

National College of Ireland
Subtitilizer

Software Development
2022/2023

Lloyd Portes
x19509219
BSHCSD4

x19509219@student.ncirl.ie

Technical Report

Contents
Executive Summary ... 2

1.0 Introduction .. 2

1.1. Background ... 2

1

1.2. Aims .. 2

1.3. Technology .. 3

1.4. Structure .. 3

2.0 System .. 3

2.1. Requirements .. 3

2.1.1. Functional Requirements .. 3

2.1.1.1. Use Case Diagram .. 4

Requirement 1: Input Video ... 4

Description & Priority ... 4

Use Case .. 4

Requirement 2: Input Language .. 6

Description & Priority ... 6

Use Case .. 6

Requirement 3: Output Language ... 7

Description & Priority ... 7

Use Case .. 7

Requirement 4: Export Video ... 8

Description & Priority ... 8

Use Case .. 8

2.1.2. Data Requirements .. 10

2.1.3. User Requirements .. 10

2.1.4. Environmental Requirements ... 10

2.1.5. Usability Requirements ... 10

2.2. Design & Architecture .. 10

2.3. Implementation ... 15

2.3.1 Code with GUI .. 15

2.3.2 Code without GUI ... 16

2.4. Graphical User Interface (GUI) ... 39

2.5. Testing ... 42

3.0 Conclusion ... 45

4.0 Further Development or Research ... 46

Appendices ... 47

Objectives ... 47

Background .. 47

State of the Art ... 47

Data ... 47

Methodology & Analysis ... 48

Technical Details ... 48

2

Project Plan .. 48

Testing ... 49

Github repo: https://github.com/LloydPortes2/FYP-Subtitilizer ... 49

Project proposal ... 50

3.0 Objectives .. 51

4.0 Background .. 52

5.0 State of the Art .. 52

6.0 Data .. 52

7.0 Methodology & Analysis .. 52

8.0 Technical Details ... 53

9.0 Project Plan ... 53

10.0 Testing .. 53

Reflective Journal .. 55

Executive Summary
In my project I will introduce how I have planned how to create Subtitilizer. Creating
the project from scratch was difficult but was manageable due to the documentation
that is online. I will state the processes for my use case diagrams, requirements, my
objectives and my planned work flow to overcome the obstacles of learning C++ and
learning FFmpeg’s extensive library.

As of now during the mid-point presentation date, learning C++ and FFmpeg while
being restricted with time is challenging but very rewarding as you will see
throughout the report of how creating implementing a GUI’s and making sure
everything works coherently.

The design of my software will explain how the algorithms complement each other
with the creation of the videos. All videos get dissected into smaller parts which will
then be manipulated by the software and then placed back together.

1.0 Introduction
1.1. Background

The reason why I undertook this project was because there were videos online
that I was looking for but never had the subtitles. Most of the time, they were
speaking in a language I did not understand. I wanted to solve my problem.

1.2. Aims
The project aims to achieve when a video is processed through the software,
there will be subtitles on top of the video you have chosen. The user will be able
to have the subtitles in a given language they choose.

3

1.3. Technology
I have chosen to use Google’s API for audio to transcription and translation. I will
use them by implementing their online code and attach it to my software. The
program will first take the audio, use Google’s transcription, then translate the file.
Afterwards, my program will place the transcription file on top of the video.

For encoding and decoding the video, I have chosen an open software called
FFMPEG. I will write code based on the library they provide. From the video size
to audio. I will omit features that change the video such as colour correction as
the main point of the software is to add subtitles only.

1.4. Structure
Provide a brief overview of the structure of the document and what is addressed
in each section.

I will be talking about the headings Systems and Proposal. In My Systems
heading, I address all the requirements I have to enable the functionality and
logic with how they work along with their use case. Then I address the data
requirements, usability and everything else about how the inner workings of my
code operate.

In my Proposal, I discuss why I have come about this project along with research
and how I would like to achieve my program with abstract headings. I do not talk
about code here but how I would tackle on creating the project.

2.0 System
2.1. Requirements

As of right now, my application is in the prototype stage, where there are no
functional buttons. The user should be able to pick a video where it will open a
windows explorer and choose a file from their storage. The user should then
choose the language it originally is then chose an output language the user
wants. Example, English to German. The user will then export the video to a mp4
file.

2.1.1. Functional Requirements
1. Software must run on x64 arch of Windows
2. Button that enables the user to select video from their storage
3. User must be able to choose original language to desired language

with buttons
4. Button for export
5. Googles API should start
6. Taking audio and transcribing it to file
7. Taking transcription file and translate
8. SRT file to be merged with video
9. Start encoding and decoding video
10. Uses FFMPEG library to export
11. Delete transcribing and SRT file to reduce space usage.

4

12. Output video is completed

2.1.1.1. Use Case Diagram

Requirement 1: Input Video
Description & Priority
Choosing a video is important for the software is important otherwise the software will not have an
input to use. By selecting a video, the software knows what audio to take and transcribe. This
requirement is priority level 1.

Use Case
Scope
The scope of this use case is controlling files that are of video type extension.
Anything that is not a video will not be accepted.

Description

The use case describes that users are only allowed to input a video and no other file.
If a user were to input another file, an error would occur.

5

Use Case Diagram

Flow Description
Precondition
The software must be running and the User must have a video to be processed

Activation
This use case starts when a User attempts to input a video

Main flow
1. The system identifies the file
2. If User inputs a file that is not a video (See A1)
3. If the User cancels the selection (See E1)
4. The User can change the language input and output
5. Export is conditional if user came from A1 or E1

Alternate flow
A1: File checker

1. The system gives a pop-up message
2. Pop up message says file is not an accepted format
3. Open windows explorer again
4. If file type is not accepted format, repeat A1 position 1
5. If file type is acceptable continue to position 4 of the main flow

6

Exceptional flow
E1: Cancel

1. The User presses the cancel button
2. The windows explorer closes
3. The use case continues at position 1 of the main flow

Termination
The User cancelled the selection or the software is closed

Post condition
The software is waiting for a user action.

Requirement 2: Input Language
Description & Priority
Choosing an input language is important for the software otherwise the software will
input the wrong translation. Words can sound similar in different languages;
therefore, it is priority level 2.

Use Case
Scope
The scope of this use case is limited to the language that will be used in the

video.

Description

Having the wrong language inputted will result in a wrong translation. It is very
important.

Use Case Diagram

Flow Description

Precondition
The software must be running

Activation
This use case starts when a User chooses the input language of the video

7

Main flow
1. The system sets the language in the video
2. If User inputs a language that is spoken in the video (See A1)
3. If User inputs a language that is not spoken in the video (See A1)
4. The software waits for output language
5. The User can now export the video

Alternate flow
A1: Language detector

1. The system sets the input language
2. The use case continues at position 4 of the main flow

Termination

The User cancelled the selection or the software is closed

Post condition
The software is waiting for a user action.

Requirement 3: Output Language
Description & Priority
Choosing an output language is important for the software is important otherwise the software will
output the wrong translation. Therefore, this is a priority level 3

Use Case
Scope
The scope of this use case is limited to the output of the subtitles of the video

Description

This will output the desired language by the user

Use Case Diagram

Flow Description
Precondition
The file along with the input and output languages must be selected before the video
is able to export.

Activation

8

This use case starts when a User chooses the output language of the subtitle

Main flow
1. The system sets the language in the video
2. If User inputs a language that is spoken in the video (See A1)
3. If User inputs a language that is not spoken in the video (See A1)
4. The software waits for output language
5. The User can now export the video

Alternate flow
A1: Language detector

1. The system sets the input language
2. The use case continues at position 4 of the main flow

Termination
The User cancelled the selection or the software is closed

Post condition
The software is waiting for a user action.

Requirement 4: Export Video
Description & Priority
Exporting is the least important but is still important since it will take time processing the
video because it uses computer resources. The reason why it’s last because the other
components are needed before you are able to export the video. Therefore, this is priority
level 4.

Use Case
Scope
The scope of exporting the video file will set the name and the location of the file.

Description

The User will have a windows explorer open and will be asked to name and choose
the location of the file.

Use Case Diagram

9

Flow Description
Precondition
The software must be running.

Activation
This use case starts when a User attempts to export the video.

Main flow
1. The software waits for the user action
2. The User selects the export button (See A1)
3. The audio is being transcribed
4. The transcribed file is being translated
5. The software waits for the user action (See E1)
6. The file is named and saved in the location set by the user
7. The subtitles file is deleted

Alternate flow
A1: Language injector
The software is processing the video
The use case continues at position 4 of the main flow

E1: Cancel
If the User presses the cancel button
The software stops the operation
The subtitles file is deleted
The use case continues at position 1 of the main flow

Termination
The User cancelled the process and will stop the operation.

Post condition
The video has been created. The name of the file and their location has
been set. The software is waiting for a user action.

10

2.1.2. Data Requirements
Video
The user is required to input a video. The software’s main purpose is to transcribe
audio from the video and translate it. After translating the transcription, the file will be
made into a SRT file, a file that holds subtitles. The subtitles will then be applied to
the video.

