. I have
given the country parameter a value of ‘ie’ to indicate I would like to target articles in Ireland. The
API response structure shown returns the response status, the total length of the article list
‘totalResults’ and the list of articles. Each article element contains a:

• Source
o ID
o Name

• Author
• Title
• Description
• The articles URL
• URL to the articles header image
• its published date
• Content

Understanding the structure of how NewsAPI will return news metadata based on requests to its
endpoints I can begin designing the database structure and requirements to effectively persist
request data from the API. This is one of the core reason the system requires a database
management system. Calls to an API can be very inefficient and performance taxing to the system
and can even cap requests to the API, this is the case with NewsAPI as a developer I can only request
the API 100 times per day. If I use a DBMS to serve articles to Pressfeeds User’s this will not incur

25

more requests than the system requires. Scheduling a task to call the api a few times a day can
maximise API request efficiency and keep the database up to date with news data.

2.1.3 User Requirements
Users of Pressfeed require a client device of some form which can receive and initiate HTTP
requests. This will most often be performed by a Browser application on either a computer or mobile
device. User’s should be able to access the application without any setup before hand and by simple
navigating the web applications URL.

Users should be first greeted with a landing page explaining the purpose of the system i.e. news
aggregation functionality and social discourse features and also provide a sample of the news
aggregation technology to demonstrate to users how it is achieved and delivered to the User. Users
should have the ability to either register or login if they have an existing account. Upon registering /
logging in the user should be authenticated and now have access to the functionality to view and
manage their subscriptions to news sources, Users should be able view their feed of articles from
sources they are subscribed to also. Users should be able to manage their account upon logging in

All of these functional requirements should be streamlined to the user and not challenging to
understand how to interact with the system.

This leads into the system ensuring a stable performance under load of users, with quick page
request times with minimal to zero lag of UI elements and page functionality to users. The system
should be reliable and should be available to users at all times with minimal or if possible no
downtime.

2.1.4 Environmental Requirements
Deployment:

Pressfeed’s external factors for its implementation includes for where in the world the deployment
platform hosts the application and database. Currently I have chosen Fly.io as the deployment
platform for Pressfeed, Fly offers locations all around the world to deploy web applications, I believe
hosting the application in London as this is offered by the service and it being the closest
deployment location to Ireland. This should result in faster connection to Irish and UK users

Sourcing of news metadata:

Another crucial external service which the system relies on is the access to and availability of
NewsAPI. This will be the applications sole source of news data as of writing. This service will need to
be available during times the system requests its endpoints to keep the systems database up to date
to ensure users are able to access to a steady flow of up to date news

There are options to explore in future to include fallback services / technologies which can substitute
for the sourcing of news metadata for the application. Since Pressfeed is built on the Django
framework, there is a Python library known as Beautiful Soup, Beautiful Soup is a HTML & XML web
parser which could be implemented in the system to be developed into a fallback service if and
when NewsAPI fails.

Optimising API endpoints:

NewsAPI offers various endpoints which the system can call to request news metadata, each
endpoint requires a specific country code in which sources are based to return metadata on articles
from, with my current developer account I must adhere to the 100 requests per day quota on

26

requests to NewsAPI. Due to this I will have to carefully consider which countries will grab the most
popular and desired news sources for the applications userbase.

Figure 5 – Results of study on most accessed news sources in Ireland in 2020

Figure 5 is a dataset of results from a study on digital news in 2020 (Reuters Institute, 2020).

The study was conducted by Reuters Institute in collaboration with The University of Oxford, this
study was conducted on the entire population of Ireland and which online news sources the Irish
population most often visit on a weekly basis. The study states most often Irish citizens are most
often visiting Irish news sources, with UK sources coming in second and thirdly US publications.

With these results I have plan to aggregate the ‘top-headlines’ endpoint of NewsAPI 3 times, with a
the respective country code of Ireland, The UK, and the US.

At the moment this implementation will be very focused on the requirements of the Irish user base
for the UK deployment of Pressfeed however I do intend all users from any country to be
accommodated by the application. The system will be implemented in a scalable approach to easily
include more endpoints and even other sources of news metadata other than NewsAPI in the future.

I believe as an Irish citizen if I can achieve an implementation which is reliable for the user of
Pressfeed within my own country, I will be able to conduct the most effective evaluation of the
system and apply my discoveries to a more global scale for the application in the future.

2.1.5 Usability Requirements
User Interface:

Pressfeeds user interface should enable any user, that is using a device capable of accessing a web
application to be able to access and utilise the application. Since the application will include the use
of Bootstrap 5 CSS framework, I can develop a responsive user interface for desktop, laptop and
mobile devices to access the application.

27

Providing clear and concise and implementing easily accessible design patterns to the applications
frontend I can ensure the application is streamlined to its users.

Error handling:

The system should indicate clearly to the user if they are trying to execute a use case or functionality
of the application incorrectly. The application should return error messages which clearly indicate
the reason as to why the users attempts to use the applications in the way that they are trying to
may be the incorrect way of using the system.

Performance:

The application should deliver its functionality without fault and not crash from a user interacting
with the system. The web server should serve the system’s http responses / views to the users
clients in under 5 seconds. The system should effectively execute queries to the database efficiently
and not be the cause of long wait times when using the system

2.1.6 Design & Architecture
2.1.6.1. Entity Relationship Diagram

Figure 6 – Entity Relationship Diagram of the database

The Entity Relationship Diagram’s purpose is to outline and identify the requirements of the
database structure of the application.

I have concluded from designing the ERD that the database of the application will require these
models:

1. User

The Users table should handle the persistence of data directly related to the user i.e the
user’s username and password.