Input and Output Languages
The input language is very important because having the wrong language can lead
to multiple errors in translation. Words can sound very similar to other languages. It
is important before the user exports the video; they have confirmed the language
contained in the video.

The output language is what the subtitles will be on-top of the video. It is also
important the user is sure what language they want the output to be as. Depending
on the length of the video, it can take a long time processing the video.

2.1.3. User Requirements
The user requirements describe the necessary functionality and features that the
system must provide in order to meet the needs of the user.

• User must be able to select a video
• User must be able to select an input language
• User must be able to select an output language
• User must be able to save the file name and location
• User must be able to view the saved file

2.1.4. Environmental Requirements
A pc with strong capabilities as the process is very intensive. A strong internet
connection would be needed as the software utilizes the Google’s API services.

2.1.5. Usability Requirements
The software will work on most recent computers, although it is recommended that
the user has a medium to high specs for faster processing of the video. The software
takes advantage of the CPU as of right now. It would be most optimal to render with
a dedicated graphics card but to keep it simple for now, it uses the CPU as everyone
has a CPU in a computer.

A stable and strong internet is also preferred since the software takes advantage of
Google’s API services. The software will be sending and receiving packets to and
from Google.

2.2. Design & Architecture
Architecture Diagram

11

There are too many algorithms for me to list when using FFMPEG. The few that I will
be using when rendering a video using H.264 will be Video buffering verifier (VBV),
Intra prediction and Inter prediction. For encoding and decoding audio. I have
chosen mp3 for simplicity. AAC has more advanced features that I will not use for
this project. The video will then as a mp4 file.

My project will work as follows:

The first step in this software's user interface is letting the user select a video file to
add subtitles to. The user also has the option of choosing a language for both the
input and output subtitles. The user starts the export procedure by pushing a button
after choosing the file and languages.

The intricate operation of manipulating the video and subtitles is handled by the
program invisibly using the powerful FFmpeg library. When a user chooses a video
file FFmpeg automatically demultiplexes the tracks and divides them into separate
streams. These streams include a variety of elements, including video frames, audio
samples, subtitles, and more related data.

The program uses an encoder module once the video frames have been processed
and the subtitles have been incorporated flawlessly. The processed data is
intelligently compressed by this encoder, thereby lowering its size while making an
effort to preserve the best possible video and audio quality. When all the streams
have been carefully combined into one final file, a muxer assumes center stage.

Algorithms:

Video buffering verifier (VBV) is a mechanism in video encoding that controls the
flow of data from the encoder to the decoder. It helps to ensure that the decoder has
enough data to decode the video stream smoothly, without running out of data or
stalling.

12

Intra prediction is a technique used in video encoding to predict the values of blocks
of pixels within a single frame based on the pixels in the surrounding area. Intra
prediction is used to reduce the amount of data that needs to be transmitted by
encoding only the difference between the predicted values and the actual values.

Inter prediction is a technique used in video encoding to predict the values of blocks
of pixels between two consecutive frames based on the pixels in the previous frame.
Inter prediction is used to reduce the amount of data that needs to be transmitted by
encoding only the difference between the predicted values and the actual values.

Both intra prediction and inter prediction are used to improve the efficiency of video
encoding by reducing the amount of data that needs to be transmitted. They are key
components of many video codecs including those used by FFmpeg.

The user's chosen location on their computer will then receive the finished file with
the subtitles. A broad variety of media players may be used to playback this file, and
viewers will experience a better watching experience thanks to the subtitles' elegant
overlaying of the video content. This practical approach offers a quick and easy way
to translate videos and making them accessible to a broader audience and
potentially serving educational purposes.

Although the program uses Google's API for speech recognition and translation,
there are certain restrictions to take into account. The precision and caliber of the
voice recognition and translation process may change depending on the accessibility
and dependability of Google's API service. Additionally, there may be related fees
and terms of service considerations when using Google's API.

Linking up FFmpeg:
For me to be able to use FFmpeg, I would download the libraries and .dll files
required for the functionalities. For FFmpeg to function correctly I would then set up
Visual Studio’s properties for the current project to take the libraries and link up the
necessary files.

13

The picture above shows the output directory while also having the .dll files to
function correctly

The picture above then links the libraries together.

14

The above picture then contains the include folder for FFmpeg. This has the header
files to be able to use the libraries and communicates to the program where to get
certain functionalities.

15

In the 2 above pictures, I would then navigate to the input section from the Linker. I
would copy and paste the library file names to be able to use the libraries.

2.3. Implementation
2.3.1 Code with GUI

This is an event where it waits for the User action pressing a button. The function
displays a dialog box using the GetOpenFileName function, which allows the user
to select a file to open. The function specifies that the dialog box should allow the
user to select video files with the extensions .avi, .mp4, or .mkv, or any file with
the extension .*.The function stores the selected file path in the buffer array and
creates a new System::String object with the contents of the array. The
selectedFilePath variable is then set to the new string. Finally, the function sets
the text of the txt_bx text box to the selected file path.

16

This code is checking if an error occurred while opening the input file by calling
the avformat_open_input function and assigning the return value to the ret
variable. If the value of ret is less than zero, it means that an error occurred, and
the av_log function is called to print an error message to the standard error
output. The program then jumps to the end label (which is defined later in the
code).

2.3.2 Code without GUI

The first file I made was a cmake file that auto generates a project for me that
combines. I will explain from

top to bottom what the code does. The cmake file at the very minium will be version
3.26.
project(Project3 C CXX): This line specifies that the project is composed of C and
C++ code and sets the project name to Project3.

Sets the C++ standard to version 14 with the command
set(CMAKE_CXX_STANDARD 14).

17

Adds the subdirectory lib/glfw to the build process with the command
add_subdirectory(lib/glfw). It signifies that the directory's CMakeLists.txt file will be
treated separately.

add_definitions(-DGL_SILENCE_DEPRECATION): In order to define the macro
GL_SILENCE_DEPRECATION, this line adds a compiler flag. I disable OpenGL
deprecation warnings by using this macro.

if(APPLE) elseif(WIN32) else() endif: The operating system is examined in this block
of code, and the EXTRA_LIBS variable is set appropriately. It adds the -framework
OpenGL switch to EXTRA_LIBS on Apple platforms. It adds the -lglu32 and -
lopengl32 flags to the linker on Windows systems and sets other linker flags relevant
to static linking and Windows-specific options. It adds the -lGL, -lGLU, and -lX11
settings for various operating systems.

(APPEND SOURCES) list A list of source files is added to the SOURCES variable by
this line. src/main.cpp, src/load_frame.cpp, src/video_reader.cpp, and
src/video_reader.hpp are among the source files.

Using the source files specified in the SOURCES variable add_executable(Project3
$SOURCES) generates an executable with the name Project3.

Project 3: target_link_libraries glfw ($EXTRA_LIBS $OPENGL_gl_LIBRARY) The
libraries to link with the Project3 executable are specified on this line. It contains
$OPENGL_gl_LIBRARY, EXTRA_LIBS, and the glfw library.

find_package (REQUIRES OpenGL) This line looks for the OpenGL package and
makes it accessible for the project's linking.

18

After creating the cmakelists.txt I would run this script through gitbash to create the
project. Which would generate most of these files as shown below.

Then to get the GLFW files, I ran this code to get the GLFW to install into my project:
git submodule add https://github.com/glfw/glfw glfw. This would automatically create
a GLFW folder directly from the creators of GLFW on Github.

2.3.2.1 video_reader.cpp
A C++ method named video_reader_open is present in this code and is in charge of
opening a video file so that it could be decoded. The function accepts two inputs: a
pointer to the structure VideoReaderState, which stores various video-related data,
and a reference to a string that denotes the filename of the video file that will be
opened.

Using the auto& keyword, which supports automated type deduction and reference
variables, the method first extracts the components of the VideoReaderState
structure.

https://github.com/glfw/glfw

19

The AVCodecContext, AVCodecParameters and AVCodec structures' variables are
then declared in the code. The FFmpeg library, which is commonly used for video
decoding, depends on these structures in order to function.

This Code block is responsible for opening an input file and initializing an
AVFormatContext structure for further processing.

The first line, av_format_contex = avformat_alloc_context();, calls the
avformat_alloc_context function to allocate memory for the AVFormatContext
structure. The AVFormatContext object, which is used to hold the format-specific
information about the input file, is initialized by this function and memory is
dynamically allocated.

The line printf(Could not allocate memory for AVFormatContextn); in the if statement
produces a message stating that the memory allocation for the AVFormatContext
was unsuccessful.

Finally, the line return false; exits the function and returns a boolean value of false
indicating that the opening of the input file was not successful.

The provided block of code is in charge of using the AVFormatContext structure to
open an input file.

The if statement verifies the avformat_open_input function's return value. By
initializing the AVFormatContext structure with the supplied filename, this method
makes an attempt to open the specified file. If avformat_open_input returns a value
other than 0, the file opening failed.

Inside the if statement, the line av_log(NULL, AV_LOG_ERROR, File could not be
opened\n); reports an error message using the av_log function from the FFmpeg
library. This error message indicates that the file could not be opened.

20

The line return false; exits the function and returns a boolean value of false,
indicating that the opening of the file was not successful.

By iterating through the streams in the AVFormatContext and extracting details about each
stream, such as codec parameters and type this provided block of code is in charge of
handling the task.

The for loop sets the value of the integer variable i to 0 and iterates as long as i is lower than
the value of the AVFormatContext's nb_streams property. The function uses
av_format_contex->streams[i] in each iteration to obtain the AVStream pointer of the active
stream.

By gaining access to the codecpar property of the AVStream, the AVCodecParameters
structure is added to the av_codec_parameters variable. This structure accomodates the
information referring to the codec that was used in the stream.

The avcodec_find_decoder function from the FFmpeg library is used to try to find the
decoder for the codec ID supplied in av_codec_parameters->codec_id in the following line.
The code uses the continue command to go on to the next iteration if the decoder cannot be
located.

The function updates the video_stream_index variable to the current index i if the codec type
of the current stream is AVMEDIA_TYPE_VIDEO. Additionally, av_codec_parameters-
>width and av_codec_parameters->height are used to get the video's width and height,
respectively. Additionally it gives the time_base variable access to the AVStream's
time_base property. Since the video stream has been located, it finally uses the break
command to exit the loop.

The code updates the audio_stream_index variable to the current index i and exits the loop
using the break command if the codec type of the current stream is
AVMEDIA_TYPE_AUDIO. This demonstrates the discovery of the audio stream.

21

The activities carried out by this block of code pertain to the video stream found in
the one before it.

The first line determines whether the value of the variable video_stream_index is
zero. If it is, it indicates that the input file did not contain a video stream. Using the
av_log function, an error message is then recorded with the severity set to
AV_LOG_ERROR. No video stream was identified according to the error notice, and
the method returns false to indicate failure.

The code moves on to the following line if the video stream index is not zero. The
following arguments are sent to the av_dump_format function when it is called:
av_format_contex (the AVFormatContext pointer), video_stream_index (the index of
the video stream), filename (the name of the input file), and false (to indicate whether
or not to publish specific information about the format). The codec, duration and
other metadata about the specified video stream are printed by this function along
with information on its format.

The FFmpeg library provides a function called av_dump_format, which is used to
show details about the streams and the AVFormatContext. The filename of the input
file, the AVFormatContext pointer (av_format_contex), the video stream index
(video_stream_index), and a flag indicating whether to show the output in a human-
readable format (false in this case) are the other arguments.

When this code block is performed, it prints facts about the input file's format
including the container format, information about the codec, and several stream
attributes. It offers useful details about the streams in the input file, including the
codec type bitrate, resolution, duration, and other metadata.

The first line of code determines whether the value of the variable
audio_stream_index is zero. If it is it means that the input file did not contain an
audio stream. The av_log function is used to log an error in this situation. The error
message notes the lack of an audio stream and the severity level is set to
AV_LOG_ERROR. After that, the method returns false to denote failure.

This section of code checks to see if an audio stream is present before doing any
more audio-related activities. The software responds appropriately by reporting an
error message and returning false if no audio stream is discovered.

This code block's function is to offer diagnostic data for troubleshooting and analysis.
Understanding the qualities of the input file and its streams is helpful since it may be
applied to subsequent processing or troubleshooting.

22

The block of codes below is responsible for initializing and opening the codec
context using the codec parameters.

Allocating and initializing an AVCodecContext object for the chosen codec falls
under the purview of the provided line of code.

The function avcodec_alloc_context3 is first called in the code, along with the input
av_codec. The FFmpeg library provides this method, which is used to allocate a new
AVCodecContext structure. The codec for which the context is being allocated is
specified by the av_codec argument.

The AVCodecContext structure is allocated memory by the function, and its fields
are initialized with default values appropriate for the selected codec. The
AVCodecContext structure contains a number of codec-related settings and
parameters, including bitrate frame rate, and encoding or decoding choices.

The variable av_codec_context will store a reference to the allocated and initialized
AVCodecContext structure linked to the specified codec following the execution of
this line of code. The codec may then be configured, data can be encoded or
decoded, and codec-specific parameters can be managed using this context.

The first if statement determines whether the creation of the AVCodecContext
av_codec_contex was successful. If it is NULL, this indicates a failure in the codec
context's initialization. In this instance, an error message is written with the help of
printf to show the failure and the associated error message. The function then
returns false to show that an error happened.

The second if statement initializes the AVCodecContext av_codec_contex with the
parameters taken from the AVCodecParameters av_codec_parameters using the
function avcodec_parameters_to_context. If the conversion fails (< 0), it indicates
that there was a conversion error and a message detailing the conversion fault is
written with printf. The function also returns false in this case.

The AVCodecContext av_codec_contex is used in the following code block to open
the codec given by av_codec. This is accomplished by use the avcodec_open2
function. The function returns false if the codec opening fails (< 0), at which point a
message describing the failure to open the codec is written with printf.

Following that, av_frame_alloc() is used by the code to allocate memory for an
AVFrame. An issue occurred while allocating memory, and a message is written

23

using printf if the allocation fails or the resultant frame is NULL. After that the
function returns false.

Finally, the code uses av_packet_alloc() to allocate memory for an AVPacket. An
error occurred while allocating memory and a message is sent using printf if the
allocation fails or the resultant packet is NULL. After that, the function returns false.

To proceed in my function, I extract the necessary members from the
VideoReaderState structure to gain access during processing. These members
include the width, height, format context codec context, frame, packet, video stream
index, and scaler context.

Each packet from the video file is read and processed by the first code block: while
(av_read_frame(av_format_contex, av_packets) >= 0). To read the next available
packet from the video file linked to the av_format_contex (AVFormatContext), the
method av_read_frame() is called inside the loop. The loop moves on to the
following iteration if the function returns a non-negative value signifying successful
packet reading, or zero, signifying the end of the file or stream. By doing this, the
video file's whole packet collection is processed. The loop will end if the function

24

returns a negative value, which indicates a problem with the packet reading or the
fact that no further packets are available.

The if statement: if (av_packets->stream_index!= video_stream_index) determines if
the current packet's stream index (av_packets->stream_index) corresponds to the
anticipated video stream index (video_stream_index). We are particularly interested
in processing video packets since a video file may contain several streams, including
video, audio subtitles, and others. Therefore, to distinguish video packets, we
compare the stream index. We go on to the next iteration of the loop if the condition
evaluates to true, which indicates that the current packet does not belong to the
video stream. We release the resources linked to the packet using av_packet_unref
(av_packets) before going on to the next iteration. The packet is now ready for the
following iteration or for being released after all packets have been processed, which
ensures correct memory management.

The packet is sent to the decoder for decoding via the code block response =
avcodec_send_packet(av_codec_contex, av_packets). The AVCodecContext
av_codec_contex and the packet av_packets are input parameters for the function
avcodec_send_packet(). In order to decode the packet it sends it to the decoder
connected to the context of the codec. The return value of this function, which
denotes whether the operation was successful or unsuccessful, is stored in the
response variable.

A failure to deliver the packet to the decoder is indicated by the next if line if
(response 0), which checks if the response value is less than 0. If the condition is
met, the packet could not be correctly decoded. In this instance, an error message is
created using the av_strerror() function, which transforms the error code into a
human-readable error message saved in the errbuf character array. The inability to
decode the packet is then communicated via the error message which is displayed
using the printf() function. When the decoding attempt is unsuccessful, the function
finally returns false.

This code block is crucial for handling the case where packet decoding fails. It
enables the application to recognize and deal with any problems that take place
when decoding. The code can tell if a packet was properly transmitted for decoding
or whether an error occurred by examining the return value. This makes it possible to
handle errors correctly and assures that the program's decoding capability is
resilient.

25

A decoded frame is received from the decoder via the code block response =
avcodec_receive_frame(av_codec_contex, av_frames). The AVCodecContext
av_codec_contex and the AVFrame av_frames are input parameters for the method
avcodec_receive_frame(). It makes an attempt to locate a decoded frame in the
decoder connected to the codec context. The return value of this function, which
denotes whether or not receiving a frame was successful, is stored in the response
variable.

Following that the if condition if (response == AVERROR(EAGAIN) || response ==
AVERROR_EOF) determines if the response value is equivalent to
AVERROR(EAGAIN) or AVERROR_EOF. While AVERROR_EOF indicates that the
input stream has ended, AVERROR(EAGAIN) indicates that further input data is
required in order to generate an output frame. The frame is released using
av_packet_unref() to free up resources if one of these conditions holds true, which
indicates that the frame couldn't be received at the time. The loop then moves on to
the next iteration.

For managing the flow of receiving frames from the decoder, this code block is
crucial. It enables the program to respond to circumstances such as when a frame is
not immediately accessible or when the input stream reaches its end. The code can
evaluate whether more action is necessary such as continuing to receive frames or
addressing the stream's termination by comparing the response value against
particular error circumstances. This guarantees correct decoding flow management
and error handling.

If the preceding condition in which the response value is not equal to
AVERROR(EAGAIN) or AVERROR_EOF is false then the code block else if
(response 0) is examined. It deals with the situation when the response value is less
than zero, signifying a failure to correctly decode the packet and receive a frame.