28

This model will handle the authentication of Users within the application and requires salting
/ hashing of passwords when storing them within DBMS.

Django can ensure this capability when forming the Users model as it utilises the PBKDF2
cryptographic algorithm with a SHA256 hash.

2. Article

The Article model’s requirements were identified with guidance of both constructing the
entity relationship diagram and analysing the data requirements of the application,
specifically the response content of NewsAPI.

The purpose of the Article model is to persist the article data from the various news
metadata scraping methods to give context to its data and manipulate the data in a way the
application requires to deliver it to the systems users.

3. Source

Due to the systems requirement to provide the functionality of subscribing to article
sources, the database should reflect this necessity. Separating out the JSON response
content from NewsAPI into two models, Source and Article, the system can easily provide
the functionality of subscriptions by utilising the Source model and forming a relationship
through the Subscriber model between both the User and Source models

The system can also avoid duplicate records of sources with this structure if alternatively the
system was to use a source column in the Article model.

4. Subscriber

The purpose of the Subscriber model should be a key component when creating a
relationship between Sources and which Users are subscribed to which sources through the
system. The Source and User models should form the Subscriber model through a Many-to-
Many relationship between User and Source models primary keys.

5. Comment

This model was constructed to adhere to the data requirements of the comment
functionality required by the system, The Comment model requires the user’s and article’s
id’s to be foreign keys in the model, this is to allow articles to HAVE comments and Users to
CREATE/HAVE comments on articles.

This models columns should contain the comments content, the TIMESTAMP it was created
at, the TIMESTAMP of when the comment was modified if the user has edited one of their
comments.

The Comment model will primarily be required in the detailed view of articles.

6. Like / Dislike

Both the Like and Dislike models purpose are to record the number of likes and dislikes an
article has, each model a article id and user id column. When a user likes or dislikes an article

29

a row is created in the respective tables to persist the number of likes an article has and to
record the state of the users reaction to articles.

2.1.6.2. Class Diagram

Figure 7 – Class diagram of the main components of the system

Please zoom in to diagram if text is not readable!

Figure 7 outlines the proposed implementation for the core objects which will handle the operations
of the system to achieve the outlined requirements.

User Management Classes:

The User and UserManager classes handle the creation and instances of User objects within the
system the User class is created when the ‘create_user()’ or ‘create_superuser’ methods are called
within the UserManager class, these instantiate a new User class when called and save the users
credentials in the system’s database User model.

The User model is used in almost every View request method inside the Views classes and is also
utilised by the Comment, Like, and Dislike Model classes to assign a the correct user to each when a
new record is initiate by the User

Views Classes

The ‘Views’ Classes (AuthenticationViews, MainViews, NewsViews) are collections of function based
views which all accept a ‘request’ parameter this will be a HttpResponse object initiated by the Users
client when the User accesses a route (URL) which is passed to the associated ‘View’ of that route.

For example when, a user access the home page URL of the application which is denoted by a ‘/’
after the applications listening URL, the application will initiate an HttpResponse object, the
associated view ‘home’ is bound to this route, the home view function based method will be
executed and return a HttpResponse object with the ‘template’ the html file, and the context
content generated by the view in a HttpResponse object to be interpreted and served to the users
client by the system.

30

Database Model Classes:

The User, Comment, Like, Source and Article classes are the class counterparts of their respective
database tables. These classes were created with the aid of the Entity Relationship Diagram as
Django provides database model creation, and migrations through extending the ‘Models’ class
which allows developers to define the database structure through the framework.

The methods included in these classes return the associated data that the system will most often be
utilising. i.e the Article model has a method called get_comment_count() which returns the amount
of comments that particular article object has. This method can be used to display the amount of
comments an article has through a UI element.

News Aggregation Classes:

The NewsScraper and Tasks classes handle the aggregation and periodic execution of gathering news
metadata from the API. The Scheduler Class calls the update_news() method in the NewsScraper
class on a defined interval to ensure the application has a pool of up to date news data. This is the
most integral part of the system’s functionality.

2.1.6.3. Sequence Diagram
News Scraper Sequence Diagram

Figure 8 – Sequence Diagram

Figure 8 shows the sequence of the News Scraper class which defines three methods which handle
the aggregation of news metadata:

1. Retrieve_news()
This method accepts a country to be interpolated into the GET request method to the
NewsAPI top headlines endpoint and will return a JSON object

2. Store_news()
This method accepts a JSON object and iterates through it for every ‘article’ element within
it. The method creates two records for each article element in it by matching up the keys to
a Source and Article database record.

3. Update_news()

31

This method calls the retrieve_news() method with a specific country code to request
NewsAPI with the top headlines from that country, the method then calls store_news()
while passing in the news_data that was returned from the previously executed
retrieve_news() method. This method allows the multiple calls of NewsAPI to gather a larger
pool of news metadata by requesting the endpoint multiple times with different country
codes. The application currently uses codes for Ireland, The UK and The US

2.1.7 Implementation
This section of the documentation will go over the implementation of the core functionality of
system I have identified these to be the main systems to be explained over others due to their
functionality being the foundation for other requirements of the system.

2.1.7.1. News Aggregation System:

Figure 9 – retrieve_news method

Figure 9 is a method located in the file which contains the methods for the Systems news
aggregation functionality, called News_Scraper.py.

The retrieve_news method was defined to allow the application to request the NewsAPI ‘top-
headlines’ endpoint, this is to allow the system to aggregate news metadata

This method accepts a ‘country’ parameter. This parameter as proposed in my class diagram should
be of a string type and is to provide a key portion of the next component of this method.