This block declares a character array named errbuf with the size
AV_ERROR_MAX_STRING_SIZE to hold the error message related to the response
value. The response value, the errbuf array, and the array's maximum size are then
sent as parameters to the av_strerror() method. This method writes the error code's
string representation into the errbuf array.

26

The error message is then displayed using the printf() function, resulting in the
formatted text Failed to decode packet:%sn where %s stands in for the error
message contained in errbuf.

The function then returns false to show that there was a problem with the decoding
operation.

After successfully receiving a frame during the decoding process the code block
av_packet_unref(av_packets); break; is performed.

The av_packets parameter is sent to the method av_packet_unref() in this block.
This function releases the packet's associated resources including any internal data
structures and allocated memory so they can be utilized by succeeding packets.
When a packet is unreferenced it means that it is no longer required and may be
securely discarded away.

When the break statement is met after releasing the packet, the while loop is exited
by the application. After successfully decoding a frame, the program might proceed
to additional processing or actions because of this. The requested frame has been
received, thus there is no need to read or process any further packets. The break
statement is used to break out of the loop.

In general, this code block is in charge of releasing the resources connected to the
packet and notifying the end of the loop following successful frame decoding. It
makes sure that memory is managed effectively and enables the software to
continue using the decoded frame for additional operations or processing.

The line of code sets the variable referred to by pts to the value of the pts field of the
av_frames structure.

The term av_frames in this instance refers to the AVFrame structure which stands
for a decoded video frame. The presentation timestamp (PTS) of the frame is stored
in the pts field of the AVFrame structure. The desired display time of each frame in
the series of frames is indicated by the PTS.

The value of the PTS is given to the variable denoted by the pointer pts by assigning
av_frames->pts to *pts. This enables the PTS value to be accessed and used by the
caller code or function for additional processing or analysis.

27

This line of code's objective is to grant outside access to the decoded frame's PTS.
The value can be accessed and utilized outside of the current function or scope
where the decoding operation is taking place by assigning the PTS to the variable
pointed to by pts. It gives the caller access to the timestamp data for the frame which
is useful for synchronization editing, and other procedures that need precise timing
inside a video stream.

This line of code's objective is to grant outside access to the decoded frame's PTS.
The value can be accessed and utilized outside of the current function or scope
where the decoding operation is taking place by assigning the PTS to the variable
pointed to by pts. It gives the caller access to the timestamp data for the frame which
is useful for synchronization, editing, and other procedures that need precise timing
inside a video stream.

The code block printf(Frame %c (%d) pts %d dts %d key_frame %d
[coded_picture_number %d, display_picture_number %d\n],
av_get_picture_type_char(av_frames->pict_type), av_codec_contex-
>frame_number, av_frames->pts av_frames->pkt_dts, av_frames->key_frame,
av_frames->coded_picture_number, av_frames->display_picture_number); is
responsible for printing information about a frame that has been decoded.

The provided message is formatted and printed to the console or standard output
using the printf() function. A formatted string containing placeholders marked by %c,
%d, and %s is present in the message. These placeholders are replaced with the
equivalent values given as arguments to printf().

%c: This placeholder is replaced by the character representation of the picture type
obtained from av_get_picture_type_char(av_frames->pict_type). It represents the
type of the picture, such as I-frame, P-frame, or B-frame.

%d: These placeholders are replaced by the integer values obtained from various
fields. Specifically:

av_codec_contex->frame_number: It represents the frame number or index of the
current frame.

av_frames->pts: It represents the presentation timestamp of the frame.

av_frames->pkt_dts: It represents the decoding timestamp of the frame.

av_frames->key_frame: It indicates whether the frame is a key frame (1) or not (0).

av_frames->coded_picture_number: It represents the coded picture number of the
frame.

av_frames->display_picture_number: It represents the display picture number of the
frame.

28

The code block displays detailed information about the decoded frame, including its
type, timestamps, key frame status and image numbers, by using printf() with the
formatted text and the relevant values.

This code block is essential for providing details about the attributes and traits of the
decoded frames, assisting with additional video data analysis, debugging, or
visualization.

The code block determines if the sws_scaler_context variable has not yet been
initialized, which means it is currently set to null. The !sws_scaler_context condition
determines if sws_scaler_context is false or null.

In the event that the sws_scaler_context is not initialized (that is if it is null) the code
moves into the if statement's body. To construct and initialize the sws scaler context
the sws_getContext() method is used in the body.

The arguments are the parameters provided to sws_getContext():

width and height: These variables represent the dimensions of the input video
frames.

av_codec_contex->pix_fmt:This accesses the pix_fmt property of the
av_codec_contex structure which represents the pixel format of the input video
frames.

AV_PIX_FMT_RGB0: The constant AV_PIX_FMT_RGB0 designates the preferred
pixel format for the output video frames. This code sample has it set to RGB which
has 32 bits per pixel and 8 bits each component.

SWS_BILINEAR: The constant SWS_BILINEAR designates the scaling method the
sws scaler will employ. It scales in this instance via bilinear interpolation.

NULL NULL NULL: These are extra parameters that can be used for gamma
correction or other additional scaling settings. These arguments are set to null in this
section of code suggesting default settings.

A pointer to the freshly constructed sws scaler context is returned by the
sws_getContext() method and is then assigned to the sws_scaler_context variable.

This code block's goal is to determine whether the sws scaler context has been
initialized. If not, it uses the input and output parameters to establish and initialize the
sws scaler context. This guarantees that the SWS scaler is correctly configured and
prepared to carry out pixel format conversions as necessary. The efficiency of
successive frame conversions can be increased by avoiding needless
reinitializations and only initializing the sws scaler context when necessary.

29

The destination buffer and its corresponding line widths are set up in the first line of
code. Four members make up the dest array, which is created by the uint8_t* dest[4]
declaration. A pointer to an 8-bit unsigned integer is contained in each element. The
value of the variable frame_buffer, which stands for the destination buffer for the
scaled picture, is set to the first element, frame_buffer. Indicating that they are not
utilized in this particular code piece, the final three elements are initialized with
NULL. The pointers to the output image planes will be stored in this array.

The int dest_linesize[4] declaration on the second line establishes a four-element
array with the name dest_linesize. The line size of each element's matching picture
plane is represented by a number for each element. The width of the av_frames
picture multiplied by four is the value that is supplied to the first element, av_frames-
>width * 4. In order to estimate the stride of each picture plane, this computation
establishes the number of bytes per line in the destination buffer. The three extra
components are not utilized in this particular code piece since they are started with
0.

The third line then invokes the sws_scale function to scale and convert the picture.
This function, which is a component of the FFmpeg library, is used for operations like
format conversion and resizing. The input and output pictures, scale parameters, and
other variables are specified via a number of options. A pointer to a SwsContext
struct, which contains the configuration and state details for the scaling and
conversion process, is used in this function as the sws_scaler_context argument. An
array of pointers to the input picture planes that represent the color channels is
included in the av_frames->data argument. The line sizes of each input image plane
are specified by the array of integers in the av_frames->linesize argument. The
source slice height is indicated by the 0 parameter, and a value of 0 indicates that
the full input frame will be processed. The height of the input frame is represented by
the av_frames->height parameter. The destination buffer (frame_buffer) is the first
element in an array of pointers to the output picture planes that makes up the dest
parameter. The line size of the destination buffer is the first member of the array of
numbers that make up the dest_linesize parameter, which represents the line sizes
of each output image plane. These variables work together to allow the sws_scale
function to carry out the required picture scaling and format conversion operations,
resulting in the intended output in the target buffer.

The logical NOT operator (!) is used in the code block to determine whether the
variable sws_scaler_context is null. If the sws_scaler_context is not initialized or
allocated, this condition evaluates to true. The sws scaler context has not yet been

30

generated if the condition is true. The code executes the if statement in this situation.
There is another if (!sws_scaler_context) to make sure if the first code of the same
function failed, it gives back an error.

The printf function, which is called inside the if statement, prints the error couldn't
initialize sws scaler to the console. This error indicates that the sws scaler context
could not be initialized.

A pointer to a structure of the type VideoReaderState serves as the parameter for
the method video_reader_close represented by the code block. The resources
connected to the video reader state need to be cleared out using this function.

In the first line of code sws_freeContext(state->sws_scaler_context) the scaler
context pointer that is held in the sws_scaler_context field of the VideoReaderState
structure is sent to the sws_freeContext function. By doing this, it is guaranteed that
all memory and resources allocated for the scaler context are appropriately released

The following line, avformat_close_input(&state->av_format_contex), calls the
avformat_close_input function and passes the address of the av_format_contex field
of the VideoReaderState structure to close the input format context. This function
carries out the appropriate input format cleanup procedures, such as closing the
input file that has been opened and freeing any relevant resources.

The third line avformat_free_context(state->av_format_contex) calls the
avformat_free_context function and passes the av_format_contex field of the
VideoReaderState structure. This releases the format context. The RAM assigned
for the format context is released together with any remaining resources by this
function.

By calling the av_packet_free function and giving the address of the av_packets field
of the VideoReaderState structure, the fifth line, av_packet_free(&state-
>av_packets), releases the packet. The memory utilized by the packet structure and
any related data is released by this function.

By calling the avcodec_free_context function and giving the address of the
av_codec_contex field of the VideoReaderState structure, the final line,
avcodec_free_context(&state->av_codec_contex), frees the codec context. The
memory allotted for the codec context and any associated resources are released by
this function.

The video_reader_close function guarantees that all allocated resources are
correctly removed by carrying out these cleaning actions preventing memory leaks
and freeing up system resources for other activities. To ensure efficient use of
resources it is essential to call this function when the video reader is no longer
required or when the application is closing.

31

2.3.2.2 video_reader.cpp
The video_reader.hpp header file, which contains the required libraries and specifies
a struct and a number of function prototypes relevant to video reading using the
FFmpeg library, is shown below.

The preprocessor command #ifndef determines if the name video_reader_hpp has
already been declared. The succeeding lines of code will be included if it hasn't been
specified. This design feature makes ensuring the header file's content is only
included once, avoiding duplicate inclusions.

The extern C block is used to specify that C code, rather than C++, should be
generated from the included C header files (libavformat/avformat.h,
libavcodec/avcodec.h, etc.). The FFmpeg library was created in C, hence this is
required.

A struct called VideoReaderState that acts as a container for the state and data
pertaining to video reading is defined in the header file. It features open components
like width, height, and time_base that are used to hold the video's width, height, and
time base, respectively. These public members are meant to be used by other
software components. It also includes references to other FFmpeg data structures
including AVFormatContext AVCodecContext, AVFrame, AVPacket, AVStream, and
AVCodec in its private members. These structures are utilized by the video reader
internally and are not intended to be directly accessible from the outside.

32

Three function prototypes are also declared in the header file: video_reader_open
video_reader_read_frame and video_reader_close. These procedures are in charge
of starting a video file reading video frames and shutting off the video reader, in that
order. They accept a reference to VideoReaderState and other required parameters
as input and output a boolean value that indicates whether the relevant operation
was successful or unsuccessful.

The conditional inclusion block comes to a conclusion using the #endif directive. It
guarantees that the material in between is only included once and matches the
opening #ifndef directive.

2.3.2.3 main.cpp
The provided code is a C++ source file that includes several header files and a
custom header file named video_reader.hpp.

The #include directive is used to include external header files in the source file. In
this case, it includes two standard header files: <stdio.h>, which provides
input/output functions and <GLFW/glfw3.h> which is a header file for the GLFW
library used for creating windows and handling OpenGL contexts. The inclusion of
these headers allows the source file to access the functions, types, and constants
defined in those libraries.

33

Additionally, the source file includes the custom header file video_reader.hpp using
double quotes () instead of angle brackets (<>). The use of double quotes is typically
used for including local project-specific header files. This header file likely contains
the declarations and definitions related to video reading using the FFmpeg library, as
explained in the previous explanation.

By including these header files, the source file gains access to the functionalities
provided by the included libraries and the custom video reader module allowing it to
utilize functions types and constants defined in those headers in its own code.

It defines the main function, which is the starting point of execution for the program.
The main function takes two parameters: argc, an integer representing the number of
command-line arguments passed to the program, and argv, a pointer to an array of
strings containing the command-line arguments.

The int before main indicates that the function returns an integer value that
represents the program's exit status. By convention, a return value of 0 usually
indicates successful execution while non-zero values indicate some form of error or
abnormal termination.

The use of const char** argv means that the elements of the argv array are pointers
to constant strings. These strings represent the command-line arguments passed to
the program, with argv[0] typically being the program's name or path.

Inside the main function, you can write the program's logic, which will be executed
when the program is run. The specific implementation of the main function will
depend on the purpose of the program. It could involve processing the command-line
arguments, calling other functions or modules performing computations or interacting
with external resources.

This code snippet is a conditional statement that checks if the GLFW library
initialization was successful.

The glfwInit() function is a part of the GLFW library and is used to initialize the GLFW
library and its associated resources. It sets up the necessary internal structures and
prepares the library for further use. The function returns a boolean value indicating
the success or failure of the initialization process.

The conditional statement if (!glfwInit()) checks if the return value of glfwInit() is false,
which means the initialization failed. The exclamation mark ! is a logical negation
operato, so !glfwInit() evaluates to true if glfwInit() returns false.

34

If the initialization fails the code inside the if block is executed. In this case it prints
the error message couldn't init GLFW using printf() function and then returns 1. The
return value of 1 is commonly used to indicate an error or abnormal termination of
the program.

The purpose of this code is to handle the case where GLFW initialization fails. It
provides an error message and terminates the program if GLFW initialization is
unsuccessful ensuring that further execution of the program does not occur without
the required initialization.

The provided code creates a GLFW window with a resolution of 1920x1080 pixels
and a title of Video File.

The function glfwCreateWindow() is called to create the window. It takes several
parameters: the width and height of the window (1920 and 1080, respectively), the
window title (Video File), and optional parameters for monitor and shared context. In
this case, the last two parameters are set to NULL indicating that they are not used.

The return value of glfwCreateWindow() is a pointer to the created window. The
conditional statement if (!window) checks if the returned pointer is NULL which would
indicate that the window creation failed.

If the window creation fails, the code inside the if block is executed. It uses the
printf() function to print the error message Couldn't open Window to the console. This
error message informs the user that the window creation was unsuccessful.

The purpose of this code is to handle the case where the GLFW window creation
fails. It provides an error message to inform the user about the failure, allowing them
to take appropriate action or terminate the program gracefully.

The provided code checks if the GLFW library supports audio playback by using the
function glfwExtensionSupported().

The conditional statement if (glfwExtensionSupported(GLFW_AUDIO)) checks if the
extension named GLFW_AUDIO is supported by GLFW. If the extension is
supported, the code inside the if block is executed. It uses the printf() function to print
the message Audio playback is supported! to the console.

35

If the extension is not supported the code inside the else block is executed. It uses
the printf() function to print the message Audio playback is not supported. to the
console.

The purpose of this code is to check whether the GLFW library has the necessary
extensions to support audio playback. It provides a way to inform the user about the
audio playback support status of the GLFW library.

The code below initializes a VideoReaderState object named vr_state and calls the
video_reader_open() function to open a video file.

The line VideoReaderState vr_state; declares a variable vr_state of type
VideoReaderState which represents the state of a video reader. This object will be
used to store information about the video file being opened.

The video_reader_open() function is called with two arguments: a pointer to the
vr_state object and the path of the video file. The function attempts to open the
specified video file and initializes the vr_state object with the relevant information
from the file.

The conditional statement if (!video_reader_open(&vr_state
C:\\Users\\porte\\OneDrive\\Pictures\\Camera
Roll\\WIN_20230501_18_57_06_Pro.mp4)) checks the return value of the
video_reader_open() function. If the function returns false, it means that the file
couldn't be opened or there was an error during the opening process. In such a case,
the code inside the if block is executed.

Inside the if block, the printf() function is used to print the message couldn't open file
to the console, indicating that there was an error opening the video file. The function
then returns 1 to indicate an error condition.

The purpose of this code is to initialize a VideoReaderState object and open a video
file for reading. It provides error handling by checking the return value of the
video_reader_open() function and printing an appropriate error message if the file
opening fails.

The next bit of code is responsible for generating a texture in OpenGL for rendering
context.

36

glfwMakeContextCurrent(window);: This line sets the current OpenGL rendering
context to the specified window. The rendering context is necessary to perform
OpenGL operations.

GLuint tex_handle;: This line declares an unsigned integer variable tex_handle to
store the texture handle, which is a unique identifier for the texture object.

glGenTextures(1, &tex_handle);: This line generates a texture object and assigns it
to tex_handle. The 1 parameter indicates that we want to generate a single texture
object.

glBindTexture(GL_TEXTURE_2D tex_handle);: This line binds the generated texture
object to the target GL_TEXTURE_2D. Subsequent texture operations will affect this
bound texture.

glPixelStorei(GL_UNPACK_ALIGNMENT, 1);: This line sets the pixel storage mode
for unpacking pixel data. It specifies that the pixel rows in memory are aligned on
byte boundaries.

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);: This
line sets the texture wrapping mode for the GL_TEXTURE_WRAP_S parameter,
which represents the texture coordinate axis S. It sets the wrapping mode to
GL_REPEAT, which repeats the texture when the texture coordinates exceed the
range of [0, 1].

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);: This
line sets the texture wrapping mode for the GL_TEXTURE_WRAP_T parameter,
which represents the texture coordinate axis T. It sets the wrapping mode to
GL_REPEAT, similar to the previous line.

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);:
This line sets the texture magnification filter for the GL_TEXTURE_MAG_FILTER
parameter. It sets the filter mode to GL_LINEAR, which performs linear interpolation
to determine pixel values when the texture is magnified.

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);:
This line sets the texture minification filter for the GL_TEXTURE_MIN_FILTER
parameter. It sets the filter mode to GL_LINEAR, similar to the previous line.

glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);:
This line sets the texture environment mode. It specifies how the texture color is
combined with the underlying material color. In this case, it sets the mode to
GL_MODULATE, which modulates the texture color with the material color.