The response variable, is of a response object type and utilises the Python requests library,
importing this package provides the application with the functionality to execute HTTP requests and
here the system uses a GET request on the NewsAPI top-headlines endpoint.

The response variable requests the endpoint using the .get method of the requests package, this is
passed an interpolated string which takes in the country parameter passed to the method when it
was called, and also my personal NewsAPI key which is stored in the systems environment variables.
This is to ensure that I do not commit sensitive information to the projects public GitHub repository
as environment variables stored in a separate collection and ignored from the Git commit history.

The next component of this method is the return type of the method,

The method checks if the response variables status code equals ‘200’ to indicate the request was
successful, if so the method returns the response in a JSON format using the .json method of the
Response object.

32

Figure 10 – store_news method

Figure 10 is the store_news method which fulfils the purpose of transforming the JSON objects into
Source & Article database model records

The method accepts a news_data parameter which is of a JSON object. To validate if the JSON object
passed to method is in the correct format of the usual returned format of a NewsAPI top-headlines
response structure, The method checks if the object is first not empty and then checks if contains a
key of ‘articles’ if these are true the method continues to loop through each article element within
the article list in the JSON object and create both a Source and Article object for each article
element, as long as that article has a value for a title and URL of the article and its source is not
Google News this is due to Google News requiring a google account and not all users of Pressfeed
should need to have to create a google account to view news.

The method then executes the JSON to model logic next which is in a try block that uses the
get_or_create Object method when creating a new record in both the Source and Article models,
this is to ensure duplicate articles from response objects are not entered into the database by
catching the IntegrityError in an except clause and which will just pass over duplicate records.

Figure 11 – Update news method

Figure 11 demonstrates that final piece of the scraping functionality of the system by combining the
functionality of both the retrieve_news and store_news methods in the update_news method,
update_news is used by the scheduler of the system which calls this method periodically which is set
to every 4 hours per day. It begins by defining an ‘irish_news_data’ variable which is a JSON object

33

which is returned by the retrieve_news method with the country parameter set to the irish country
code of NewsAPI ‘ie’, store_news is then called with irish_news_data passed as the news_data
parameter to persist the response in the systems database.

update_news repeats this for both US and UK news. Once the method has initiated the logic for
aggregation of news sources from all country codes it outputs the timestamp it was called with a
print statement for news update logging.

2.1.7.2. Application’s Main Views / Templates
Subscribe

Figure 12 – Subscribe function based view

Figure 12 is a function based view is defined to deliver the functionality of the Subscriptions page
through HTTP Responses.

the method accepts a request parameter as all function based views in Django do. This method is
passed the HTTP request object generated from the clients GET or POST request to subscribes
specific route (URL) defined in the systems urls.py file. Below is the URL for this view:

path('subscribe/', views.subscribe, name="subscribe"),

The method first collects all the Source records from the Source database model into a ‘sources’
variable this will be returned in the response object by the view.

If the client initiates a GET request to this URL the view method will return the ‘subscribe.html’
template and a dictionary passing the ‘sources’ variable as sources and ‘user_sources’ which is a
collection of the ManyToManyField relationship formed through the request User and Sources
‘subscriptions’ column

Unless. The request method is a POST. Which is initiated through the user choosing the update news
on the frontend. If the request method type is a POST the application will iterate through the
checkbox forms elements to see which Sources the user has checked to subscribe to or unchecked to
unsubscribe from and will update the users subscriptions accordingly

34

Templates:

Figure 13 – the HTML template for the susbcribe page

Figure 13 is the implementation of the returned template / HTML every template in the application
extends the ‘base.html’ template which includes the basic boilerplate setup for a HTML document,
Content Delivery Network (CDN) links for Bootstrap CSS stylesheets and its JavaScript counterpart
and also Font-Awesome stylesheet for stylised HTML icons.

The page specific HTML implementation of all templates other than ‘base.html’ relies within the ‘{%
block content %}’ and ‘{% endblock %}’ block

This template simply renders a bootstrap styled checkbox and populates it with the retuned
‘sources’ and ‘user_sources’ collections from the subscribe view.

35

Newsfeed View:

Figure 14 – Newsfeed function based view

Figure 14 is of the newsfeed view which handles the request logic of the main functionality of the
system.

The view defined the user, sources, and articles_list variables to correctly query the articles required
to be returned to specific users feed page. The query used filters the Article model based on the
users subscriptions and orders them by date in descending order

This view also utilises the Paginator class to package the articles list into a collection of pages in the
event the article_list exceeds 8 articles. This is to ensure the feed page is not overwhelmed with
query request time and limits the number of queries per Paginator page on the feed page to be 8 at
a time. The user is provided with a navigation module at the bottom of the feed page to cycle
through pages.

Article_view:

Figure 15 – Article_view function based view

36

The Article view allows the users to view a more detailed version of the aggregated article from their
feed page. This page also enables the functionality to comment on the article.

The view first defines the ‘user’ variable with the user that initiates the request, the ‘article’ variable
with the current article that was chosen based on its id that was passed to view through the request.
‘comments’ variable with the associated comments of that specific article, the article also returns
the CommentForm defined in the applications forms.py

If the request type is a GET request the view simply returns the ‘article.html’ template and the
context which includes the previously defined variables article, comments and the comment form
‘comment_form’

If the request type is a POST request the view ensures the form that initiated the POST was valid and
saves the comment to the Comment model and then finally redirecting the user to the same view to
update the clients page with the new comment being displayed on the Article view.