These OpenGL functions collectively configure the texture parameters such as
wrapping mode filtering, and environment mode, to define how the texture will be
applied in the rendering pipeline.

37

The code below is responsible for allocating a frame buffer, which is a memory buffer
used to store pixel data for each frame. Here's an explanation of each line:

const int frame_width = vr_state.width;: This line declares a constant integer variable
frame_width and assigns it the value of vr_state.width. It represents the width of the
frame in pixels.

const int frame_height = vr_state.height;: This line declares a constant integer
variable frame_height and assigns it the value of vr_state.height. It represents the
height of the frame in pixels.

uint8_t* frame_data = new uint8_t[frame_width * frame_height * 4];: This line
dynamically allocates memory for the frame buffer using the new operator. It creates
an array of uint8_t (8-bit unsigned integers) with a size calculated as frame_width *
frame_height * 4. The 4 represents the number of color components (RGBA) per
pixel. The resulting memory block is assigned to the frame_data pointer variable,
which can be used to access and manipulate the pixel data.

Overall these lines of code set up the necessary memory allocation for the frame
buffer based on the width and height of the frame obtained from vr_state. The
frame_data pointer will be used to store the pixel data of each frame in the
subsequent video processing operations.

The code glfwGetTime() is a function call to retrieve the current time in seconds as a
double value. It is provided by the GLFW library which is a utility library for creating
and managing windows, OpenGL contexts, and handling user input.

When glfwGetTime() is called, it returns the elapsed time in seconds since GLFW
was initialized or the system was started. This function is commonly used to
measure time intervals or control animations and simulations based on real-time

38

progress.

The code represents a while loop that runs as long as the GLFW window should not
be closed (!glfwWindowShouldClose(window)). This loop is responsible for rendering
frames and handling events in the window.

Within the loop, the first action is to clear the color buffer and depth buffer using the
glClear function. The GL_COLOR_BUFFER_BIT flag indicates that the color buffer
should be cleared while the GL_DEPTH_BUFFER_BIT flag indicates that the depth
buffer should be cleared. This operation ensures that the next frame starts with a
clean slate removing any previous rendered content.

The color buffer stores the color values for each pixel in the window and the depth
buffer stores the depth information for each pixel, allowing for accurate depth-based
rendering. Clearing these buffers ensures that the rendered frame is not affected by
any remnants from previous frames.

By clearing the color and depth buffers at the beginning of each iteration in the while
loop, the subsequent rendering operations will start with a blank canvas, ready to
display the next frame's content.

The provided code segment is responsible for setting up an orthographic projection
for rendering in the GLFW window. Here's how it works:

First the variables window_width and window_height are declared to store the
dimensions of the window. The function glfwGetFramebufferSize is then called to
retrieve the size of the window's framebuffer which represents the size of the window
in pixels.

Next, the projection matrix is set as the current matrix using
glMatrixMode(GL_PROJECTION). The glLoadIdentity function resets the current
matrix to the identity matrix, ensuring a clean starting point for the projection
transformation.

The glOrtho function defines an orthographic projection matrix specifying the
coordinates of the visible area in the window. The parameters (0 window_width,
window_height, 0) define the left right top and bottom boundaries of the visible area,
respectively. The near and far parameters (-1 and 1) define the depth range of the
visible area.

After setting up the projection matrix, the matrix mode is switched back to
GL_MODELVIEW using glMatrixMode(GL_MODELVIEW). This indicates that

39

subsequent matrix transformations will affect the modelview matrix, which is
responsible for positioning and orienting objects in the scene.

Lastly, the variables x_center and y_center are calculated to determine the position
at which the rendered frame will be centered within the window. These calculations
ensure that the frame is aligned properly based on the window and frame
dimensions.

Overall this code segment prepares the necessary projection matrix and calculates
the center coordinates for rendering the frame within the window, ensuring correct
positioning and alignment of the rendered content.

The code below is responsible for closing the video reader and clearing any
allocoated resources used.

First, the location of the vr_state variable is sent to the function video_reader_close.
This procedure is in charge of freeing up all resources connected to the video
reader, including memory and by closing the file. This function is used to correctly
close the video reader and release any reserved resources.

The statement return 0 is encountered after the video reader has been closed. This
declaration denotes that the program execution has come to a conclusion and that
the program should quit successfully. Returning 0 in this situation normally means
that the application ran without any issues and successfully completed.

2.4. Graphical User Interface (GUI)
My GUI has 4 user inputs. The search file button opens the windows explorer and
would place the path file on the text bar to its right.

40

There is a private member variable selectedFilePath, which is declared as a
System::String^ to hold the selected file path. It will store the path of the selected
video file.

Next, we have the search_btn_Click function which is the event handler for the
button click event. This function is executed when the button is clicked. Here's how it
works:

The code begins by declaring a character buffer named buffer with a maximum size
of MAX_PATH. This buffer will hold the file path selected by the user.

An OPENFILENAME structure named ofn is created and initialized. This structure is
used to configure the file dialog options.

The ofn.lpstrFilter field is set to specify the file formats to be searched in the dialog.
In this case it allows the selection of video files with extensions .avi .mp4 and .mkv,
as well as all files (*.*).

The ofn.lpstrFile field is set to the address of the buffer, and ofn.nMaxFile is set to
MAX_PATH, specifying the buffer size and location where the selected file path will
be stored.

The ofn.Flags field is set to configure the behavior of the file dialog. The specified
flags indicate that the dialog should use the explorer-style interface, enable resizing
hide the read-only checkbox require a valid path and require an existing file.

The GetOpenFileName function is called passing the address of the ofn structure as
an argument. If the function returns a non-zero value it means the user has selected
a file and closed the dialog.

Inside the if statement a new System::String object is created initializing it with the
contents of the buffer array. This converts the selected file path from a character
array to a managed string.

The selectedFilePath variable is assigned the value of the newly created
System::String object storing the selected file path.

41

Finally the txt_bx control's Text property is set to selectedFilePath updating a text
box in the user interface with the selected file path.

The images below shows what happens when the User presses the search file. The
windows explorer filters only video files and all files. This is incomplete as I want to
give an error when the User selects a file that is not a video file.

Once the user selects a video the path file will automatically place it in the text bar.

42

The Input and Output Language are currently empty right now as I want to fill the
boxes with Google’s API. The options will be filled with the languages available with
Google Translate.

The export button will then fill up the progress bar to show the user how much time is
left. For this prototype I am replicating what it would look like if a video was being
processed. In the final version the speed of the progress bar will depend on the time
it is processing the video.

2.5. Testing
All my testing was done in Visual studio in debug mode using win64 architecture.

At first I wanted to get info but nothing was happening, to fix this, I had to link my
libraries and my .dll files. What would happen is I would just get a blank screen
on the console.

43

When testing for my search function, there was multiple errors. Looking at the
error, I was having memory leakage. I was getting a breakpoint instruction
executed. I finally got to fix it after changing the structure of my array.

Another bug would happen if I did not run through debugger. I would select a file
and the program would ask me to select a file. After the second selection, the
program would crash as shown below.

44

After having my search function working, my next plan was placing the file path to
my txt_bx. At first I would implement the string into the event handler for my txt_bx.

By doing it this way the file path would not show up until a user has done an action
on the txt_bx. After researching online the reason why this happens is because
having a text box itself is having an event. For there to be an instant update I
decided to imaplament txt_bx->Text = selectedFilePath; in my search button as this
seemed the most logical way since we instruct the code to place the file path directly
to the text box after selecting a file.

I used Native Unit Test template from Visual Studio because it gives me an easy way
to test my methods. The tests I would apply are unit testing, integration and
acceptance.

In Scope: The requirements in my document were tested.

Out of scope: The features that were not included are:

1. Computer hardware
2. Advanced video effects
3. Codec development

I want to test my methods if they were functional to its fullest capabilities. My project
focuses on testing the intake of the video to be able to output and outputting.

Test Case
Type

Description Use Case Expected
results

Final Result

File Input Can select any
video file

select a video
in most
common
formats

Any video type
is accepted

Pass

Language
input

Can choose
any language
as input

Select any
language

Any language
is used as an
input

Inconclusive

Language
Output

Can choose
any language
as output

Select any
language

Any language
is used as an
output

Inconclusive

Video File is
exported

File can be
opened

File can be
opened

Inconclusive

Error output Error shows
when a
problem
occurs

Problem is
described

Problem is
shown to user

Pass

Unit Testing

45

Unit testing is a crucial testing strategy that tries to confirm the operation of certain
software system components, such as classes or methods. Unit testing frameworks
in the context of Visual Studio offer tools for automating these tests and verifying the
intended functionality of each component. A specific component that builds
successfully and satisfies the requirements is the result of a successful unit test.

Integration Testing
Integration testing involves testing the interactions between different components or
modules of my application to ensure they work together correctly. I dentified my
integration points to know where different components would interatct with each
other.

End User testing
To test my application, I used different types of containers that would use different
types of encoders. I have used files such as .mov mp4 and avi. I tested this manually
as there is no way to automate taking multiple videos. Having this testing would help
me identify if there were any problems with usability.