2.1.8 Graphical User Interface (GUI)
2.1.8.1. Landing Page:

Figure 16 – Screenshot of the landing page

This is the landing page of the final implementation of the system. Every page of the application
features navigation / nav bar at the top of the page. If the user is not logged in it will provide links to
the login and logout pages unless the user is logged in which it will display a dropdown box with the
users username when click shows options for the Feed, Subscriptions, and Account pages and also
the logout button is located in the dropdown menu.

The Landing page features 3 sections:

1. Top-Card:

The top-card features an icon of a news paper on a mobile phone and explanation of what
the web application’s purpose is, news aggregation.

37

2. Middle-Card:

The middle-card displays an icon of a messaging system to indicate social functionality. An
explanation that social discourse features on news is capable within the application. The
middle card also displays a button linking to the Register page after the end of middle-cards
description. Alternatively the application displays a ‘Go to your feed’ button when a user is
logged in and links to their feed page.

3. Bottom-card:
The last card queries the latest 4 article within the database and displays a sample of the
news available to the user through the use of the application. This also demonstrates what
the user can expect from the application

2.1.8.2. Register & Login Pages

Figure 17 - Screenshot of the register page

38

Figure 18 - Screenshot of the Login page

Both figures above show the Register and Login pages of the system. The register page provides
fields for users to enter their username and password and field to confirm their password before
they can click the ‘Register’ button below to submit a form to register a new account on the system

The login page features a field for the users username and password which are required to be filled
out with the correct credentials of user before they can click the ‘Login’ button.

2.1.8.3. Subscriptions Page

Figure 19 - Screenshot of the Subscriptions page

This shows the subscriptions page of the system, this page is only accessible if the user is
authenticated and logged in to a user account. This page displays all the sources available to the
system through the database and allows the user to subscribe/unsubscribe from sources.

39

2.1.8.4. Feed Page

Figure 20 - Screenshot of the Feed page

This is the users feed page which deliver Article objects from Sources in which the user is subscribed
to. From this page the user can like/dislike articles, cycle through pages at the bottom of the page.
And also view the comments of each individual article.

2.1.8.5. Account Page

Figure 21 - Screenshot of the Account page

This figure displays the account options functionality which enables the user to change their
username and password and also delete their account if they choose to do so.

40

2.1.9 Testing
The applications software development lifecycle incorporated the uses of unit testing and build
checks to ensure each release of the application was stable.

2.1.9.1. Unit testing
Unit tests were utilised to test individual blocks of code when implementing new features. I used
Pythons built in testing library ‘unittest’.

A testing environment was created to execute a test suite which uses an in memory database so it
does not effect the production databases for the application. This is due to tests using mock and test
user data which perform database operations and is flushed (erased) upon the completion of the
unit test suite.

Figure 22 - Unit test of store_news method

Figure 22 is the unit test one of core methods which handle news aggregation of the system. Before
defining the test method we provide a ‘@patch’ annotation to tell the system that we are mocking
the retrieve_news method in this application.

The method defines a variable ‘mock_data’ to mock 2 article objects that would resemble a article
keys from a response from NewsAPI. The application then passes this data to the store_news
method and calls it.

The application performs a series of assertions on the database to ensure that the store_news
method saves the objects correctly according to the specified format in the assertions.

41

Figure 23 – Test suite execution

Figure 23 shows the output log when executing the unit tests. Each period (.) represents a passed
assertion and the ‘OK’ message indicates all tests were successful.

2.1.9.2. System & Acceptance Tests
These tests were executed by utilising the systems functionality through its frontend user interface
and verifying the functionality is working as intended after each change

Test Description Outcome
User Registration User can register an account

with the system
[PASSED]

User Login Users can login with a
registered account

[PASSED]

Feed Page Display The feed page should return
all articles available to the
databases from the users
subscribed to sources

[PASSED]

Feed Page Pages The feed page should only
query 8 article per pages. If the
articles exceed more than 8
the paginator should section
out articles into pages of 8
articles per page.

[PASSED]

News Scraper (System) News Scraper methods
retrieve_news, store_news,
update_news function
correctly and persist news
data as intended

[PASSED]

Update News Scheduler
(System)

The python scheduler should
start a separate threat at the
upon application runtime and
schedule a the update_news
method to be executed every
4 hours.

[FAILED]
Application unsuccessfully
executes news aggregation
periodically on deployment
platform, however does on
local development.

Change password Can the user access their
account page and change their
password successfully?

[PASSED]

Change username The user can access the
account page and change their
account username

[PASSED]

42

Logout The user should be able to
logout of their account

[PASSED]

Delete account (confirm) The user should be able to
delete their account

[PASSED]

Delete account (cancel) The user should be able to
cancel the deletion process of
the account

[PASSED]

Subscriptions The user should be able to
access their subscriptions and
manage them, by subscribing
or unsubscribing from news
sources

[PASSED]

2.1.9.3. CI/CD / Integration Tests

Figure 24 - builds of the application on GitHub Actions

Figure 24 shows the builds ran by GitHub Actions which were defined by myself with Django.yaml
workflow. These workflows run the test suite on versions of the codebase to ensure stable changes
are being committed to the remote repository. If a build passes on the master branch the Deploy
workflow executes the deployment steps.

Small changes would be checked locally by running the test suite before pushing to master. However
bigger implementations of features I would run checks through a branch on my local dev and GitHub
Actions first before merging to master, for example the ‘reactions’ and ‘social features’ branches as
show in Figure 24.