3.0 Conclusion
The project seeks to give a simple yet efficient method of enhancing video
accessibility by delivering a straightforward option for translating films and overlaying
subtitles. Automatic transcription and translation of video footage are made possible
by utilizing the strength of Google's voice recognition API making it available to a
larger audience. This project has significant promise for educational uses enabling
teachers to provide multilingual content and connect with a broad student population
in addition to being a helpful tool for personal video translation.

46

It's important to remember that the project's functioning depends on Google's voice
recognition API. Due to this reliance on outside services, continued use of the API
may need payment or subscription plans which may impact the project's long-term
viability. Additionally the voice recognition system's performance and accuracy
depend on the capabilities and restrictions of Google's API.

Despite these limitations the project provides a useful method for creating subtitles
and translating videos. It makes adding subtitles to videos easier with automated
procedures enabling accessibility and inclusion. It creates new opportunities for
cross-cultural contact and information exchange by utilizing contemporary
technology.

 4.0 Further Development or Research
Given with additional time there are many ways I would explore to improve the
functionality and usability of my current project.

Adding new features that improve the capabilities of the program and provide users
more value would be my main emphasis. This can entail connecting to external
services or APIs putting in place sophisticated algorithms or data analysis methods
or adding interactive visualizations.

User Experience Refinement: I would devote effort to enhancing the application's
user interface (UI) and user experience (UX). This could entail rethinking the layout
streamlining processes to make them clearer and more effective and doing usability
tests to gather input and iteratively improve the design.

Performance Optimization: To improve the application's speed and responsiveness I
would examine the performance bottlenecks and optimize the code and algorithms.
This can entail analyzing the program, locating problem areas, and putting
performance-improving strategies in place like caching, parallelization, or code
rewriting.

Compatibility and Platform Support: I would like for most people to be able to use the
software. I would like to expand this software to operating systems like most linux
operating systems such as ubuntu and other versions of macOS.

Additionally, I would actively seek feedback from internet users to promote a broader
software adoption. Driving ongoing development requires gathering opinions and
information from a wide range of users. I would utilize a variety of techniques,
including user testing sessions, feedback forms analytics analysis and user surveys
to do this. I can continually improve the usability of the program solve any problems
and make sure that it satisfies the changing demands of its users by incorporating
actual user feedback into the development process.

47

Appendices
Objectives
The core feature of the software will be able to take any video and be able to place
subtitles on top of the video. The user will be asked what language the video is
spoken in then asked what language they would like the subtitles to be in. The user
is asked for the language because some languages sound the same depending on
who is speaking. This is also done to make sure the accuracy of the transcript is at
its highest. The transcript will then be made into a subtilties file so the program will
be able to read and place the words on top of the video.

The user will have an UI where they can change the settings of the languages. At the
minimum the software will render the video in its original sizing of width and height.
The user will be able to change the font, font size, colour of the font and the font

Background
I will be using Google’s API where they are able to take any audio and transcribe
them. Afterwards they will be put through Google’s translate. After they have been
translated, the software will make sure the subtitles come at the same time when a
person is speaking and then end after the person speaking is done. It will repeat this
process until the video is done.

I am also using an open-source software that renders the videos called FFmpeg. A
free open-source software project called FFmpeg is used to stream, record, and
convert audio and video. Along with a command-line tool for transcoding media files,
it also comes with a collection of libraries for handling a variety of media types.
FFmpeg is frequently used for many different things such as: converting music and
video between different formats

I chose this project because I watch anime from different websites and only saw
most websites transcribing and placing subtitles in videos usually in only in English. I
thought that other users might want to be able to read in other languages such as
French, Spanish, Mandarin, etc. This would also help me if there is a tutorial online
that is set in a different language. There are plenty of cases when I was looking for
video tutorials online on a particular subject there would be times when I could not
find a video in English but they would be taught in other languages like Spanish
Hindi and Russian.

State of the Art
When thinking of this idea no company has done this before. There is currently no
application on the internet/market that does this feature. Youtube is the closest
competitor I have but even they have restrictions on their subtitle files. Youtube will
only allow subtitles to be automatically placed if the language is supported and the
video is not long.

Data
The data that will be required is Google’s API audio to transcription. I will be linking
that to the software so that a transcription will be made. The audio will be listened to

48

by Google’s API then using google translate, another API, the user will be able to
choose the language that is offered by Google.

The video that will be used for transcription can be pulled online or the user will be
able to transcribe any video that is fed through the software.

The software will use the user’s CPU to compute and render the video and subtitles.
Having a stronger computer will render videos faster.

Methodology & Analysis
As this project is for personal use as of writing this proposal, I will use the waterfall
method. If I choose to publish this software, I will then swap to the agile methodology
as I will require users to pay for this service. I will look at other software that renders
video and how they work so I will be able to render the video in its best quality.

My project will be broken down into tasks that would be completed in week deadlines
and every month will be the milestones as I expect to have improved the software
significantly as there is very little time for the project. I will be making a planner and
how much time would be needed to successfully make the project. I will also give
myself some leeway as problems can arise. I will be making sure the core
functionalities will be included and then add additional functionalities at the end if I
have the time. An example of this could be rendering the video in a lower quality to
fasten the process of rendering.

Technical Details
 The technical side of this project would be the rendering of the video and the
synchronisation of audio and subtitles. I will have to make an algorithm that repeats
of taking the transcription matching the show time of the substiles until the video has
ended.

I will have to learn how to incorporate the audio to transcription and translation API. I
would need to read up on the documents on how to use them effectively in the
program.

I would also need to learn how to make SRT files the file that is used to put subtitles
on top of videos.

I would also need to make a user interface that is easy for the user to read and use.

The closest example of replication would be Youtube’s CC functionality feature with
their videos.

Project Plan
 January:

Week 1: Familiarize myself with the FFmpeg codebase and build system set up
development environment, begin work on adding subtitles feature

Week 2: Continue work on adding subtitles feature

Week 3: Continue work on adding subtitles feature, start researching and learning
about Google API for audio transcription and translation

49

Week 4: Continue work on adding subtitles feature, continue learning about Google
API

February:

Week 1: Finish implementing the subtitles feature, start integrating the Google API
for audio transcription and translation

Week 2: Continue integrating the Google API for audio transcription and translation

Week 3: Test and debug the audio transcription and translation functionality

Week 4: Continue testing and debugging the audio transcription and translation
functionality

March:

Week 1: Continue testing and debugging the audio transcription and translation
functionality

Week 2: Begin work on rendering the video with added subtitles and
transcription/translation functionality

Week 3: Test and debug the rendering feature

Week 4: Continue testing and debugging the rendering feature, finalize project

This revised plan includes a total of 192 hours of work over the course of 3 months
with 8 hours of work per day and 1 day off per week.

Testing
The test I will be doing is making a video of myself and put it through the software. I
would test for the transcription file being made so I can compare what I said
compared to the file it has been made.

The second test I will make is to see the video format it has produced and see if the
video is the same as it was rendered through the program.

The third test I will do will be making sure the program is able to take the transcribed
file and seeing if subtitles match according to the video.

The tests following the key tests I have mentioned will be refining the software to
make sure it will run as smoothly as possible without and any problems.

Github repo:
https://github.com/LloydPortes2/FYP-Subtitilizer

50

Project proposal

National College of Ireland

Project Proposal
BSHC in Computing project

21/10/2022

Subtitlizer
Software Development

2022
Lloyd Portes
19509219

X19509219@student.ncirl.ie

51

Contents
1.0 Objectives .. 47

2.0 Background ... 47

3.0 State of the Art .. 47

4.0 Data ... 47

5.0 Methodology & Analysis .. 48

6.0 Technical Details ... 48

7.0 Project Plan ... 48

3.0 Objectives
The core feature of the software will be able to take any video and be able to place
subtitles on top of the video. The user will be asked what language the video is

52

spoken in then asked what language they would like the subtitles to be in. The user
is asked for the language because some languages sound the same depending on
who is speaking. This is also done to make sure the accuracy of the transcript is at
its highest. The transcript will then be made into a subtilties file so the program will
be able to read and place the words on top of the video.

The user will have an UI where they can change the settings of the languages. At the
minimum the software will render the video in it’s original sizing of width and height.
The user will be able to change the font font size colour of the font and the font

4.0 Background
I will be using Google’s API where they are able to take any audio and transcribe
them. Afterwards they will be put through Google’s translate. After they have been
translated the software will make sure the subtitles come at the same time when a
person is speaking and then end after the person speaking is done. It will repeat this
process until the video is done.

I am also using an open-source software that renders the videos

I chose this project because I watch anime from different websites and only saw
most websites transcribing and placing subtitles in videos usually in only in English. I
thought that other users might want to be able to read in other languages such as
French Spanish, Mandarin, etc.

5.0 State of the Art
When thinking of this idea, no company has done this before, until recently where Microsoft has
released very similar functionality, where you place a video into the program and it would transcribe
for you. There are also a couple of programs where they do the same thing as Microsoft. The
difference that I will be doing is that I will be able to download directly from the website using the
software and be able to transcribe, change the language of the transcription then place the subtitles
into the video.