43

2.1.10 Evaluation
2.1.10. Performance

Conducting tests of the systems performance, evaluating this through SQL query times and http
request response times. All tests will be conducted on the local instance of the application to ensure
the exact processing time it takes the system complete each request.

HTTP Request times

Test criteria - Request every page 3x and get average request time:

View / Page Request Time 1 Request Time 2 Request Time 3 Average RT

Home (GET) 84.32ms 80.70ms 88.50ms 84.51ms

Login (GET) 5.56ms 7.08ms 5.52ms 6.05ms

Register (GET) 17.68ms 8.09ms 5.35ms 10.37ms

Login (POST) 100.90ms 113.26ms 146.29ms 120.15ms

Register (POST) 139.00ms 149.00ms 118.69ms 135.56ms

Subscribe (GET) 100.87ms 180.72ms 75.69ms 119.09ms

Subscribe (POST) 84.19ms 78.10ms 108.79ms 90.36ms

Newsfeed (GET) 255.00ms 275.68ms 246.17ms 258.95ms

Account (GET) 57.14ms 55.94ms 55.74ms 56.27ms

Account (POST)

[Change
Username]

56.03ms

57.99ms

159.08ms

91.03ms

Account (POST)

[Delete account]

82.80ms 86.13ms 87.81ms 85.58ms

Change_password
(GET)

57.28ms 65.08ms 54.13ms 58.83ms

Change_password
(POST)

59.01ms 72.92ms 63.60ms 65.18ms

44

SQL Query times

Test criteria – Execute the queries used by the application 3x and record their execution time

Query Query time 1 Query time 2 Query time 3 Average QT

Home page query
for sample articles

13.31 ms 18.99 ms 10.35 ms 14.22ms

Newsfeed page
when querying
articles from article
model

37.59 ms 41.05 ms 40.55 ms 39.73ms

Subscriptions page
when querying
sources

7.99 ms 11.01 ms 9.92 ms 9.64ms

Figure 25 - NewsAPI Call vs SQL Query

Figure 25 compares the performance impact on the request time of the newsfeed page when
directly calling NewsAPI each time a user accesses that page vs using a database model to allow the
system to query when it needs to display news metadata. a SQL implementation is a much more
efficient approach as it does not use NewsAPI requests unnecessarily and is also a much more
efficient approach at delivering news metadata to users.

0

50

100

150

200

250

300

Direct API Call SQL Query

Comparison of direct call to NewsAPI vs SQL Query Time

Time (Ms)

45

3 Conclusions
The implementation of the application successfully includes all the requirements outlined in the
requirements section of this document. The system performs all functionality in an efficient manner
as evaluated through the testing documented in the Testing / Evaluation section of this document.
Demonstrating use cases requiring computation time to be longer than half a second to deliver their
functionality to the user.

The system promotes a scalable approach to news aggregation by modelling the database and news
scraper methods in such a way to accept a JSON object from any source to and store the elements of
the object in the systems Source and Article tables. Streamlining the ability to implement another
scraping library or API which can structured into a JSON and added to the news aggregation system.

The application performs all user functionality using the POST / Redirect / GET (PRG) pattern, this
can be an issue for simpler functionality such as liking and disliking articles as the users page is
redirected when initiating a like or dislike or even a comment.

Overall the application serves its purpose as intended and opens up many areas to further develop
the application in the future.

Users can reach the deployed web application at this url: https://pressfeed.fly.dev/

4 Further Development or Research
Pressfeed has many options for its future in terms of new features and commercialisation.

1. Chat System:

This would tie into one of the core values of Pressfeed which is its aim to provide social
discourse for news, this would allow users to chat privately and directly between 2 users or a
group of users. User should be able to share articles in the structure that was presented to
them on their curated feed page.

2. Search and Filtering functionality:
Allowing users to search through articles directly instead of being required to browse
through articles of their subscribed sources, would enable users to use Pressfeed as a article
lookup system and also even find new news sources they may be interested in.

3. Commercialising the product:

Pressfeed could look into displaying ads or accepting a premium membership to elevate
users functionality through the application. This could provide a source of income for the
development to team to invest in greater sources of news metadata options such as
premium API’s which serve metadata

Issue with scheduled update news task on deployment platform:

The current deployment platform of Pressfeed is Fly.io when scheduling task of updating news on
the deployment platform the application cannot seem to initiate a successful call ot the database
when carrying out the operations of the update_news method when executed by the scheduler. This
will need to be looked into in the future and could be related to the scheduler utilising
multithreading which executes the scheduler in a separate thread to the core system.

https://pressfeed.fly.dev/

46

5.0 References
Reuters Institute, 2020. Reuters Institute Digital News Report, Oxford: University Of Oxford.

Trusted Web Foundation, 2021. State of Misinformation 2021. [Online]
Available at: https://thetrustedweb.org/state-of-misinformation-2021-europe/
[Accessed 5 April 2023].

5 Appendices
5.1 Project Proposal

National College of Ireland

Project Proposal

Pressfeed

24/10/2022

BSHCSD4

Software Development

2022/2023

47

Sean Fulton

x19518013

x19518013@student.ncirl.ie

Contents
1.0 Objectives .. 48

2.0 Background ... 48

3.0 State of the Art .. 48

4.0 Technical Approach ... 49

5.0 Technical Details ... 50

6.0 Special Resources Required .. 50

7.0 Project Plan ... 51

8.0 Testing ... 52

48

Objectives

Pressfeed sets out to bring more of a social aspect to online media & news outlets, I would
like to incorporate a user defined newsfeed much like popular social media phone
applications such as Instagram, Facebook & Twitter etc.. I will try to transform what these
applications achieved in terms of user experience and user interface for Pressfeed.

Pressfeed will be a RESTful web application for users to curate a hub for news outlets and
articles they are interested in seeing on a regular basis.

Pressfeed should include these main features by the end of development:

• A user authentication system for users to sign up or log in to Pressfeed.
• A user defined feed on which users can subscribe to news outlets, articles, keyword

tracked searches they would like to see on their Pressfeed feed.
• A rating & comment system on each article localised to Pressfeed for discussion &

feedback on articles.

During development I plan to expand on the capabilities of Pressfeed and further develop
the application’s features but for now I feel these features are the main goal of my
application.

Background
I chose to create Pressfeed for my final year project as I feel there is a gap in the market for
a social media based news compiler platform with features for discourse of media & news
all within in the one platform. people with similar interests can discuss the topics delivered
to them with the other users of Pressfeed.

How I aim to achieve these requirements is by developing a web application based on the
Django web framework, Python programming language, and NewsAPI (an API to locate and
deliver news articles). These 3 technologies & resources should be adequate in my goal to
develop Pressfeed’s main components. I aim to research and develop my ability in these
web technologies to implement the required objectives I have outlined for Pressfeed’s final
release.

State of the Art
Similar web applications to Pressfeed already exist in basic concept. Some of these
applications include Flipboard.com & Feedly.com. Pressfeed in contrast to these
applications which are within the same field. Pressfeed tries to introduce a connected
experience between its users to share, comment, like and dislike news articles they
subscribe to. Note Pressfeed will not act as a substitute to going to the original articles being
shown on the application.

Pressfeed aims to allow independent discussion of these articles on a platform separate to
where the articles were originally published. This gives less of a biased discussion towards
certain news publications and stops the filtering of negative comments by the
author/publisher of the article.

49

Technical Approach
I plan to use a Hybrid approach by taking characteristics of two methodologies to carry out
planning & development for Pressfeed . I would like to implement features in an Agile
framework by following a timeframe of 2 week sprints to deliver and begin new features for
the application. I feel a 2 week timeframe given for a new set of features will give ample
time to implement a new set of features regularly and give enough development time to
each feature to be implemented to my according to the requirement of the feature.

Since I am sole developer on Pressfeed I will be responsible for all tasks related to the
project. This gives me the freedom to shift features in / out of sprint windows to give more
development time or less for certain features which I feel are adequately implemented or
others that need more time to be completed.

I would also like to combine characteristics of the Waterfall release process, since Pressfeed
as a pre-determined date for which it will be submitted, I need to take into consideration
the final release of Pressfeed deadline will be in May of 2023 for its assessment. This release
/ version of Pressfeed is the goal at which my development planning must ad-here to. This
means that there will be certain fixed timeframes for the current state Pressfeed should be
at to stay on track for final release in May 2022

How I plan to identify requirements for Pressfeed is by researching the implementation of a
Django based web application. I can then assess how I will approach implementing my own
designs for Pressfeed using Python, Django, the API’s required for Pressfeed, other
technologies I may decide to include in the application.

Once I am more familiar with the technologies use to implement Pressfeed plan to assess
these requirements and how to implement them for the application.

• Functional Requirements
1. Provide web service to curate articles published from news publications.
2. Allow the discussion of posted articles.
3. Authentication system for user logins.
4. Provide a discover page for recommended articles based on user interests.

• User Requirements
1. The user should be able to sign up to Pressfeed and Login.
2. The user can search for and subscribe to articles and news publications

websites.
3. User should be able to comment, rate and share articles they see on

Pressfeed.
4. Users should to see a snippet of articles.
5. User can add friends on Pressfeed.

• Quality of Service
1. Users experience of Pressfeed should be smooth and have no UI issues when

browsing the application.
2. New users should be able to easily identify the full functionality of Pressfeed.
3. Ensure profanity is filtered from discussions of articles on public posts.

50

• Ethics Requirements
1. Ensure Pressfeed is not a substitute for articles from any news publications. This will

avoid copyright implications.
2. Ensure user data is stored securely on Pressfeed.
3. Private user data should only be accessible by the user.
4. Allow users to delete their profile on Pressfeed and remove any data relating to the

user.

Technical Details
Python 3 - https://www.python.org/ :

Python will be the programming language that powers Pressfeed alongside the Django Web
Framework. I choose Python to handle Pressfeed’s logic as I don’t have a lot of experience with
Python, Pressfeed gives me the opportunity to create a new idea while improving my knowledge of
new technologies and Python is a great choice for how popular the language is web application
development.

Python has many libraries which make the use of API’s very accessible which Pressfeed will utilize at
least one API, namely NewsAPI. Python is very efficient at handling large amounts of data, which is
another consideration for Pressfeed since there will need to be have technologies with scalable
infrastructure to handle the amount of data delivered from API’s

Other considerations: Ruby On Rails, React Native.

Django Web Framework - https://www.djangoproject.com/ :

Django is a web framework for the Python Programming language, choosing Django as framework
for Pressfeed, stemmed from its popularity and its scalability, Django is an obvious choice for a web
application developed with Python as it is one of the two most popular web frameworks for Python,
the other being Flask. I chose Django for its exceptional performance, flexibility and security.

When I use an application the first thing I will notice is ease of use, how smooth and responsive the
application feels when I use it. This is why I aim to have a fast and reliable UX for Pressfeed and I am
confident Django can achieve that goal.

NewsAPI - https://newsapi.org/ :

Pressfeed backend will utilize the API “NewsAPI” to deliver articles from news publications
websites to the invite Pressfeed users to view the article externally on the original website
the article is published and then discuss to rate, comment and/or share on Pressfeed.