6.0 Data
The data that will be required is Google’s api audio to transcription. I will be linking that to the software
so that a transcription will be made. The audio will be listened to by Google’s api, then using google
translate, another api, the user will be able to choose the language that is offered by Google.

The video that will be used for transcription can be pulled online or the user will be able to transcribe
any video that is fed through the software.

The software will use the user’s cpu to compute and render the video and subtitles. Having a stronger
computer will render videos faster.

7.0 Methodology & Analysis
As this project is for personal use as of writing this proposal, I will use the waterfall method. If I
choose to publish this software, I will then swap to the agile methodology as I will require users to pay
for this service. I will look at other software that renders video and how they work so I will be able to
render the video in its best quality.

53

My project will be broken down into tasks that would be completed in week deadlines and every
month will be the milestones as I expect to have improved the software significantly as there is very
little time for the project. I will be making a planner and how much time would be needed to
successfully make the project. I will also give myself some leeway as problems can arise. I will be
making sure the core functionalities will be included and then add additional functionalities at the end
if I have the time. An example of this could be rendering the video in a lower quality to fasten the
process of rendering.

8.0 Technical Details
 The technical side of this project would be the rendering of the video and the synchronisation of
audio and subtitles. I will have to make an algorithm that repeats of taking the transcription, matching
the show time of the substiles until the video has ended.

I will have to learn how to incorporate the audio to transcription and translation api. I would need to
read up on the documents on how to use them effectively in the program.

I would also need to learn how to make SRT files, the file that is used to put subtitles on top of videos.

I would also need to make a user interface that is easy for the user to read and use.

The closest example of replication would be Youtube’s CC functionality feature with their videos.

9.0 Project Plan
The first thing I would do is understand the APIs that I would be using and how they
work and what their capabilities and limitations are. I would be giving myself a week

The next plan is giving myself two weeks to create just a UI without any functionality
on FFMpeg. I would first create a wire diagram on how the software will look like.
Then try to make.

I would then give myself a month on to implament. the basic functionality of adding
the libraires to have the program working.

Then the API implementation from google where it will take the audio then transcribe
it. I will make google translate the file to what the user wanted. Then make sure it is
a file that can be read by FFMpeg.

Another month on how to have that file be synced to the video.

Then give myself a month to make sure the project is thoroughly done and make
sure nothing is missing, this also gives me leeway if something from the project took
longer then I anticipated to complete it.

10.0 Testing
Describe how you will evaluate the system with real technical data using system
tests, integration tests etc. If applicable describe how you will evaluate the system
with an end user. (be careful here re Ethics etc)

The test I will be doing is making a video of myself and put it through the software. I
would test for the transcription file being made so I can compare what I said
compared to the file it has been made.

The second test I will make is to see the video format it has produced and see if the
video is the same as it was rendered through the program.

54

The third test I will do will be making sure the program is able to take the transcribed
file and seeing if subtitles match according to the video.

The tests following the key tests I have mentioned will be refining the software to
make sure it will run as smoothly as possible without and any problems.

55

Reflective Journal
Supervision & Reflection Template

Student Name Lloyd Portes
Student Number X19509219
Course BSHCSD4
Supervisor Lisa Murhpy

Month: October

What?
Reflect on what has happened in your project this month?
I looked at my project comment for my video project proposal. It was said that I might be doing too
much by making into an extension. I have concluded that I would need to do it as a software because
I feel that the cpu would not be used properly.

So What?
Consider what that meant for your project progress. What were your successes? What challenges
still remain?
I found an open source library for rendering software. I would create an UI so it would be able to
utilize the important features such as rendering and implementing. This would force to use the cpu
for rendering. Extensions only use ram and not cpu usage.

Now What?
What can you do to address outstanding challenges?
By creating a UI and using it’s libraries, it would be easier to create the my project.

Student Signature Lloyd Portes

Supervision & Reflection Template

Student Name Lloyd Portes
Student Number X19509219
Course BSHCSD4
Supervisor Lisa Murhpy

Month: November

56

What?
Reflect on what has happened in your project this month?
I have talked to Lisa my supervisor about my project on the 29th of November. I have asked what she
thought of my thought process and how I want to handle it.

So What?
Consider what that meant for your project progress. What were your successes? What challenges
still remain?
I will continue with my plan of making a software but not deploy it as an extension for google chrome.
I still need to create the GUI and learn how the software command functions to implement into the
GUI alongside the API needed for my core features.

Now What?
What can you do to address outstanding challenges?
Reading the documentation available online made by google for the API and

Student Signature Lloyd Portes

Supervision & Reflection Template

Student Name Lloyd Portes
Student Number X19509219
Course BSHCSD4
Supervisor Lisa Murhpy

Month: December

What?
Reflect on what has happened in your project this month?
I now have a GUI for how I want my software to work. The user can now select a video file from their
windows explorer. The chosen file will now display the file location on to a text bar.

So What?
Consider what that meant for your project progress. What were your successes? What challenges
still remain?
This is a small stepping stone for me as I know have a layout. Having the user be allowed to select
a file took more time than I was anticipating but have completed none the less. I now need to render
a video, then attach Google’s APIs

Now What?

57

What can you do to address outstanding challenges?
I will now need to read documentation for how FFmpeg can render a video and how to call Google’s
API and attach it to my code.

Student Signature Lloyd Portes

Supervision & Reflection Template

Student Name Lloyd Portes
Student Number X19509219
Course BSHCSD4
Supervisor Lisa Murhpy

Month: Janurary

What?
Reflect on what has happened in your project this month?
I am currently working on rendering the video. As of this month, I’m trying to get frames from the
video to output into a new video of itself.
I have also installed openGL into the software so I am able to render the video

So What?
Consider what that meant for your project progress. What were your successes? What challenges
still remain?
I feel I am a quarter of the way to getting videos rendered. Was not a complete success but still
working on making sure video and audio streams are separated to be manipulated.

Now What?
What can you do to address outstanding challenges?
Need to read more documentation on how to solve these problems.

Student Signature Lloyd Portes

Supervision & Reflection Template

Student Name Lloyd Portes
Student Number X19509219
Course BSHCSD4
Supervisor Lisa Murhpy

Month: Feburary

58

What?
Reflect on what has happened in your project this month?
I have made tests so that I am able to see if my packets are being rendered, currently they are not.

So What?
Consider what that meant for your project progress. What were your successes? What challenges
still remain?
The videos are getting errors with the stream of my videos. My program is outputting that the video
streams are giving an invalid NAL unit size.

Now What?
What can you do to address outstanding challenges?
I need to debug and read more documentation

Student Signature Lloyd Portes

Supervision & Reflection Template

Student Name Lloyd Portes
Student Number X19509219
Course BSHCSD4
Supervisor Lisa Murhpy

Month: March

What?
Reflect on what has happened in your project this month?
I have not done anything due to other assignments

So What?
Consider what that meant for your project progress. What were your successes? What challenges
still remain?
I have not done anything due to other assignments

Now What?
What can you do to address outstanding challenges?
I have not done anything due to other assignments

59

Student Signature Lloyd Portes

Supervision & Reflection Template

Student Name Lloyd Portes
Student Number X19509219
Course BSHCSD4
Supervisor Lisa Murhpy

Month: April

What?
Reflect on what has happened in your project this month?
I am behind and trying to get my project done

So What?
Consider what that meant for your project progress. What were your successes? What challenges
still remain?
I am able to output one static image of colour. Everything else still remains.

Now What?
What can you do to address outstanding challenges?
Do more work.

Student Signature Lloyd Portes

	Executive Summary
	1.0 Introduction
	1.1. Background
	1.2. Aims
	1.3. Technology
	1.4. Structure

	2.0 System
	2.1. Requirements
	2.1.1. Functional Requirements
	2.1.1.1. Use Case Diagram
	Requirement 1: Input Video
	Description & Priority
	Use Case
	Requirement 2: Input Language
	Description & Priority
	Use Case
	Requirement 3: Output Language
	Description & Priority
	Use Case
	Requirement 4: Export Video
	Description & Priority
	Use Case
	2.1.2. Data Requirements
	2.1.3. User Requirements
	2.1.4. Environmental Requirements
	2.1.5. Usability Requirements
	2.2. Design & Architecture
	2.3. Implementation
	2.3.1 Code with GUI
	2.3.2 Code without GUI
	2.3.2.1 video_reader.cpp
	2.3.2.2 video_reader.cpp
	2.3.2.3 main.cpp

	2.4. Graphical User Interface (GUI)
	2.5. Testing

	3.0 Conclusion
	4.0 Further Development or Research
	Appendices
	Objectives
	Background
	State of the Art
	Data
	Methodology & Analysis
	Technical Details
	Project Plan
	Testing
	Github repo: https://github.com/LloydPortes2/FYP-Subtitilizer

	Project proposal
	3.0 Objectives
	4.0 Background
	5.0 State of the Art
	6.0 Data
	7.0 Methodology & Analysis
	8.0 Technical Details
	9.0 Project Plan
	10.0 Testing
	Reflective Journal