This API integrates seamlessly as it has its own library developed for Python, this should
allow me to easily request data from the API to deliver to Pressfeed.

Special Resources Required
I would consider NewsAPI as a special resource for Pressfeed although it being the
technology that delivers the center piece feature of the application, this API serves one
function, which is to accept queries on news articles and deliver them back to the
application. The main technology that will handle the rest of Pressfeed’s features will be
Python & the Django framework.

https://www.python.org/
https://www.djangoproject.com/
https://newsapi.org/

51

Project Plan
During development of Pressfeed I plan to implement all functionality of the application
with the help of both UML & mock diagrams. for the moment I have created a mock
diagram to represent what I plan Pressfeed’s final build to look like:

Keeping track of deliverables in on a per sprint basis of 2 weeks will allow me to stay on top
of development deadlines

I have separated the implementation of features into two week sprints as a general timeline
to have features completed by. Although I won’t be releasing features for general use nor
releasing Pressfeed until May, I feel following an Agile approach for feature implementation
will keep me on track to complete Pressfeed for May 2023.

52

Testing
I plan to incorporate test driven development for Pressfeed by unit testing all instances of
code within its implementation, this includes methods and other functionality of the
codebase’s implementation. Incorporating a continuous integration / continuous delivery
workflow within Pressfeed’s GitHub repository I can ensure my modifications keep a
standard of stability which will prevent introducing bugs throughout development.

I will incorporate the Python unit-test library during development for unit testing
functionality to ensure my implementation of new functionality is stable and does not affect
other aspects of the codebase.

5.2 Reflective Journals
5.2.1. October:

Supervision & Reflection Template

Student Name Sean Fulton

Student Number x19518013

Course BSHCSD4

Supervisor William Clifford

53

Month: October 2022

What?

Reflect on what has happened in your project this month?

This month I conceptualised Pressfeed as an idea. I prepared and submitted the project pitch video for
Pressfeed for review. I also researched how I will combine the technologies. I have chosen to develop
Pressfeed with.

I prepared the first draft for my project proposal and completed the ethics forms for Pressfeed.

So What?

Consider what that meant for your project progress. What were your successes? What challenges still
remain?

Pressfeed still needs to begin and complete its design phase. This will be my first task is to begin forward
design of Pressfeed by creating UML diagrams of Pressfeed to give a more in depth view into the process of
creating the application. My goal is to expose any design challenges I may encounter during development.

Now What?

What can you do to address outstanding challenges?

Continue with planning and begin the design phase for the application.

Student Signature Sean Fulton

5.2.2. November:
Supervision & Reflection Template

Student Name Sean Fulton

Student Number x19518013

Course BSHCSD4

Supervisor William Clifford

Month: November 2022

54

What?

Reflect on what has happened in your project this month?

• I began outlining my functional requirements by creating a use case diagram for the main user flow

of Pressfeed’s implementation.

• Started testing NewsAPI by calling GET requests to various endpoints on the API.

• Created a virtual environment for the development of my Django app with the python virtual

environment package ‘pipenv’

• Generated a new Django-project to begin implementing a prototype version of the application.

So What?

Consider what that meant for your project progress. What were your successes? What challenges still
remain?

Still early days for Pressfeed but I am happy with the progress so far biggest challenges is looking into
permission to use news publication websites article metadata for aggregation to be used in my web
application, also researching the Django framework is something I will need to learn as I develop the project.

Now What?

What can you do to address outstanding challenges?

My goal for the month of December is to complete a prototype for the midpoint presentation and complete
my UML diagrams for the technical report.

Student Signature Sean Fulton

5.2.3. December:
Supervision & Reflection Template

Student Name Sean Fulton

Student Number x19518013

Course BSHCSD4

55

Supervisor William Clifford

Month: December 2022

What?

Reflect on what has happened in your project this month?

For December I configured the technologies for Pressfeed to begin development. I began implementing a
0.1.0 version of Pressfeed for my Midpoint prototype. This included a basic aggregation of news article
metadata scraped using NewsAPI and displayed on a Django web application.

So What?

Consider what that meant for your project progress. What were your successes? What challenges still
remain?

This is great alpha version of my application which will allow me to begin the implementation of many
features requirements. i.e user accounts, subscriptions, liking, sharing, direct message system, distributed
models.

These features will require a lot of research into the various technologies I have chosen for each.

Now What?

What can you do to address outstanding challenges?

My plan for the month of January is to further research technologies such as RabbitMQ, Django, and Google
Firebase to implement more of the backend features I have previously mentioned including subscriptions and
a distributed database model for persistent data storage to alleviate over use of a API calls.

Student Signature Sean Fulton

5.2.4. January:
Supervision & Reflection Template

Student Name Sean Fulton

Student Number x19518013

Course BSHCSD4

56

Supervisor William Clifford

Month: January 2023

What?

Reflect on what has happened in your project this month?

In January I spent a considerable amount of time researching RabbitMQ, Google Firebase, and Django to
improve my understanding of how these technologies can interact with one another before I continue
developing the more crucial features of Pressfeed

So What?

Consider what that meant for your project progress. What were your successes? What challenges still
remain?

The outlying features from December are still to be implemented however I feel well equipped to implement
these now with knowledge I have gained from researching these technologies.

Now What?

What can you do to address outstanding challenges?

For February I plan to get back on track with the development process and aim for milestones I have outlined
for myself during the planning stage of Pressfeed

Student Signature Sean Fulton

5.2.5. February:
Supervision & Reflection Template

Student Name Sean Fulton

Student Number x19518013

Course BSHCSD4

Supervisor William Clifford

Month: February 2023

57

What?

Reflect on what has happened in your project this month?

This month I implemented core functionality to Pressfeed which included:

• Scheduled task to retrieve news from NewsAPI and store it within a PostgreSQL database

• User Authentication (Users can create an account, login, view their feed, and manage subscriptions)

• Feed view now delivers articles from the PostgreSQL implementation instead of a call to NewsAPI

So What?

Consider what that meant for your project progress. What were your successes? What challenges still
remain?

This month has been my most productive month so far as I have implemented core functionality (user
subscriptions)

• User account detail editing by users is still to be implemented.

• Styling of the applications views (web pages)

• Messaging system to allow users to share article cards to one another

Now What?

What can you do to address outstanding challenges?

Documentation needs revision. I will start filling in implementation and architecture

Student Signature Sean Fulton

5.2.6. March:
Supervision & Reflection Template

Student Name Sean Fulton

Student Number x19518013

Course BSHCSD4

Supervisor William Clifford

Month: March 2023

58

What?

Reflect on what has happened in your project this month?

For March I revised the implementation of the frontend of Pressfeed. Styling of the application required a
more streamlined UI for new users to easily create an account and choose their desired news sources before
showing the ‘Feed’ page.

So What?

Consider what that meant for your project progress. What were your successes? What challenges still
remain?

A few more frontend features need to be implemented during April such as a more user friendly register and
login views, before I begin implementing the messaging system. I can then begin testing web application
codebase and its security.

Now What?

What can you do to address outstanding challenges?

Deployment and Documentation are still the final stages of Pressfeeds development I would like to have these
completed by the last week of April.

Student Signature Sean Fulton

5.2.7. April:
Supervision & Reflection Template

Student Name Sean Fulton

Student Number x19518013

Course BSHCSD4

Supervisor William Clifford

Month: April 2023

What?

Reflect on what has happened in your project this month?

This month I completed the entire functionality of all aspects of Pressfeed. Reviewing testing suite , unit tests
and acceptance tests of the system

59

The newly features implemented in April was a reaction and comment system. This allowed users to comment
on articles and also like or dislike them.

The application is also now deployed at https://pressfeed.fly.dev

So What?

Consider what that meant for your project progress. What were your successes? What challenges still
remain?

This month was by far the most difficult for me, At the start of this month the development process of the
application was very slow due to me having other modules deadlines and the Social Functionality requirement
which accomplishes one of the applications main goals was still to be implemented.

I feel I have gained a considerable amount of knowledge and experience in developing a web application at
as I come to the final stages of Pressfeeds development.

Now What?

What can you do to address outstanding challenges?

Since the implementation has been completed I can focus on documenting the application and preparing the
video demonstration for submission in two weeks’ time.

Student Signature Sean Fulton

https://pressfeed.fly.dev/

	Executive Summary
	1.0 Introduction
	1.1. Background
	1.2. Aims
	1.3. Technologies
	1.4. Structure

	2.0 System
	2.1. Requirements
	2.1.1. Functional Requirements
	2.1.1.1. Use Case Diagram
	2.1.1.2. Requirement 1 – User Authentication
	2.1.1.1.1. Description & Priority:
	2.1.1.1.2. Use Case – Register:
	2.1.1.1.2. Use Case – Login:
	2.1.1.1.3. Use Case – Logout:
	2.1.1.1.4. Use Case – Change Username/Password:
	2.1.1.1.5. Use Case – Delete Account:

	2.1.1.3. Requirement 2 – News Aggregation
	2.1.1.2.1 Description & Priority:
	2.1.1.2.2. Use Case – Retrieve/Update Articles:
	2.1.1.2.3. Use Case – Subscribe/Unsubscribe to news sources:
	2.1.1.2.4. Use Case – View Articles:

	2.1.1.3. Requirement 3 – Social Functionality
	2.1.1.3.1 Description & Priority:
	2.1.1.3.2. Use Case – Like/Dislike Articles:
	2.1.1.3.3. Use Case – Comment on articles:
	2.1.1.3.4. Use Case – Edit comment:
	2.1.1.3.5. Use Case – Delete comment:

	2.1.2 Data Requirements
	2.1.3 User Requirements
	2.1.4 Environmental Requirements
	2.1.5 Usability Requirements
	2.1.6 Design & Architecture
	2.1.6.1. Entity Relationship Diagram
	2.1.6.2. Class Diagram
	2.1.6.3. Sequence Diagram

	2.1.7 Implementation
	2.1.7.1. News Aggregation System:
	2.1.7.2. Application’s Main Views / Templates

	2.1.8 Graphical User Interface (GUI)
	2.1.8.1. Landing Page:
	2.1.8.2. Register & Login Pages
	2.1.8.3. Subscriptions Page
	2.1.8.4. Feed Page
	2.1.8.5. Account Page

	2.1.9 Testing
	2.1.9.1. Unit testing
	2.1.9.2. System & Acceptance Tests
	2.1.9.3. CI/CD / Integration Tests

	2.1.10 Evaluation
	2.1.10. Performance

	3 Conclusions
	4 Further Development or Research
	5.0 References
	5 Appendices
	5.1 Project Proposal
	Objectives
	Background
	State of the Art
	Technical Approach
	Technical Details
	Special Resources Required
	Project Plan
	Testing

	5.2 Reflective Journals
	5.2.1. October:
	5.2.2. November:
	5.2.3. December:
	5.2.4. January:
	5.2.5. February:
	5.2.6. March:
	5.2.7. April:

