National
College of
[reland

National College of Ireland

BSHC Computing
Software Development
2022/2023
Eoghan Feighery
x19413886
x19413886@student.ncirl.ie

MedsUpApp

Technical Report

Contents

N CTo AV U 0o V0 0 F=1 o 2 U U
1.0 INEFOAUCTION ..ot s e b e st e s b e e sbe e e smeeesaneeeneeas
00 S - Tl <€ 01U o Vo USRI
00 | o 4T PP T PP PP PP
0 TR = Tol 1 Vo] oY -V USSRt
L4, SEFUCKUIE ettt et e s e e st e e s sene e e e s sne e e e senneeeesnee
2.0 I3 =] PRt
0t O 1= o [81 =Y o 0= 3PPt
2.1.1. FUNCLIONAl REQUITEMENTSeeiiiei ettt e e et e e s rate e e s sbte e e e sbaeeesensaeeesans
2.1.1.1. USE CaSE DIaBIam ..ttt ba ettt bt e ettt et et te et aaaaeaeaeaae 12
2.1.1.2. Requirement 1: User REGISTrationccccuuuuuieiiiiiiiiiiiiieiiieirieiererseeeeeeeeeeereeeeseeeeeeeeseeee 12
2.1.1.3. DESCriPtioN & Priority ... i ee e e be e reeereeeessessanenenenrnnns 12
2.1.1.4. USE CaSE ST ittt e 12
2.1.1.2.1 DeSCription & Priority.ccccecceieiieieiiiiiiiieee e sttt ee e s ettt e e e e s s s serre e e e e e s ssssbnnaeeeesssnnnns 14
2.1.1.3.2 USE CASE S2 ..ttt e 14
2.1.1.3.1 DeSCription & Priority..ccccccciiieieieiiiiiiiiee e e e ccrte e e e e e screre e e e s s e e ssanee e e e e e e s ssnbraneeeeesennnns 16
2.1.1.3.2 USE CASE S3 ..ottt e e e e s naee 16
2.1.1.4.1 DeSCription & PriOority.cccicecciiiieieiiiiiciiiieeee ettt e e e st e e e e s s s sebrae e e e e s s ssnbrbeeeeesssssnnns 18
2.1.1.3.2 USE CASE SA ...ttt e 18
2.1.1.5.1 DeSCription & Priority.cciicccciiiieiieeiiiiiiieeee e sssiitiee e e s e e ssirree e e e s s s ssaaaeeeeeeesssnnnnneeaeessnnnnns 20
2.1.1.3.2 USE CASE S5 ..ttt e e s 20
2.1.1 (D) I (=T LU T = 0 01T o) RSP 22
2.1.2 UL =T o 2= To (U1 =T g L= o) KPP PPPPPPRt 22
2.1.3 Environmental REQUINEMENTSccuvviiiiiiiie ettt et e e e vae e e s arae e e e atee e e nneeas 22
2.1.4 Usability REQUIFEMENTS e e e e e e e e e s e e aaaneee e e e e snnnnnnns 22
2.2 DESIZN & ArChITECIUIE .o e e e st e e e e s e nerreeeee s 23
2.3 TaaY o] (=T 0 V=] o = 1 Lo o ISR 25
2.4 Graphical User INterface (GUI)couee ettt e stte e te e svae e aee e aae e sreeeaae e 47
2.5 B =T V= T T P TP 62
2.6 EVAIUGTION e s as 71
K I o] Tol (V1Y [o[- TP PP PV 73
4 Further Development OF RESEAICIuiiiiii ittt e e e e e e erre e e e e e e e s rabrraeeeaeeeeas 74
LT 0= T =Y o ol TSRS 74
I Y oo 1= o [ol PSSR 75

6.1 oY T=Tor e o] o Yo 171 SRR 75

6.2 Y LTt VLI Lo 1O 2 =1 76

Executive Summary
The purpose of the report is to detail how the MedsUp application will work in terms of
functionality, data saves and what requirements | set out to achieve.

The app is designed to cater to the general public, elderly people who may struggle with
remembering when to take their medication, parents who may want to help keep track for
their kids’ medicine. It can even be used by young and middle-aged adults who are
swamped with work and other life commitments and may forget about their medication
(varies on the person) requirements.

1.0 Introduction

1.1. Background

| chose to create the application because since we’ve reached the end of the Covid-19
pandemic, we’ve all gotten somewhat weary about our state of health and that can even
be extended to elderly relatives and to the younger set.

And now that everyone is back in school/work and/or college, we can be so caught up in
that busy mindset and for anyone with prescribed medication, it can be easy to forget
about when we need to take them.

On top of that, while there are many medical reminder applications, very few of them
have the option to scan prescriptions to get the desired text needed and add it to a
calendar.

As such, my application sets out to address these two concerns so that users and their
relatives can be informed with one another about when they follow through with their
medication.

For example, Medisafe Pill & Med Reminder (Google Play, 2023) has features such as
medicine trackers and reminders for refills and health measurement and medicine
trackers. It even contains a manager and calendar system for doctor appointments. It
does contain a lot of features and does have a medication reminder functionality, but it
doesn’t seem to mention any microphone recorder options for the reminder.
MyTherapy Pill Reminder (MyTherapy, 2023) is similar to Medisafe, except the former
has a health journal for a user’s doses, tablets and state of mind which also contributes
to a pill diary for taking necessary doses.

CareZone (Medicare.org, 2023) is a multi-user app that lets families handle medications
and appointments with pill reminders and an incrementor for taken doses plus a camera
function to import details regarding a prescription. Family members can co-ordinate
with each other especially in an emergency. MangoHealth takes the concept of
managing healthcare and medication rounds and makes it more fun. MangoHealth
(Treichler, 2022) lets users organise a schedule with medication reminders and health

habit customisation options. On top of that, the app records medication data so users
can see how a medication can coincide with other medications and food items. Finally, it
has a note taker for tracker user medication progress and results whilst also letting them
share the information with their GP along with a reward system.

From these 4 examples, while the idea of a medication reminder isn’t the most original
one, it did help me to confirm that a speech-to-text recogniser hasn’t been attempted as
frequently compared to the features | mentioned in the other applications.

1.2. Aims

One aim of my project is to create a text recogniser functionality for the application that
can find text from prescriptions and medication box information. Users can activate a
microphone and say out loud their medication instructions to theoretically produce the
desired text they need. Next, a button will also copy the details and adds them to the
clipboard.

Another aim would be to save user details when they register an account to a user
profile that can display various details such as gender (if they feel comfortable in doing
so) age, and email address. Plus, | also plan to let users add contacts so that an email or
a text message can be sent to a contact through their own pages. | also plan to allow
users to save medication instructions and any medical diagnosis via the CRUD
methodology.

Finally, yet another aim is to allow the ability to feature a reminder of medication details
to a calendar interface that can let users set a title, detail, and time for when the
reminder goes. One option would be to use an API for Google Calendar that can support
this functionality or use Android Intent to allow users to add the reminder to their
Google Calendar.

1.3. Technology

One technology that I've set out to use is Android Studio alongside with Java. After some
issues with trying to use lonic and React for my application, | decided to stick to a
technology that | had more familiarity with. Since I've studied with Java the most ever
since my PLC course, it made the most sense to go with that instead.

To use Android Studio, | need to create the layout for the app’s pages that can provide
the structure for where the features will be placed, and the code needed to implement
the functionalities outlined above. The same even rings true when developers use Kotlin.

As for the database needed to store the user accounts, contact details and medication
information, | plan on using Firebase. Firebase’s authentications offer backend services
and Ul libraries that can better authenticate users when they register for the first time.
In their official documentations (Firebase, 2023), it offers multi-factor authentication
which brings in extra security. Additionally, its Realtime Database can be stored locally
and synchronised for any data changes even when offline. Meanwhile, the Cloud
FireStore database offers quicker query speeds and better scaling.

1.4, Structure
If MedsUp could be split into stages, it would be the following:

The first one will be centered around the maintenance and the operations of the app
itself, user authentication and creation, adding contact details, saving medication-based
text results, and connecting to Firebase databases to store all the aforementioned
information.

The app’s pages will go like this:

1) Home page

2) Notification creator page

3) Speech to text Recognition page
4) Contact Page

5) Medication page

6) User Profile

The second module is responsible for the text recognition functionality via speech to
text transcription technology. Since, this will function much like the microphone button
in Google Translate to better implement the feature so that it can allow the user to scan
the required instructions with the click of a button.

The third potential module will handle how to use the Google Calendar APIl. One option
can be to add events to a user’s Google Calendar by typing the title and description for
that reminder and setting the reminder time and duration accordingly. Another option
would be to create a CRUD feature to add events to a date chosen by a user.

2.0 System

2.1. Requirements

Security and privacy can be considered the higher priorities since users want the
reassurance that their account details and personal information will be protected and
store safely. The same rings true for practically every web-based application whether its
mobile or desktop-based.

2.1.1. Functional Requirements

The home page will offer a brief description of what the app is about and the
functionalities it provides will be displayed as buttons. Each page will also have a
button that can bring them back to the home page for easier navigation.

Home Page

Find Audio

Create Reminder

View Profile

Add Contact

Add Medication

Add Diagnosis

Figure 1: How the home page will look to the user

Upon starting up the app, you'll first see the splash screen that displays the app’s
official logo which loads into the account registration page.

User Account Registration
Full name Enter name
Age Enter age
Gender Enter sex
Email Enter email
Password Enter password
|
-
Already registered?
o |

Figure 2: Transition from the splash-screen to the register screen

The registration page (Transitioned from Figures 1 to 2) will allow users to create an
account and add their details (age, gender). It also contains a button for moving to
the login page if the user has made an account beforehand. The login page does
have similarities to the registration expect it lets registered users re-enter their
account once they made an account and return to the homepage. The additional
register button takes you back to the registration page if you haven’t made an
account beforehand (Navigation would be Figure 2 to Figure 3 and vice versa).

User Login

Email Enter email

Password Enter password

Haven't made
your account yet?

Figure 3: The overall look of the login screen and the required credentials

Clicking on the first button titled Speak Audio (Figure 4) will bring you to the Speech
to Text page (Figure 5). Here, users can click on the microphone button to activate
the speech recogniser technology to record and grab text from any audio it finds.

-
Recognise Audio
Home Page
Find Audio
) Click the
Create Reminder microphone to
get started
View Profile

\ O) Copy Text

Figure 4: Going to the Recognise Audio page from the home page.

When the microphone button is clicked, you’ll see a screen prompting to say out
loud your medication instructions. Once you do that, whatever text was found from
the audio will be shown on the box. Next to the microphone is the button that can
allow you to copy the text onto your phone’s clipboard.

Recognise Audio Recognise Audio

Found text here

¢

\ O) Copy Text

Figure 5: Clicking on the microphone will lead to this prompt where users can say their medication instructions
out loud. The recogniser technology will then produce the found text into the grey text box.

The camera page lets users use the camera feature to take a picture of a medication
box or writing and click another button to use an OCR to scan for any text (From
Figure 4 to 5).

If the user clicks the “Create a Reminder” button, they’ll be taken to the following
screen. Choosing the first button will take you to your Google Calendar where you
can paste the medication instrcutions you got from the Speech to Text page to the

Reminder from Google Calendar
will always show on the top of
the phone as it was designed

= March~ [l \
Create Reminder
® 3 14
Click on this button to s]
golinto Google Calendar
Activate G
Calendar \
Click on this button to ity v
create a notification
Make notification quertypolop
on phon:
phone asdfghjk.|I =
G zxcvbnonma@
ns . Q b

calendar reminder field and can adjust it to however long you want it to be. One
thing to note is that when you first start it out, it will ask you to sign in to your Gmail
account but luckily you’ll only have to do it once. When you save it, the reminder
should function as usual.

Clicking on the Notification Maker button will take you to a screen (Figure 6 from
image 1) where you can make a reminder with the Date Time Picker schematics
similar to the Real Time Bus App. Here, you can adjust the time for when to take
your medication by altering the time to what you want. Saving it will mean that the
alarm and notification will trigger at the designated time.

Create Reminder

Cligk on this button to
golinto Google Calendar

Activate
Calendar

Figure 6: Demonstrating how the Google Calendar Intent object will function.
Click on this button to
create a notification

g

Make notification
on phone

-

x/ Notification Maker

Figure 7: How a user can create a notification reminder to trigger at a certain time.

The contact page grants the ability to save contacts to a Firebase Realtime Database
and buttons that can let them send emails/text messages for when a user goes
through a medication. This will go from Figure 4 to Figure 7.

When the user enters the Contact List page, they should see a scrollable list of saved
contacts (if they saved one prior) and a series of buttons down below.

Clicking on the Add Contact button will bring you to a small pop-up window that can
allow you to enter a name, email address and telephone number for a contact.
Saving it will add the entry into the list view which also contains two buttons: Edit
which lets users alter any of the three fields which are then displayed when saved or
Delete which will remove the contact entry if you no longer need it.

f \ 215 sem
Contact name Add Contact Gmail x e
Contact email

Contact phone
Contact name

Save Leave Contact email

Contact phone

Both the edit contact and [~

add contact buttons will Edit Siste)
have the same visual. / =] [_D
Add contact)’n [v] awe rtyuionp
as dtigh jk I
Text Maker & zxcvbnma@
@ e @ o

Are you sure you
want to remove

\//

this entry? Email maker °
Yes No = « " @ 7
Choosing No leads back
Choosing Yes will lead to the page with no
lto the selected entry changes made.
being deleted

Figure 8: Demonstrating how a contact entry can be added to the database and how the email maker will
function in conjunction with Gmail.
Clicking on the Email Maker will take you to a page that can let you craft an email to
a contact to say that you’ve taken your medication. Once the sender, subject and the
email body is all filled in, you can click a button that can take all of these and put
onto a draft in Gmail. After sending you’ll need to exit from Gmail and go back to the
MedsUpApp using the back button. (Figure 8 from Figure 4)

If you want to send a text message instead, clicking on the button titled “Text
Maker” will bring to this page. Here, to send a text message, you’ll need to enter a
phone number and type in a message in the field below.

Then, click the Send button to send the text message which should display a
notification saying that it went through.

Text Message

To: Phone No

Message:

Insert message

here

Send SMS

Figure 9: Demonstrating the page where users can send text messages to users.

The profile page is where the user’s account details are stored and displayed to the
user. It will take the desired account information from the users table in the
database and place them in the appropriate fields. Important note is that the profile
functions on the Realtime Database while the registration and login pages work
under the Firebase Authentication schematic. Like all the other pages, there’s a
home page button for smoother navigation between pages (In Figure 10, indicated

by the red arrows).

Home Page

Find Audio
Create Reminder
View Profile

Add Contact

Add Medication

Add Diagnosis

User Profile

Full name Name field

Age Age field
Gender Sex field
Email Email ad field

N

R =

Password Password field

10

Figure 10: Transition from the home page to the User Profile. Also showcases what should happen when the
profile is viewed by the user.

Selecting the “Add Medication” button will bring you to the designated page
featuring a scrollable list of saved medication items. Clicking the add medication
button will bring you to a pop-up where you can add a name of the medication and
the instructions for them. Saving them will add the entry box onto the list and
feature two extra buttons inside. “Edit” involves editing the fields of an entry and
saving them accordingly and “Delete” will remove the entry from the list.

A}
7 L N
Add Medication

Medication name

Guidelines

Medication name

Save Leave Guidelines

Both the edit meds and Y

add meds buttons will Edit elete
have the same visual.
Add medication
Are you sure you
want to remove

this entry?

Yes No

Choosing No leads back
Choosing Yes will lead to the page with no

lto the selected entry changes made.

being deleted

Figure 11: Demonstrating the CRUD functionality in the Add Medication Page
Selecting the “Add Diagnosis” button will bring you to the designated page featuring
a scrollable list of saved medication items. Clicking the add medication button will
bring you to a pop-up where you can add any known medical diagnosis that a user
may have. Saving them will add the entry box onto the list and feature two extra
buttons inside. Edit involves editing the fields of an entry and saving them
accordingly and Delete will remove the entry from the list (A three way system in
both figures 11 and 12).

11

L
Add Diagnosis

Diagnosis name

Vv

Diagnosis name

Both the edit diagnosis \-
and add diagnosis buttons

will have the same visual.

Add diagnosis

Are you sure you
want to remove

this entry?
Choosing No leads back
Choosing Yes will lead to the page with no
to the selected entry changes made.

being deleted

Figure 12: Showcasing the CRUD functionality for any known medical diagnosis.

2.1.1.1. Use Case Diagram
2.1.1.2. Requirement 1: User Registration

2.1.1.3. Description & Priority

The use case allows users to create a new account to be given access to the app’s
functionalities and features. It's essential since it’s needed to save user details to the
Firebase database.

2.1.1.4. Use CaseS1
Scope

The scope of this use case is to offer users the ability to register a new account.

Description

This use case describes the new user registration methodology.

12

Use Case Diagram

Usar

System

Figure 13: Use Case Diagram for the User Registration and Login

Flow Description

Precondition

The system opens at the registration page
Activation

This use case starts when a user opens the app and wishes to make a new
account

Main flow

1. The user types in all the fields needed for a new account to be added to
the database
2. The system takes all of the details and adds them into a user table on
Realtime (See Al)
3. The system then moves to the Log in(See E1)
4. The User logins in with their email and password
Alternate flow

A1 : Go to the Login Page
1. The system will have the user details saved on the database

13

2. The User will click on the button that will take them to the login

page.
3. The use case continues at position 3 of the main flow

Exceptional flow

E1 : Missing Details

4. The system will recognise the missing fields and inform the user of it.

5. The User will need to fill the fields.
6. The use case continues at position 4 of the main flow

Termination
The system presents the next stage which is the home page
Post condition

The system goes into a wait state

2.1.1.2 Requirement 2: Text Recognition

2.1.1.2.1 Description & Priority
The use case allows users to create a new account to be given access to the app’s
functionalities and features. It’s essential since it’s needed to grant authorisation from
Firebase.

2.1.1.3.2 Use Case S2

Scope

The scope of this use case is to use the camera interface to take a picture and
recognise the text to produce the text results

Description
This use case describes the camera and text recognition features.

Use Case Diagram

14

User

System

Figure 14: Showcasing the text recogniser functionality.

Flow Description

Precondition

The system enters the camera page when the button is clicked.
Activation

This use case starts when a user activates the camera

Main flow

1. The system will ask for permission when the camera is used.

2. The User allows the permission grant and takes a photo of some text.

3. The system will activate the OCR to find the required text

4. The User can then either copy text to a clipboard or make edits to the text result.

15

Alternate flow

A1 : Edit Text Results
1. The system takes the user to a page with the found text to make any
edits.
2. If step 3 of the main flow succeeds, then the user will make edits for
any perceived orders from a GP.
3. The use case continues at position 4 of the main flow

Exceptional flow

E1: No Text Found
4. The system will run the text recognition technology but find no text in the
photo
5. The User will need to then choose/take a picture of text to remedy it
6. The use case continues at position 4 of the main flow

Termination

The system will save the edits to a clipboard and returns the user to the home
page.

Post condition

The system goes into a wait state

2.1.1.3 Requirement 3: Calendar

2.1.1.3.1 Description & Priority
The use case lets users interact with a calendar layout to paste in the medical
information in a chosen date and set the duration and alarm reminders which is passed
as a notification.

2.1.1.3.2 Use Case S3
Scope

The scope of this use case is to allow a user the ability to use a calendar and
enable a reminder which can display the medical information via notifications

Description
This use case describes the calendar interface.

Use Case Diagram

Figure 15: Use case diagram for how users can add reminders to the
Google Calendar

16

w

User

System|

Flow Description

Precondition

The system is in the calendar page for the current month.
Activation

This use case starts when the user will click on the Calendar button.
Main flow

The system identifies the current month and date

The User will choose a date and paste the text into the fields while setting the times
for it.

The system will save the reminder and the calendar will display it accordingly.

The User can click on the date to see the newly created reminder

17

Alternate flow

A1 : No reminders added
5. The system will display the current date without reminders
6. The User can see the default calendar view with no events added.
7. The use case continues at position 2 of the main flow

Exceptional flow

E1 : No entries filled
8. The system will remind user if they want to continue.
9. The user will choose Yes to exit.
10. The use case continues at position 4 of the main flow

Termination
The system presents the calendar view to the user
Post condition

The system goes into a wait state

2.1.1.4 Requirement 4: Adding contacts

2.1.1.4.1 Description & Priority
The use case lets users enter and save contact information onto the database once
certain specified information requirements are met. They can even edit and remove
saved contacts if they wish to do so.

2.1.1.3.2 Use Case $4
Scope

The scope of this use case is to allow a user the ability to enter details of a
potential emergency contact via the CRUD methodology (Create, Read, Update,
Delete).

Description
This use case describes the adding contacts interface.

Use Case Diagram

18

User

Figure 16: Use Case Diagram for adding contacts and sending messages and emails to
them.

Flow Description

Precondition

The system is in the Contact list page

Activation

This use case starts when a user activates the Add Contact Button

Main flow

11. The system identifies any contacts that were saved (if applicable)
12. The User will add all of the details

13. The system will save the information to the database and in the list
14. The User will be able to see newly create contacts.

19

Alternate flow

A1 : Send text/email
15. The system will let the user confirm the email to send to the contact
16. The User will allow the confirmation needed for the email.
17.The use case continues at position 3 of the main flow

Exceptional flow

E1 : No fields filled
18. The system will confirm that no edits are made to the contact
19.The user will add the details if they decide to do so
20.The use case continues at position 13 of the main flow

Termination
The system presents the updated contact list.
Post condition

The system goes into a wait state

2.1.1.5 Requirement 5: Update User Profile

2.1.1.5.1 Description & Priority
The use case is where the user profile will be created when the user creates a new
account and allow for the addition of new user details.

2.1.1.3.2 Use Case S5
Scope

The scope of this use case is to allow a user the ability to view and edit their user

profile to add any more information they want to confirm.
Description
This use case describes the user profile.

Use Case Diagram

20

User

System

DB

Figure 17: Use case diagram for the User Profile

Flow Description

Precondition

The system will be in the direction of the user profile

Activation

This use case starts when a user clicks on the Edit Profile Button.
Main flow

21. The system identifies the button click and brings the user to Edit page

22. The User will be able to make any edits to the profile variables

23. The system will check for any confirmed edits done and if so, will save it
to the database.

24. The User will be able to see their confirmed profile edits.

21

Alternate flow

A1 : No edits made
25. The system will display a message saying no edits were made.
26. The User will be directed back to the home page
27.The use case continues at position 3 of the main flow

Exceptional flow

E1 : Fields not filled in
28. The system will say that the fields must be filled in
29.The user will add in the details needed to confirm the edits
30.The use case continues at position 4 of the main flow

Termination
The system presents the newly edited profile to the user.
Post condition
The system goes into a wait state
List further functional requirements here, using the same structure as for Requirement1.

2.1.1 Data Requirements

To save user accounts, contact details and medical tables, users will need to enter data for
certain fields so that the Realtime Database can be able to save the data for the
aforementioned tables. This is also essential since there will be instances where stored data
will be retrieved for any updates to the user profile and/or the contact information.

On top of that, for the login schematics, the email and password for each user is stored in
order to allow post-registered users to enter back into the application’s home page. The two
fields are also enhanced with a Firebase Authentication schematic to help ensure secure
information storage.

2.1.2 User Requirements

When a person uses the application on their phone, they will need a page that can let them
register their account by entering their email and password and personal details.
Incidentally, users will also require a home page to clearly specify what the app is all about
and what functions it will provide. Each service page will have simple instructions on how
users can navigate through each functionality.

2.1.3 Environmental Requirements

2.1.4 Usability Requirements

22

2.2 Design & Architecture
The Architecture Diagram centers around 3 tiers.

LA
Uier Uier Uier

Registration and/or Login Procass

e

Checking the
User table

If user is saved.f'exists\

—
+)
User taje in Firepase
Checks for

User Profile
user

Save changes

Returns E)ack if false

Email/Text

Click Google Calendar

N\

Initialise text
message/email

Produce
found text

Save text to
clipboard

Set
notification

Set calendar

reminder
Add
Diagnosis/Medication/Contact
Edit Profile
_ Se-_lve ent_ry
(Diagnosis/ -

& ntialise entries— Medication/ {gi{gﬁggi
Contact '
+) ontact) Medication/

Contact

Contact/Diagnodjs/Medication tables ontact)

Remove entry
(Diagnosis/
Medication/

Contact)

Figure 18: Architecture diagram demonstration processes and actions within each page of the
application

When the user registers a new account in the system, the database will take the user
account details and save them to a table within the Realtime database. A Firebase
authentication object is used to help add a layer of security to the user object. Then, when a
user wishes to view their profile, the Realtime database will find the right user entry using a
designated ID to ensure the user is found easily. Then the account details will be stored in
the correct parameters.

Here, the CRUD functionalities are identical for adding contact, medication information and
diagnoses. When a user fills in the required information parameters then the database will

add them to their respective tables. If an entry has been updated, then the database will be
able to adjust to the changes using an id to ensure that the chosen data entry will match up

23

with what’s inside the table. The same logic will also apply for when a data entry is removed
as the database will use an id to find the entry that will be removed from the table.

For the speech to text recogniser, the user will click on the microphone causing the system
to display the prompt which allows for audio to be recorded. Once the text has been found,
the system should in theory, display the acquired text to the user allowing them to edit it to
how they see fit.

For the email and calendar schematics, the user will click on the respective buttons which
will trigger the system to bring to Gmail/Google Calendar where the user can fill in the
required fields (email address, subject and content for an email and frequency and dates for
a calendar event).

As for the notification maker, the user will save a title and a designated time for an alarm to
trigger. The system should save the notification and activate it when the assigned time is
reached (e.g. the alarm will go off at 4:15pm today).

For the class diagram, there’s around 7 tables in total. Initially, | planned to have a calendar
table but after some reflection, | realised that it seemed a little arbitrary to have. This is also
because it’s possible to make a recreation of Google Calendar and its reminder systems or
even using an API for the former to work.

Users . Health Conditions
PK | user_id int NOT NULL PK | h_id int NOT NULL
] Contacts .
email_address FK1 | user_idint NOT NULL
PK | con_id int NOT NULL i
password e h_detail
FK1 | user_id
age
con_name
gender
con_email
con_phone
1
User-Med 1 1
K User-Contact .
user_id Medication
) user_id .
med_id PK | med_id
con_id

med_name
med_instructions

med_dosages

med_duration

med_sideEffects

Dosage_User

m_id
m_dosage

m_sideEffects

Figure 19: Class diagram for MedsUpApp

24

2.3

Implementation
As mentioned previously, my initial plan was to use lonic to develop my application.
Unfortunately, during my research and practice, | had some struggles with trying to
make the database storage and the text recognition work for me. After a few discussions
with my supervisor, | decided to stick to Android Studio and Java as the latter is the one
programming language that | have studied the most. In a somewhat similar vein in terms
of databases, | initially decided using Realtime Firebase for saving CRUD data but after
some difficulty with preventing saved data entries from bleeding in user sessions, | went
with FireStore since there was more tutorials that covered saving CRUD data via user
IDs.

Below are several code snippets with comments that specify what goes on in each code
line:

Profile.java:

ha A » reference will he cp . the llegpe +ahle in the dn e
e da e e ce wi be set To the Users Le 1n The database

databaseReference = FirebaseDatabase.getInstance().getReference(path: "Users");

/f Th ent user will b

n nlieed intn +thie T
nitiolised into this ID

userID = firebaseUser.getUid();

// These TextWiews

y be used to help place the a into the right
final TextView greetings = (TextView) findViewById(R.id.message);
final TextView fullnameV = (TextView) findViewById(R.id.fullName);
final TextView emailV = (TextView) findViewById(R.id.emailAddress);
final TextView passwordV = (TextView) findViewById(R.id.userPassword)
final Textview ageV = (TextView) findviewById(R.id.age);
final TextView genderV = (TextView) findviewById(R.id.gender);
/ The database re will vse the vser ID as a child variable to find the right use

Efeighery
databaseReference.child(userID).addListenerForSingleValueEvent(new ValueEventListener() {
2 usages Efeighen,

@override
public void onDataChange(@NonNull DataSnapshot snapshot) {
/ The instantioble claoss will be made inte an ect for getting the Data Sn

User userPro = snapshot.getValue(User.class);

/ If the user does ex

.
i

[
—+
T

if (userPro != null) {
String fullName = userPro.name;
String email = userPro.email;
String age = userPro.age;
String gender = wserPro.sex;
String pwd = userPro.password;

hen the TextWiews will he Filled to oor e nrofile credentials and displou them to the usep
hen the TextViews will be filled to cor profile credentials and display them to the user

greetings.setText("Welcome " + fullName +
fullnameV.setText(fullName)
emailV.setText(email);

ageV.setText(age);
genderV.setText(gender);
passwordV.setText(pwd);

Figure 20: Demonstrating how a profile is created for a user.

25

private void showProfileData(FirebaseUser firebaseUser){
// The UserID is token from the actuol user entry

String vserID = firebaseUser.getUid();

// This line extrocts the user reference from the Users table

DatabaseReference reference = FirebaseDatabase.getInstance().getReference(psth: "Users");

/{ The child reference will be the userID and helps to enter the detoils in the correct field
Efeighery

reference.child(userID).addListenerForSinglevalueEvent(new ValueEventListener() {

2 usages Efeighery

@override

public void onDataChange(@NonNull DataSnapshot snapshot) {

// The snapshot will be the vuser table entry and will be colled aos an object of the instantiable cl

User user = snapshot.getValue(User.class)
// If the user object isn't null, the profile will then contoin the dota for said user
if(user !'= null){

userName = user.name;

userAge = user.age;

userGender = user.sex;

userEmail = user.email;

userP d = user.p d;

/f This is then odded into the EditText field segments
editName.setText(userName);

editAge.setText(userAge);
editGender.setText(userGender);
editEmail.setText(userEmail);

editPassword.setText (userPassword);

F
else{

// Otherwise this error will show

Toast.mokeText(context: EditProfile.this, text "Ran into errors", Toast.LENGTH_SHORT).show();
F

a
a

(User. java)

Figure 21: Demonstrating how a profile can be shown to a user.

26

EditProfile.java:

// An object of the User closs is used to initiolise the variables needed for the profile updotes to be confirmable

User userObj = new User(name, age, gender, email, password);

// The Firebase Dotabase Table for Users is colled in with o Reference variables

DatabaseReference profileEdits = FirebaseDatabase.getInstance().getReference(path: "Users");

// The firebaseUser object is vsed so that the userID can be tracked to the right table entry

String userID = firebaseUser.getUid();

// The User object class is set os a value to the Database Reference which helps to confirm profile edits
Efeighery
profileEdits.child(userID).setValue(user0Obj).addOnCompleteListener(new OnCompletelistener<Void=() {
Efeighery
@override
public void onComplete(@NonNull Task<Void> task) {
if(task.isSuccessful()){

UserProfileChangeRequest profileUpHauler = new UserProfileChangeReguest.Builder().
setDisplayName(String.vaolueOf(messageBox)).build();

A request thot can update user profiles ond will disploy the username

/{ The firebaseUser object will then the profile with the ChangeRequest varigble
firebaseUser.updateProfile(profileUpHauler);
Toast.mokeText(context: EditProfile.this, text "Update to profile complete", Toast.LENGTH_LONG).show();

// Once the changes are confirmed, the Intent object will return to the moin Profile page from EditProfile
Intent in = new Intent(packageContext EditProfile.this, Profile.class);
in.setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP | Intent.FLAG_ACTIVITY_CLEAR_TASK | Intent.FLAG_ACTIVITY_NEW_TASK);

startActivity(in);
finish();

databaseReference = FirebaseDatabase.getInstance().getReference(path: "Users");

// If the fields ore empty, these messages will inform them to odd something inside
// This opplies to all parts from lines 137 to 168
if(TextUtils.isEmpty(userName))d{
Toast.mokeText(context: this, text “Can't be empty!", Toast.LENGTH_SHORT).show();
editMame.setError("Name is NEEDED!");
editName.reguestFocus();
return;
}
else if(TextUtils.isEmpty(userAge))q{
Toast.mokeText(context: this, text “Can't be empty!", Toast.LENGTH_SHORT).show();
editAge.setError("Age is NEEDED!");
editAge.requestFocus();
return;
I
else if(TextUtils.isEmpty(userGender))d{
Toast.mokeText(context: this, text “Can't be empty!", Toast.LENGTH_SHORT).show();
editGender._setError("Something is NEEDED!");
editGender.requestFocus();
return;

then

27

// If the Button is clicked either one of these statements will trigge
Efeighery
saveChanges.setOnClickListener(new View.OnClickListener() {
Efeighery
@override
public void onClick(View v) {
// If there were any changes made in these 5 Boolean methods, then the changes will be saved to that table entry
if(isNameChanged() || isAgeChanged() || isSexChanged() || isEmailChanged() || isPasswordChanged()){
Toast.mokeText(context: EditProfile.this, text "Changes saved", Toast.LENGTH_SHORT).show();
}
// Otherwise, if no changes were mode this notificaotion will show Instead
elsed
Toast.mokeText(context: EditProfile.this, tet "Nothing altered”, Toast.LENGTH_SHORT).show();

1

Figure 22: How the Profile changes are confirmed to the user and how they’re added to the profile.
See screenshots above.

usage = Efeighery
public boolean isPasswordChanged(){
// If the password matches what's in the text field, then the database will call on the child variable and replace the current entry to place in the newer change
if(userPWD.equals(editPassword.getText().toString())){
databaseReference.child(userPWD).child(pzthString: "password").setValue (editPassword.getText().toString());

userPliD = editPassword.getText().toString();
return true;
F
// Otherwise, this will be returned as folse
else{
return false;

// This particulor dota method will be used to call on the database table entry for a certain user
Tusage * Efeighery
public veid showData(){

Intent intent = getIntent();

// Using

userName

ntent object, it calls on the entry

ntent.getStringExtra(name: "name");
userAge = intent.getStringExtra(name "age");
userSex = intent.getStringExtra(name "sex");
userEmail = intent.getStringExtra(name "email");
userPWD = intent.getStringExtra(name "password");

editName.setText(userName);
editAge.setText(userAge);
editSex.setText(userSex);
editEmail.setText(userEmail);
editPassword.setText(userPUD);

Figure 23: Acquiring data from the user table and how a profile field can be checked
for any changes.

28

SpeechToText.java:

// This is where the recogniser function will work

microphoneBtn.setOnClickListener(v -> {

// An Intent object will be used within o constant that helps with recognising text from recorded audio

Intent in = new Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEECH);

// Here, o designoted speech model is vsed to help fine tune the audio results

in.putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL, RecognizerIntent.LANGUAGE_MODEL_FREE_FORM);

// Then, the found text will be set to English
in.putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL, Locale.getDefault());

// This shows the user when they should speak into the microphone
in.putExtra(RecognizerIntent.EXTRA_PROMPT, walue: "Read out your medication/prescription instructions");
// A try catch method is used for finding the text in the recorded oudio and displaying them to the user
try{
stapttetivityForRecutt(in, RecordRequestedAudioCode);
+
// If an error occurs this comment will be shown
catch(Exception exe)d{
Toast.mokeText(context this, text "Exception -> "+exe.getMessage().toString(), Toast.LENGTH_SHORT).show();

+
H;
Figure 24: Showing how the microphone functions.
Efeighery
copyTextBtn.setOnClickListener(new View.OnClickListener() {
Efeighery
@override
public void onClick(View v) {
ClipboardManager clipBoard = (ClipbeardManager) getSystemService(Context.CLIPBOARD_SERVICE);
ClipData clip = ClipData.newPlainText(lsbe: "Text", textBox.getText().toString());
clipBoard.setPrimaryClip(clip);
Toast.mokeText(context: SpeechToText.this, text "Copied text to the clipboard", Toast.LENGTH_SHORT).show();
+
1
H
Efeighery
@override

protected void onActivityResult(int reguestCode, int resultCode, @Nullable Intent data) {
super.onActivityResult(requestCode, resultCode, data);

// If the request code matches up with the AvdioRequest code, then this will eccur
if(requestCode == RecordRequestedAudioCode){
if(resultCode == RESULT_OK && datal!= null)d{
// Here, an ArraylList object will be used to locote the text found in the oudio and puts them into the te

ArraylList<String= resultData = data.getStringArraylListExtra(RecognizerIntent.EXTRA_RESULTS);

textBox.setText(Objects.requireNonNull(resultData).get(0));

Figure 25: How the found text is produced and the schematics for the copy button

29

Login.java:

1 usage Efeighery

private void userLogin() {
// Here the email oddress and password of o user is taking ond used to help confirm them loggin
String email = edEmail.getText().toString().trim();
String password = edPassword.getText().toString().trim(};

into the application

[r=1

// If the emoil field is empty, this error messoge will show here
if(email.isEmpty ())4
edEmail.setError("Email is needed to log in");
edEmail.requestFocus();
return;

J// Here the emoil oddress will be checked if it

—h
—

H its into this format (xxxx@gmoil.com)
// If it doesn't, this error messoge will be shown
if(!'Patterns.EMAIL_ADDRESS.matcher(email).matches()){

edEmail.setError("Valid email is needed");

edEmail.requestFocus();

return;
}
// If the password field is empty, this error message will show here
if(password.isEmpty()){

edPassword. setError("Password is needed to log in");

edPassword.requestFocus();

return;
}
// If the password isn't 6 ch
if(password.length() < 7){
edPassword. setError("Password should be 6 characters minimum");
edPassword.requestFocus();

return;

Figure 26: The fact checkers for user login schematics.

// Using the auth object, this will check if o user does exist in the Firebase table using the password and emagil as fact
Efeighery
auth.signInWithEmailAndPassword(email, password).addOnCompleteListener(new OnCompletelistener<AuthResult=() {
Efeighery
@0verride
public void onComplete(@NonNull Task<AuthResult= task) {
if(task.isSuccessful())d{
// The current user is acquired by the authorisation object to verify it
FirebaseUser firebaseUser = FirebaseAuth.getInstance().getCurrentUser()
// If the email for that user, then they'll be logged back in

if(firebaseUser.isEmailVerified()){

Intent intent = new Intent(packageContext: Login.this, MainActivity.class)
startActivity(intent);
Toast.mokeText(context: Login.this, text: "Welcome", Toast.LENGTH_SHORT).show();

}
else{

Intent intent = new Intent(packageContext: Login.this, MainActivity.class)

startActivity(intent);

Toast.mokeText(context: Login.this, text: "Welcome", Toast.LENGTH_SHORT).show();

// firebaseUser.sendEmoilVerification();

// Toost.mokeText(Log.this, "Check emoil for account verification”, Toast.LENGTH_SHORT).show();
s

Figure 27: Adding authorisation for a user logging in.

30

AddReminder.java:

i

// This 1s used to direct users to their Google AddReminder, where they con toke their copied
// as well

as the time that they want to set the reminder to and the frequency
1 usage Efeighery
public void AddCalendarReminder(View view)d{

java.util.Calendar calendarReminder = java.util.Calendar.getInstance();

// An instance of the AddReminder model is declared to allow for navigation to Google Add
// They would need to sign in with their Gmoil occounts, but they only have to do

Intent in = new Intent(Intent.ACTION_EDIT);

// An intent object is used to set the type as aon event
in.setType("vnd.android.cursor.item/event"”);

// The current start and end time is grabbed from the AddReminder iInstance while the rulg
// This means how often or rare a reminder or event will be used, in this case, doily meq
in.putExtra(name “startTime", calendarReminder.getTimeInMillis());

in.putExtra(name “"allDay", value false);

in.putExtra(name "rule", walue: "FREQ=DAILY");

in.putExtra(name: "endTime", wvalue calendarReminder.getTimeInMillis() + 60 * 60 # 1080);
startActivity(in);

Figure 28: Parameters for a Google Calendar event notification

EmailMaker.java:

Efeighery
sendBtn.setOnClickListener(new View.0OnClicklListener() {
Efeighery
@override
public void onClick(View v) {
String recipient = emailRec.getText().toString();
String sbj = emailSubject.getText().toString();
string messageBox = emailMessage.getText().toString();

Intent itt = new Intent(Intent.ACTION_SEND);
itt.putExtra(Intent.EXTRA_EMAIL, new String [l{recipient});
itt.putExtra(Intent.EXTRA_SUBJECT, shj);
itt.putExtra(Intent.EXTRA_TEXT, messageBox);
itt.setType("message/rfc822");

startActivity(Intent.createChooser(itt, title "Select an email address"));

1;

Figure 29: Showcasing how a formatted email is set up in Gmail.

31

TextMaker.java:

Efeighery
sendMessage.setOnClickListener(new View.OnClickListener() {
Efeighery
@0verride
public void onClick(View v) {
tryd
SmsManager sms = SmsManager.getDefoult();

sms.sendTextMessage (medNumber. getText().toString(), scAddress null, medMessage.getText().toString(), sentlntent null, deliverylntent nULL);
Toast.makeText(context: TextMaker.this, text: "Message was sent", Toast.LENGTH_LONG).show();

+

catch(Exception exce){
Toast.makeText(contect TextMaker.this, tet: "Couldn't send message. Better try again", Toast.LENGTH_LONG).show();

Figure 30: The parameters for sending a text message to a recipient.

NotificationCreator.java:

timeMaker.setoOnClickListener(new View.onClickListener() {
Efeighery
@override
public void onClick(View v) {

/ The Mot
timePicker = new MaterialTimePicker.Builder()
.setTimeFormat(TimeFormat.CLOCK_12H)

TimePicker object is set up here

1 set up to the defi

.setHour(12)
.setMinute(8)
.setTitleText("Choose Alarm Time")
Lbuild();
The TimePicker then interacts with fragments that's used in the operation

timePicker.show(getSupportFragmentManager(), tsg: "medsupapp");
Efeighery
timePicker.addOnPositiveButtonClickListener(new View.onClickListener() {
Efeighery
@verride
public void onClick(View v) {
'/ If the user sets the time thot's higher than 12, the system will register the time os o PM one (14:080pm for example
if(timePicker.getHour() > 12){
timeMaker.setText(String.format("%82d", (timePicker.getHour()-12)) +":"+ String.formet("%02d", timePicker.getMinute())+"PMN");

+
elsed
/ If the user sets the time that's lower than 12, the system register the time as a AM one 68am for example
timeMaker.setText(timePicker.getHour() +": "+timePicker.getMinute()+"AN");

/ Regardless of which time chosen, the C ote the TimePicker to the selected time the vser selected
calendar = Calendar.getInstance();

calendar.set(Calendar.HOUR_OF_DAY, timePicker.getHour());

calendar.set(Calendar.MINUTE, timePicker.getMinute());

calendar.set(Calendar.SECOND, 08);

calendar.set(Calendar .MILLISECOND, 0);

Figure 31: The methods for setting a reminder time, via the Calendar instance.

32

timeSetter.setOnClickListener(new View.OnClickListener() {
Efeighery
@verride

public void onClick(View v) {

ger object will coll on the Alarm system service

// The AlormMa ca
alarmManager = (AlarmManager) getSystemService(Context.ALARM_SERVICE);

n Intent object then calls on the Alarm Receiver and triggers the Broadcost for the alorm to work
Intent intent = new Intent(packageContext: AlarmMaker.this, AlarmReceiver.class);
pendingIntent = PendingIntent.getBroadcast(context: AlarmMaker.this, requestCode: 8, intent, FLAG_IMMUTABLE);

// The Calendar object is then called to get an Instance

calendar = Calendar.getInstance();

// The Alorm Manager object will then trigger the saved notificotion alorm to activate ot its assigned time

alarmManager.setRepeating(AlarmManager.RTC, calendar.getTimeInMillis(), AlarmManager.INTERVAL_DAY, pendingIntent);
Toast.makeText(context: AlarmMaker.this, text "Alarm confirmed", Toast.LENGTH_SHORT).show();

h;

/ The cancel button features similor code except this is where the operation for setting on alorm time is concelled if a user chooses not to make one
Efeighery
cancelTimeSetter.setOnClickListener(new View.OnClickListener() {
Efeighery
@verride
public void onClick(View v) {
Intent intent = new Intent(packageContext: AlarmMaker.this, AlarmReceiver.class);
pendingIntent = PendingIntent.getBroodcast(context AlarmMaker.this, requestCode: O, intent, FLAG_IMMUTABLE);

if(alarmManager == null){
alarmManager = (AlarmManager) getSystemService(Context.ALARM_SERVICE);
+
alarmdanager.cancel(pendingIntent);
Toast.makeText(context: AlarmMaker.this, text "Cancelled Alarm", Toast.LENGTH_SHORT).show();

Figure 32: Methods for confirming and cancelling a newly created alarm respectively.

ContactBox.java:

// This is used to help display messages

6 usages Efeighery

static void showToast(Context context, String message){
Toast.makeText(context, message, Toast.LENGTH_SHORT).show();

4 usages Efeighery
static CollectionReference getCollectionRefForContactNotes(){
// Using the Firebaselser object, this method will check for the user that's currently logged into the app.
// Then it will use the user's ID, to look for notes saved by that user in the FireStore database; this means that only the notes saved by a user
FirebaseUser firebaseUser = FirebaseAuth.getInstance().getCurrentUser();
return FirebaseFirestore.getInstance().collection(collectionPath: "Contacts").document(firebaseUser.getUid()).collection(collectionPath: "MyContactNotes");

Figure 33: The instantiable class that allows the application to collect all of the saved contact notes in their
designated database table.

33

ContactNotes.java:

void setUpRecycleView(){
// A query is used to listen inte a utility class tailor made to assist in CRUD functionalities
// The method declared in ContactBox will order the saved the notes by their titles in ascending order
Query query = ContactBox.getCollectionRefForContactNotes().orderBy(field: "title", Query.Direction.ASCENDING);

// The instantiable class is declared in a FireStore Recycler object and the declared query will be confined with

// the instantiable object to help create the RecyclerView and display the saved notes

FirestoreRecyclerOptions<ContactInfo> options = new FirestoreRecyclerOptions.Builder<ContactInfo>()
.setQuery(query, ContactInfo.class).build();

// The LayoutManager will be declared within the RecyclerView object
reVe.setlLayoutManager(new LinearlLayoutManager(context this));

// And the Adapter file will be declared with the RecycleOptions object
adapter = new ContactNoteAdapter(options, context this);

reVe.setAdapter(adapter);

Figure 34: Gathering the saved contact notes from FireStore and setting up
them in a list view.

ContactNoteAdapter.java:

Context context;

/ The Instantiable class is declared as a sort of ArrayList object in the constructor

1 usage Efeighery

public ContactNoteAdapter(@NonNull FirestoreRecyclerOptions<ContactInfo> options, Context context){
super(options);

this.context = context;

Efeighery

[i0verride

protected void onBindViewHolder(@NonNull NoteViewHolder holder, int position, @NonNull ContactInfo contactNotes) {
// With an object of the instantiable class and the NoteViewHolder, the variables are declared and set in their
holder.conTitleView.setText(contactNotes.title);

holder.conContentView.setText(contactNotes.content);

// An itemView object is used to combine the two parts of a note as one
holder.itemView.setOnClickListener(v -> {
Intent in = new Intent(context, ContactDetails.class);

in.putExtra(name: "title", contactNotes.title);

in.putExtra(name: "content", contactNotes.content);

// An ID String is used to help find a specific note (As a Snapshot of saved data)
String conDocId = this.getSnapshots().getSnapshot(position).getId();
in.putExtra(name: "conDocId", conDocId);

// The Intent object is triggered via the Context object
context.startActivity(in);

Figure 35: Setting the ViewHolder for the Adapter object for Contact Notes with an object of the instantiable
class.

34

// This is used for binding notes into the ViewHolder, with the TextViews declared and initialised accordingly
4 usages Efeighery
public class NoteViewHolder extends RecyclerView.ViewHolder{

2 usages

TextView conTitleView, conContentView;

1 usage Efeighery
public NoteViewHolder(@NonNull View itemView){
super(itemView);

conTitleView = itemView.findViewById(R.id.conNoteTitleView);
conContentView = itemView.findViewById(R.id.conNoteContentView);

// The contact note item is used for the View object to help display a note and its contents
Efeighery
@NonNull
@0verride
public NoteViewHolder onCreateViewHolder(@NonNull ViewGroup parent, int viewType) {
View view = LayoutInflater.from(parent.getContext()).inflate(R.layout.rec_con_note_item, parent, attachToRoot: false);

return new NoteViewHolder(view);

Figure 36: The ViewHolder binder and initialising the note item for Contact notes.

ContactDetails.java:

void deleteConNoteFromFireStore(){
// Once again, the FireStore database object is created and the ID object is used to find a requested note
DocumentReference documentReference;
documentReference = ContactBox.getCollectionRefForContactNotes().document(conDocId);

// This if else statement will remove the note
Efeighery
documentReference.delete().addOnCompletelistener(new OnCompleteListener<Void>() {
Efeighery
@0verride
public void onComplete(@NonNull Task<Void> task) {
// If all goes according to plan, then the note will be removed to the FireStore database
if(task.isSuccessful()){
ContactBox.showToast(context: ContactDetails.this, message: "Contact note has been deleted");
finish();

/ Otherwise, if an error happens mid-removal, this message will appear
elseq{

ContactBox.showToast(context ContactDetails.this, message: "Error has occurred!");

Figure 37: The method where a user deletes a Contact note from its FireStore Database table.

35

void saveConNoteToFireStore(ContactInfo contactsNotes){
// An object of the FireStore dotobase used for saving notes is declared here
DocumentReference documentReference;

// If the user is editing a note, the boolean flog will lead to the vutility file finding the edited 1
if(inEditMode){

documentReference = ContactBox.getCollectionRefForContactNotes().document(conDocId);
}
// Otherwise, if it's o new note, then the same will trigger but a new ID is generated if a note is 4
elseq

documentReference = ContactBox.getCollectionRefForContactNotes().document();

// Then this will trigger an if else method for saving a newly created note in FireStore
Efeighery
documentReference.set(contactsNotes).addOnCompletelistener(new OnCompletelistener<Void>() {
Efeighery
@0verride
public void onComplete(@NonNull Task<Void> task) {
// If all goes according to plan, then the note will be saved to the FireStore database
if(task.isSuccessful()){
ContactBox.showToast(context: ContactDetails.this, message: "Contact note has been added");
finish();
}
elseq
// Or if an error happens mid-save, this message will appear
ContactBox.showToast(context ContactDetails.this, message: "An error occurred");

Figure 38: The method where a user saves a Contact note to the FireStore Database table using a designated ID.

oid saveContactNote(){
// The note title and content is acquired here and used to save a new note
String contactNoteTitle = editConTitle.getText().toString();
String contactNoteContent = editConContent.getText().toString();

// If the note's title hasn't been filled in yet, this message will be triggered
if(contactNoteTitle == null || contactNoteTitle.isEmpty()){
editConTitle.setError("Title is needed to save the note");
return;

// The instantiable class is called in a new object that will contain the String variables declared up above
ContactInfo contactNotes = new ContactInfo();

contactNotes.setTitle(contactNoteTitle);

contactNotes.setContent(contactNoteContent);

// The object will also auvtomatically trigger another method to save the note to the database
saveConNoteToFireStore(contactNotes);

Figure 39: The first save note method which uses an object of the instantiable class.

36

DiagBox.java:

static void showToast(Context context, String message)q{
// This is used to help disploy messages
Toast.makeText(context, message, Toast.LENGTH_SHORT).show();

¥
4 usages Efeighery
static CollectionReference getCollectionRefForDiagnosisNotes(){
// Using the FirebaseUser aobject, this method will check for the user that's currently logged into the app.

// Then it will use the user's ID, to look for notes saved by that user in the FireStore database; this means that only the notes saved by a user
FirebaselUser firebaselUser = FirebaseAuth.getInstance().getCurrentUser();

will

return FirebaseFirestore.getInstance().collection(collectionPath: "Diagnoses").document(firebaseUser.getUid()).collection(collectionPath: "MyDiagnosisNotes™);

Figure 40: The instantiable class that allows the application to collect all of the saved diagnosis notes in their
designated database table.

DiagnosesNotes.java:

void setUpRecycleView(){
// A query is used to listen iInto a utility class tailor made to assist in CRUD functionalities
// The methed declared in CentactBox will order the saved the notes by their titles in ascending order
Query guery = DiagBox.getCollectionRefForDiagnosisNotes().orderBy(field: "title", Query.Direction.ASCENDING);

// The instantiable class is declared in a FireStore Recycler object and the declared query will be confined with

// the instantiable object to help create the RecyclerView and display the saved notes

FirestoreRecyclerOptions<DiagnosisInfo> options = new FirestoreRecyclerOptions.Builder<DiagnosisInfo>()
.setQuery(query, DiagnosisInfo.class).build();

// The LayoutManager will be declared within the RecyclerView object
reVe.setlLayoutManager(new LinearlLayoutManager(context this));

// And the Adapter file will be declared with the RecycleOptions ebject

adapter = new DiagNoteAdapter(options, context this);

reVe.setAdapter(adapter);

Figure 41: Gathering the saved diagnosis notes from FireStore and setting up them
in a list view.

37

DiagnosisDetails.java:

private void deleteDiagNoteFromFireStore() {
// The note title and content is acquired here and used to delete a new note
DocumentReference documentReference;

// Once again, the FireStore database object is created and the ID object is used to find a requested
documentReference = DiagBox.getCollectionRefForDiagnosisNotes().document(diaDocId);

Efeighery
documentReference.delete().addOnCompletelistener(new OnCompletelistener<Void=() {
Efeighery
@0verride
public void onComplete(@NonNull Task<Void> task) {
if(task.isSuccessful()){
// If all goes according to plan, then the note will be removed to the FireStore database
DiagBox.showToast(context: DiagnosisDetails.this, message: "Diagnosis note has been deleted"
finish();
}
// Otherwise, if an error happens mid-removal, this message will appear
else{
DiagBox.showToast(context: DiagnosisDetails.this, message: "Error has occurred!");

Figure 42: The method where a user deletes a Diagnosis note from its FireStore Database table.

// This is used to help save a specified note from the database

1 usage Efeighery

void saveDiagnosisNote() {
// Once again, the FireStore database object is created and the ID object is used to find a reg
String diagnosisNoteTitle = editDiagTitle.getText().toString();
String diagnosisNoteContent = editDiagContent.getText().toString();

// This if else statement will remove the note

if(diagnosisNoteTitle == null || diagnosisNoteTitle.isEmpty()){
editDiagTitle.setError("Title is needed to save the note");
return;

// The instantiable class is called in a new object that will contain the String variables dec]
DiagnosisInfo diagNotes = new DiagnosisInfo();
diagNotes.setTitle(diagnosisNoteTitle);
diaghNotes.setContent(diagnosisNoteContent);

// The object will also automatically trigger another method to save the note to the database

saveDiagnosisNoteToFireStore(diaghNotes);

Figure 43: The first save note method which uses an object of the instantiable class.

38

void saveDiagnosisNoteToFireStore(DiagnosisInfo diagNotes) {

// An object of the FireStore datobose used for saving notes is declared here
DocumentReference documentReference;

// If the user is editing a note, the boolean flag will lead to the utility file finding the edited note via
if (inEditMode) {
documentReference = DiagBox.getCollectionRefForDiagnosisNotes().document(diaDocId);
} else {
// Otherwise, if it's a new note, then the same will trigger but o new ID is generated if a note is save
documentReference = DiagBox.getCollectionRefForDiagnosisNetes().document();

// Then this will trigger an if else method for saving a newly created note in FireStore
Efeighery
documentReference.set(diagNotes).addOnCompletelistener(new OnCompletelistener<Void>() {
Efeighery
@0verride
public void onComplete(@NonNull Task<Void> task) {
if (task.isSuccessful()) {
// If all goes according to plan, then the note will be saved to the FireStore database
ContactBox.showToast(context DiagnosisDetails.this, message: "Contact note has been added");
finish();
} else {
// 0r if an error happens mid-save, this message will appears
ContactBox.showToast(context DiagnosisDetails.this, message: "An error occurred");

Figure 44: The method where a user saves a Diagnosis note to the FireStore Database table using a
designated ID.

DiagNoteAdapter.java:

Context context;

// The Instantiable class is declared as a sort of ArrayList object in the constructor

1 usage Efeighery

public DiagNoteAdapter(@NonNull FirestoreRecyclerOptions<DiagnosisInfo> options, Context context) {
super(options);
this.context = context;

Efeighery
@0verride
protected void onBindViewHolder(@NonNull NoteViewHolder holder, int position, @NonNull DiagnosisInfo diagNotes) {
// With an object of the instantiable class and the NoteViewHolder, the variables are declored and set in their TextView formats
holder.diaTitleView.setText(diagNotes.title);
holder.diaContentView.setText(diagNotes.content);

// An itemView object is vused to combine the two parts of a note as one
holder.itemView.setOnClicklListener(v -> {

Intent in = new Intent(context, ContactDetails.class);

in.putExtra(name: "title", diagNotes.title);
in.putExtra(name: "content", diagNotes.content);

// An ID String is used to help find a specific note (As a Snapshot of saved data)
String diaDocId = this.getSnapshots().getSnapshot(position).getId();
in.putExtra(name: "diaDocId", diaDocId);

// The Intent ebject is triggered via the Context aebject
context.startActivity(in);

Figure 45: Setting the ViewHolder for the Adapter object for Diagnosis Notes with an object of the
instantiable class.

39

DiagNoteAdapter.java:

public class NoteViewHolder extends RecyclerView.ViewHolder{

2 usages

TextView diaTitleView, diaContentView;

1 usage Efeighery

public NoteViewHolder(@NonNull View itemView) {
super(itemView);

diaTitleView = itemView.findViewById(R.id.diagNoteTitleView);
diaContentView = itemView.findViewById(R.id.diagNoteContentView);

// The diagnesis note item is used for the View object te help display a note and its diagnosis
Efeighery
@NonNull
[@0verride
public NoteViewHolder onCreateViewHolder(@NonNull ViewGroup parent, int viewType) {
View view = LayoutInflater.from(parent.getContext()).inflate(R.layout.rec_dia_note_item, parent, attachToRoot false);

return new NoteViewHolder(view);

Figure 46: The ViewHolder binder and initialising the note item for Diagnosis notes.

MedicBox.java:

static void showToast(Context context, String reminder){

// This is used to help display messages
Toast.makeText(context, reminder, Toast.LENGTH_SHORT).show();

4 usages Efeighery

static CollectionReference getCollectionRefForMedicalNotes(){

// Using the FirebaseUser object, this method will check for the user that's currently logged into the app.

// Then it will use the user's ID, to look for notes saved by that user in the FireStore database; this means that only the notes saved by a user will b{
FirebaseUser firehaseUser = FirehaseAuth.getInstance().getCurrentUser();

return FirebaseFirestore.getInstance().collection(collectionPath: "Medications").document(firebaseUser.getUid()).collection(collectionPath: "MyMedicationNotes");

Figure 47: The instantiable class that allows the application to collect all of the saved medication notes in their
designated database table.

MedicNotes.java:

void setUpRecycleView(){

// A query is used to listen into o utility class teilor made to assist in CRUD functionalities

/7

The method declared in ContactBex will order the saved the notes by their titles in ascending order

Query query = MedicBox.getCollectionRefForMedicalNotes().orderBy(field: "title", Query.Direction.ASCENDING);

/
/

The instantiable class is declared in a FireStore Recycler object and the declared query will be confined with

e
the instantiable object to help create the RecyclerView and display the saved notes

@

FirestoreRecyclerOptions<MedicInfo> options = new FirestoreRecyclerOptions.Builder<MedicInfo>().setQuery(query, MedicInfo.class).build();

/7

The LayoutManager will be declared within the RecyclerView object

reVe.setLayoutManager(new LinearlLayoutManager(context: this));

// And the Adapter file will be declared with the RecycleOptions object

adapter = new MedicNoteAdapter(options, coniext this);

reVe.setAdapter(adapter);

Figure 48: Gathering the saved medication notes from FireStore and setting up them in a list view.

40

MedicDetails.java:

void saveMedicallNote(){
// The note title and content is acquired here and used to save a new note
String medicNoteTitle = editMedTitle.getText().toString();
String medicNoteContent = editMedContent.getText().toString();

// If the note's title hasn't been filled in yet, this message will be triggered
if(medicNoteTitle == null || medicNoteTitle.isEmpty()){
editMedTitle.setError("Title is needed to save the note");
return;

// The instantiable class is called in a new object that will contain the String variables declared up above
MedicInfo medicNotes = new MedicInfo();

medicNotes.setTitle(medicNoteTitle);

medicNotes.setContent(medicNoteContent);

// The ebject will also automatically trigger another method to save the note to the database
saveMedNoteToFireStore(medicNotes);

Figure 49: The first save note method which uses an object of the instantiable class.

void saveMedNoteToFireStore(MedicInfo medicNotes){
// An object of the FireStore database used for saving notes is declared here
DocumentReference documentReference;

// If the vser is editing a note, the boolean flag will lead to the utility file finding the edited
if(inEditMode){
documentReference = MedicBox.getCollectionRefForMedicalNotes().document(medDocId);
telseq
// Otherwise, if it's a new note, then the same will trigger but a new ID is generated if a notd
documentReference = MedicBox.getCollectionRefForMedicalNotes().document();

// Then this will trigger an if else method for saving a newly creoted note in FireStore
Efeighery
documentReference.set(medicNotes).addOnCompleteListener(new OnCompletelistener<Void>() {
Efeighery
@0verride
public void onComplete(@NonNull Task<Void> task) {
if(task.isSuccessful()){
// If all goes according to plan, then the note will be saved to the FireStore database
MedicBox.showToast(context: MedicDetails.this, reminder "Medical note has been added");
finish();
}
elseq{
// Or if an error happens mid-save, this message will appears
MedicBox.showToast(context: MedicDetails.this, reminder "An error occurred!");

Figure 50: The method where a user saves a Medication note to the FireStore Database table
using a designated ID.

41

MedicDetails.java:

void deleteMedNoteFromFireStore(){
// The note title and content is acquired here and used to remove a new note
DocumentReference documentReference;
documentReference = MedicBox.getCollectionRefForMedicalNotes().document(medDocId);
Efeighery
documentReference.delete().addOnCompletelistener(new OnCompletelistener<Void=() {
Efeighery
@0verride
public void onComplete(@NonNull Task<Void> task) {
if(task.isSuccessful()){
// If all goes according to plan, then the note will be removed to the FireStore database
MedicBox.showToast(context: MedicDetails.this, reminder "Medical note has been deleted");
finish();
}
elseq
// Otherwise, if an error happens mid-removal, this message will appear
MedicBox.showToast(context MedicDetails.this, reminder "An error occurred!");

Figure 51: The method where a user deletes a Medication note from its FireStore Database table.

MedicNoteAdapter.java:

// A Context objects is made and declared in the constructor object

3 usages
Context context;

// The Instantiable class is declared as a sort of Arraylist object in the constructor

1 usage Efeighery

public MedicNoteAdapter(@NonNull FirestoreRecyclerOptions<MedicInfo> options, Context context) {
super(options);

this.context = context;

Efeighery
@0verride
protected void onBindViewHolder(@NonNull NoteViewHolder holder, int position, @NonNull MedicInfo medicNotes) {
// With an object of the instantiable class and the NoteViewHolder, the variables are declared and set in their TextView f
holder.medTitleView.setText(medicNotes.title);
holder.medContentView.setText(medicNotes.content);

// An itemView object is used to combine the two parts of a note as one
holder.itemView.setOnClickListener(v -> {

Intent in = new Intent(context, MedicDetails.class);

in.putExtra(name: "title", medicNotes.title);

in.putExtra(name: "content", medicNotes.content);

// An ID String is used to help find a specific note (As a Snapshot of saved data)
String medDocId = this.getSnapshots().getSnapshot(position).getId();
in.putExtra(name: "medDocId", medDocId);

// The Intent object is triggered via the Context object
context.startActivity(in);

b

Figure 52: Setting the ViewHolder for the Adapter object for Medication Notes with an object of the
instantiable class.

42

MedicNoteAdapter.java:

// The diagnosis note item is used for the View object to help display o note and its diagnosis
Efeighery
@NonNull
@0verride
public NoteViewHolder onCreateViewHolder(@NonNull ViewGroup parent, int viewType) {
View view = LayoutInflater.from(parent.getContext()).inflate(R.layout.rec_med_note_item, parent, attachToRoot false);
return new NoteViewHolder(view);

// This is used for binding notes into the ViewHolder, with the TextViews declared and initialised accordingly
4 usages Efeighery

public class NoteViewHolder extends RecyclerView.ViewHolder{

2 usages

TextView medTitleView, medContentView;

1 usage Efeighery

public NoteViewHolder(@NonNull View itemView) {
super(itemView);

medTitleView = itemView.findViewById(R.id.mediNoteTitleView);
medContentView = itemView.findViewById(R.id.mediNoteContentView);

Figure 53: The ViewHolder binder and initialising the note item for
Medication notes.

43

Register.java:

// The auth object will be used to create the user account with the email and password as parameters
Efeighery
auth.createUserWithEmailAndPassword(email, password).addOnCompleteListener(new OnCompletelListener<AuthResult=() {
Efeighery
@0verride

public void onComplete(@NonNull Task<AuthResult> task) {

// The task succeeds then this statement will run
if(task.isSuccessful()){

// The User class will be turned inte an object that contains the variables for soving user account
(

User user = new User(name, age, sex, email, password);

// The Datobase Instonce will be colled te the Users table ond gets the current User's id and sets the User Object to add ij
FirebaseDatabase.getInstance().getReference(psth: "Users")
.child(FirebaseAuth.getInstance().getCurrentUser().getUid())
Efeighery
.setValue(vser).addonCompleteListener(new OnCompletelistener<Voids() {
Efeighery
@0verride
public void onComplete(@Nonhull Task<Voids task) {
// If it works, the applicotien will move the user from the registrotion poge to the login
if(task.isSuccessful()){
Toast.mokeText(context: Register.this, text: "User registration complete", Toast.LENGTH_LONG).show();

Intent intent = new Intent(packageContext Register.this, Login.class);
startActivity(intent);

+
// If not, this error messoge will show instead
elseq
Toast.mokeText(context: Register.this, text: "Registration failed. Try again!", Toast.LENGTH_LONG).show();
+

I3H

If the task fails, the vuser will need to try ogain
else{
Toast.mokeText(context Register.this, text "Registration failed. Try again!", Toast.LENGTH_LONG).show();

Figure 54: The process of adding authentication to a new user.

44

// This method will help to save o vser occount into the Firebase Databaose
1 usage Efeighery
private void registerUser() {
// Whotever wos odded to the text fields will be taken from there
String email = edEmail.getText().toString().trim();
String password = edPassword.getText().toString().trim();
String name = edName.getText().toString().trim();
String age = edAge.getText().toString().trim(};
String sex = edSex.getText().toString().trim();
// If the fields are empty, these messages will inform them to add something inside them
if(name.isEmpty()){
edName.setError("Name is NEEDED!")};
edName .requestFocus();
return;
I
if(age.isEmpty()){
edAge.setError("Age is NEEDED!");
edAge.requestFocus();
return;
'
if(sex.isEmpty()){
edSex.setError("Something is NEEDED!");
edSex.requestFocus();
return;
T
if(email.isEmpty()){
edEmail.setError("Email is NEEDED!");
edEmail.requestFocus();
return;
¥
// Here the email oddress will be checked if it fits into this formot (xxxx@gmoil.com)
// If it doesn't, this error messaoge will be shown
if(!'Patterns.EMAIL_ADDRESS.matcher(email) .matches())4
edEmail.setError("Please provide valid credentials for email");
edEmail.requestFocus();
return;
'
if(password.isEmpty()){
edPassword.setError("Password is NEEDED!");
edPassword.requestFocus();
return;

Figure 55: The method used to register a new User to the Database table.

45

SplashScreen.java:

Efeighery
@override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_splasher_screen);

// Here the window will be brought wp to fill the entire screen

getWindow() .setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN, WindowManager.LayoutParams.FLAG_FULLSCREEN);

called in to

the task for

// This is done with the Runnable schematic that's
Efeighery
new Handler().postDelayed(new Runnable() {
Efeighery
@override
public void run() {

// An Intent object is made where the splash screen will lood into the registrotion screen

Intent haste = new Intent(packsgeContext: SplasherScreen.this, Register.class);

// The Intent object is then activated here

startActivity(haste);

// While the finish method will step the current activity
finish();
// Here the deloy value is set to run for o specified time, here it's set to 3500 milliseconds mean.

}, delayMilli 3500);

Figure 56: Demonstrating what makes a Splasher screen and how the app's logo is displayed for
branding and aesthetics.

46

2.4 Graphical User Interface (GUI)

Registration Page:

When the user boots up the app, they will be taken to the registration page which allows users to
register their information to create an account. If the fields are empty, the system will notify the
user to fill them in so that the user account can be confirmed into the Firebase database user table.
If they already created an account, they could click the button below the Register Account one, to
log in.

Register New
User

Enter name

Enter age

Enter gender (if applicable)

Enter email

Enter password

Already signed in?

Figure 57: Registration page with an option to log in if a user has
logged in previously.

47

Login Page:

In the login page, users only need to enter their usernames and password to enter the home page if
they have already made an account prior. Otherwise, the query button below the Registration page
will be used to create an account.

Login

Email Address

Password

LOGIN

Not yet registered? Sign Up

Figure 58: The overall layout of the login page

48

Home Page:

Once the users make it through either pathway, they’ll be taken to the home page which gives a
brief description on what each page does and offers buttons to access said pages. There’s even a log

out button to exit the application.

Welcome to MedsUpApp!

SAVE

MEDICATION
DATA

Here you can extract medication
instructions using a microphone and
add it as an event on a calendar. You can
even add a contact so that they'll know
you're on track with the meds!

RECOGNISE SAVE
TEXT DIAGNOSIS

CREATE ADD A
REMINDER CONTACT

VIEW
PROFILE

Figure 59: The home page featuring a description of what you can do
in the application.

User Profile and Edit Pages:

In the user profile, the user account details will be searched in the database and taken to display
them in the profile. The edit profile page will allow users to change any of the fields to whatever
they see fit. Once they click the save button, the new user details will be added to the current

profile.

Profile

Name

Age
Gender

Email

Figure 60: The user profile which acts as a sort of data retrieval
function.

Contacts Page:

In the contacts page, a user can add a note containing information about a contact by entering their

name, email address and phone number.

Add Contact Notes
Contact Information Notes

tem O
[tem 1
Item 2
[tem 3
ltem 4
Item 5
Item &
Item 7
[tem 8
ltem 9

B

Figure 61: The menu that displays saved contact notes.

Once the details are added, the contact can be saved to a database table and will be displayed in the

following format as seen in the image below.

Contact Note Title

Contact Note Content

Figure 62: The layout of the note’s contents (title and content)

51

If a contact is chosen to be deleted, the message found at the bottom of the page will be used to
confirm if the user wants to go through with this. If they click it, the contact will be permanently

deleted, if they choose not to, the contact will remain in the list.

Add New Contact Note &

Enter title

Enter content

Figure 63: How a contact entry will appear when saved on the respective list.

52

Email Maker page:

When the user goes into the email page from the add contact one, they’ll have to type in an email

address, the subject of the email and the message body. In this case, letting a contact know you took

your medication for the day. When you click on the format email button, it can take you straight to

your Gmail. As with the calendar maker button, you'll be asked to login to your Gmail but only once.

Send email to:

Email Address Recipient

Subject:

Email Subject

Email:

Type your email

Figure 64: The email maker page layout

53

Speech to Text Page:

In the speech to text page, you should see a microphone button and an empty text box. The user
needs to click on the microphone which will showcase a prompt for the user to say their medication
instructions out loud. Once the recogniser technology finds all of the words in the captured audio,
the text box will display these words and the user can click on the “Copy Text” button. Doing this will
save the text onto the clipboard.

I L])
D Hit the mic button to speak i
i [] 1

Figure 65: The speech to text page which functions similar to the
microphone option in YouTube and Google Translate.

54

Text Message Maker Page:

In the add contact list page, clicking on the button titled “Send Text” will bring you to the Text Maker
page. In a somewhat similar vein to the Email Maker page, you'll be able to notify a contact by text
message. This will typically require both a contact and a message containing text, i.e., “Message: |
just took my medication for the day/I finished my medication round”.

Enter Fhone Number

Enter Text Message here

LEAVE SMS3
AREA

Figure 66: The text message maker page and a button to go back to the Add Contact List.

55

Add Reminder Page:

In the add reminder page, you'll be presented with two options, one where you can paste the

medication text found in the Speech to Text page into a Google Calendar reminder and the other can

allow you create a notification reminder that will activate when set to the desired time. The latter
option was added to give the user some flexibility in terms of how they want to make a medication
reminder for themselves.

In the former option, they’ll taken to their Google Calendar and will be asked to sign into their Gmail

to save and create a reminder on it. Fortunately, if you already signed in, you’ll only be asked to do
this once. The code in the Java page for AddReminder is designed to be set to a frequent reminder

since realistically, medication rounds will happen in the span of a week or 2 depending on what their

doctor/GP advised them.

Figure 67: The layout for the Reminder Creator page and the buttons provided.

Making a Reminder section

This page gives you two options for how

to create a reminder for your medication.

If you want to make a reminder on your
Google Calendar and also customise the
event to whatever settings you prefer,
click on this button below:

Add event to Google
Calendar

Or if you like to create a notification for
this at a certain time or date, click this
button instead:

Create a medical
notification

Return Home

56

Notification Creator Page:

When the user clicks on the button titled “Create a medical notification”, they should see this page
containing a reminder title and a Time Picker which is used to set the reminder to activate at a
certain time (Trigger at 5:20pm for example). Once you’re happy with everything, you can click on
Finish to save the notification and it should activate at the specified time. The clock selector will
function similar to the one found in the Real-time Bus App (Can be navigated from the Calendar
Intent in Figure 67 and from the home page in Figure 59).

ALARM

Figure 68: The page for creating a notification and the Time Picker used to create a timed alarm.

57

Add Diagnosis Page:

When the user clicks on the “Save Diagnosis” button in the home page, they’ll be taken to this page
where a user can record any known medical diagnosis/conditions into a table on the database. They

can also remove an entry if they’re in remission or no longer have said diagnosis.

Figure 69: The page for adding medical diagnoses to the FireStore Database.

Add Medication Notes
Medic Notes

Item 0
ltem 1
Iterm 2
Item 3
Item 4
ltem 5
ltem &
Itemn 7
Item &

Item 9

=

E

58

After clicking the add button, the user should see a pop up where they must enter a medical

diagnosis they may have.

Diagnosis Note Title

Diagnosis Note Content

Figure 70: How a saved diagnosis entry will look when saved to the list

Add New Diagnosis Note &

Enter title

Enter content

Figure 71: The popup used to save a diagnosis entry to the database.

If a user wants to delete a diagnosis (if a user has had cancer and are in remission now for
example), the message found at the bottom of the page will be used to confirm if the user wants
to go through with this. If they click it, the diagnosis note will be permanently deleted, if they

choose not to, the note will remain in the list.

59

Add Medication Page:

When the user clicks on the plus button in the home page, they’ll be taken to this page where a user
can record any medication and its instructions into a table on the database. They can also remove an

entry if they’re no longer taking said medication.

Add Medication Notes
Medic Notes =

tem 0
tem 1
tem 2
tem 3
term 4
tem 5
tem 6
tem 7
tem 8
tem 9

Figure 72: The page for adding medication information to the FireStore Database.

60

After clicking the add button, the user should see a pop up where they must enter a prescribed
medication they may be taking, and the instructions assigned to them.

Medication Note Title

Medication Note Content

Figure 73: The pop up that users will use to save medication information to the database.

Saving the entry will lead to a list object created to be added to the Medication Entry List.

Add New Medication Note 4,

Enter title

Enter content

Figure 74: The medication entry list that will be shown when an entry has been
saved to its respective table in the database.

If a user wants to delete a medication (if they’re no longer taking it for example), the message
found at the bottom of the page will be used to confirm if the user wants to go through with
this. If they click it, the diagnosis note will be permanently deleted, if they choose not to, the

note will remain in the list.

61

2.5

Testing

For the test plan, | tested the CRUD functionalities (adding notes of medication and
diagnosis information and contact details), the Google Calendar Intent and finally the

reminder alarm creator.

CRUD functionalities were tested via White-Box testing which involves executing all
program statements. | started by setting up 5 examples of test users with made up
account details and CRUD note information as seen in this screenshot below.

Test user

tul@email.com
tu2 @email.com
tud@email.com
tud@email.com
tus @email.com

Medication Diagnosis Contact Med Instructions

medl
med2
med3
med4
med5

diagl conl rulel
diag?2 con2 rule2
diag3 con3 rule3
diagd cond ruled
diags con5 rules

ContactPhone ContactEmail

11 cel@email.com
12 ce2@email.com
13 ce3@email.com
14 ced@email.com
15 ceS@email.com

Test case 1:

User profile:

Figure 75: Series of test user cases and test data

Welcome tu1!

tul

39
Male
tul@email.com

1111111

Figure 76: Test user 1 profile with confirmed details

62

Contact note:

+ Start collection + Add document + start collection

MyContactNotes > qhxbwS1qrrPZodDzqyG0 > + Add field

content: "Phone: 11 Email: cel@email.com

title: "ContactNotel"

Figure 77: Saved contact note for Test user case 1.

Diagnosis note:

+ start collection + Add document + Start collection
MyDiagnosisNotes > DIK4gAGrj1CMtsZeuRKZ > + Add field
content: "diagl
title: 'DiagnosisNotel"

Figure 78: Saved diagnosis note for Test user case 1.

Medication note:

B GmgneGjxHddW4FTh2otq2gKwul2 : (B MyMedicationNotes = B 5iAzdIL5pddtGNtDd4!
4 Start collection <+ Add document <+ Start collection
MyMedicationNotes > 51A2dIL5pddtGNtDd4kU > + Add field

content: "Medication Name: med1 Instructions: rulel

title: 'MedicNotel”

Figure 79: Saved diagnosis note for Test user case 1.

Test case 2:

User profile:

Welcome tu2!

tu2

19
N/A
tu2@email.com

2222222

Figure 80: Saved user profile for Test user case 2.

63

Contact note:

B 9zGBnoBIrXgXR (B MyContactNotes = B NxvoakviolwglbhNc7lb
-+ Start collection <+ Add document - Start collection
MyContactNotes > NXVBakvi@IwglbhNc71b > + Add field

ibuFTByPgtalXNe3soN content: "con2 Phone: 12

title: "Contact2"

Figure 81: Saved contact note for Test user case 2.

Diagnosis note:

content: "diag2

title: "DiagnosisNote2"

Figure 82: Saved diagnosis note for Test user case 2.

Medication note:

= i @ E4U20DNdoVYJz

B 9zGBn9BIrXgXR

+ start collection + Add document + Start collection

MyMedicationNotes > E4U20DNdoVYJakZW180I > + Add field

content: "med2 Instructions: rule2"

title: "MedicationNote"

Figure 83: Saved medication note for Test user case 2.

64

Test case 3:

User profile:

Welcome tu3!

tu3

51
Female
tu3@email.com

3333333

Figure 84: User profile for Test user case 3.

Contact note:

B maxHbipM74WJ1v6U2VUzZPoB6B992 H [l MyContactNotes = B TEoezCWhytdVkL10ZIfl
+ start collection + Add document + Start collection
MyContactNotes > TEoezCWhytdVkL10Z1f1 > + Add field

content : "Phone: 13 Name: con3"

title: "ContactNote3"

Figure 85: Saved contact note for Test user case 3.

Diagnosis note:

B maXHbipM74WJ1v6U2VUzPOB6BS92 H [l MyDiagnosisNotes B f7i9JaWFc4zirtjq7x80
+ Start collection + Add document + Start collection
MyDiagnosisNotes > f719JaWFc4z1rtjq7x80 > + Add field

content: "diagd

title: "Diagnosis3"

Figure 86: Saved diagnosis note for Test user case 3.

65

Medication note:

M > Medications > maXHbIpM7AW. > M > BXRsF5YQnjEA.. & More in Google Cloud
B maxHbip IJ1v6U2vUzZPo (W MyMedicationNotes = & B BXRsF5YQnEAN3EdhXIH
+ start collection + Add document + Start collection

MyMedicationNotes > BXRsF5YQnjEAhR3EdhXiH > + Add field

content: 'med3’

title: "MedicationNote3"

Figure 87: Saved medication note for Test user case 3.

Test case 4:

User profile:

Welcome tu4!

tud

28
Bisexual

tud@email.com

4444444

Figure 88: User profile for Test user case 4.

Contact note:

M > Contacts > gKnpSNGMazT.. » MyContactNote.. > nLdxT3nPHmp & More in Google Cloud
B aKnp5NGMazZTP5zoJUsLgC [MyContactNotes = B nLdxT3nPHmpwUsIG
+ start collection + Add document + start collection

MyContactNotes > nLdxT3nPHmpwUsIGkWWz > + Add field

content: "Name: cond Phone: 14 Email: ced@email.com"

title: "Contact Note4'

Figure 89: Saved contact note for Test user case 4.

66

Diagnosis note:

M > Diagnoses > gKnpsN

. > MyDiagnosisNo.. > eXjrubJv580l8Z..

B gKnp5NGMazZTP5zoJU9LgCEe0a3ES

+ Start collection

+ Add document

MyDiagnosisNotes > eXjrubJv58018Z0nwpXW

= i B exiubws
+ Start collection
> + Add field
content: 'Diagd"

title: 'Diagnosis 4

& More in Google Cloud

Figure 90: Saved diagnosis note for Test user case 4.

Medication note:

A > Medications » QKNpSNGMaZT.. > My

B gKnp5NGMazTP5z0JUILgCEe;

+ Start collection

+ Add document

MyMedicationNotes > 01d8fc2xSKOTnXmEWLrO

= i B 0idafc2xSKOINXmEWLD
+ Start collection

> + Add field

content: "'med4 Instructions: ruled”

title: "Medication 4

& More in Google Cloud

Figure 91: Saved medication note for Test user case 4.

Test case 5:

User profile:

tus

44

N/A

tuS@email.com

5555555

Welcome tu5!

Figure 92: User profile for Test user case 5.

67

Contact note:

A > Contacts

B VgkNMITZW6CPVE
-+ start collection + Add document

MyContactNotes > t6freNBLCCKoNttRm1Jk

& More in Google Cloud ~

B tsfreNBLCCKoNttRmIJk
+ Start collection

+ Add field
content: 'Name:con5 Email: ce5@email.com Phone Number: 15"

title: "Contact Note5'

Figure 93: Saved contact note for Test user case 5.

Diagnosis note:

A > Diagnoses > VGkNMITZW6C.. > MyDiagnosisNo.. > 1dS08APBN2IS..

B VokNMITZW6CPVBpxy2GTX8bZBe2 i | MybDiagnos

-+ start collection + Add document

MyDiagnosisNotes > td508APEN2ISmzUohZmZ

& More in Google Cloud ~

N2ISmzUohZmZ

+ Start collection

+ Add field
content: 'diag5 Instructions: rule5"

title: "Diagnosis Notes 5"

Figure 94: Saved diagnosis note for Test user case 5.

Medication note:

M > Medications » VOKNMITZW6C.. > My ationN.. > LfKDZQvffwdkr

B VokNMITZW6cPvBpxy2GTfX8bZBe2 W MymedicationNotes

-+ Start collection + Add document

MyMedicationNotes > LfKDZQuffiNdkrmfadt1C

¢ More in Google Cloud

B LfkDzavffwdkrmfadtic
+ Start collection

+ Add field
content: 'meds"

title: "MedicNote5'

Figure 95: Saved medication note for Test user case 5.

| also used Espresso to record functional tests. These involved starting from the login
and registration pages and creating some test examples for the note maker functions,
creating a reminder with the Google Calendar intent and editing a user profile.

In Figure 96, the following generated code from the 1° recording illustrates some of the
saved edits made to the user profile which also reflected in the Firebase user table

entry.

68

ViewInteraction appCompatEditText32 = onView(
oll0f(withId(R.id.editAge), withText("21"),
childAtPesition(
childAtPosition(
withClassName(is(value "androidx.cardview.widget.Cardview")),
position: @),

position: 2),
isDisplayed()));
appCompatEditText32.perform{closeSoftKeyboard());

try {

Thread.sleep(millis: 58);
} catch (InterruptedException e) {
e.printStackTrace();

}

ViewInteraction appCompatEditText33 = onView(
0l10f(withId(R.id.editName), withText("tu2"),
childAtPesition(
childAtPesition(
withClossName(is(value "androidx.cardview.widget.CardView")),
position: @),
position: 1),
isDisplayed()));
appCompatEditText33.perform(replaceText(stringToBeSet "TU2"));

ViewInteraction appCompatEditText34 = onView(
ol10f(withId(R.id.editName), withText("TU2"),
childAtPesition(
childAtPosition(
withClossName(is(value "androidx.cardview.widget.CardvView")),
position: @),
position: 1),
isDisplayed()));
appCompatEditText34.perform(closeSoftKeyboard());

Figure 96: Profile entry edits made in the first Espresso recording.

And with the 2" Espresso recording, according to Figure 97, the following code in the
associated screenshot will replace the blank page entry with the confirmed note
information for saving a contact note’s title and details. This logic will also apply to the
other CRUD note functionalities (Incidentally, medication and diagnosis all have identical
functions to the contact note one).

| also carried out White Box Testing throughout the development of my application. This
in turn consisted of testing out the application on my own phone and trying out the
functions one at a time based on high and low priorities respectively.

Each time | added a new function page, I'd always test it to for any bugs, errors and if the
code is carrying out the way it’s declared in the application’s code schematics.

69

During one of my Project supports, my lecturer noted how with RealTime Database, the
CRUD entries saved from past user sessions would carry over each time, which was a close
call since had | not noticed the error sooner, it could’ve potentially caused some dire
cybersecurity risks.

ViewInteraction appCompatEditText28 = onView(
oL10f(withId(R.id.conInfo), withText("Name: Con8"),
childAtPosition(
childAtPosition(
withClassName(is(value "android.widget.Relativelayout")),
position: 1),
position: 1),
isDisployed()));
appCompatEditText20.perform(reploceText(stringTeBeSet: "Name: Con8\nEmail: conB8@email.com\nPhone: 1818"));

ViewInteraction appCompatEditText2l = onView(
ol10f(withId(R.id.conInfo), withText("Name: Con8\nEmail: con8@email.com\nPhone: 1818"),
childAtPosition(
childAtPosition(
withClassNome(is(value: "android.widget.Relativelayout")),
position: 1),
position: 1),
isDisplayed()));
appCompatEditText2l.perform{closeSoftKeyboard());

Figure 97: Added contact note and designated content of note
body from the second Espresso recording.

| also carried out White Box Testing throughout the development of my application. This
in turn consisted of testing out the application on my own phone and trying out the
functions one at a time based on high and low priorities respectively.

Each time | added a new function page, I'd always test it to for any bugs, errors and if the
code is carrying out the way it’s declared in the application’s code schematics.

During one of my Project supports, my lecturer noted how with RealTime Database, the
CRUD entries saved from past user sessions would carry over each time, which was a close
call since had | not noticed the error sooner, it could’ve potentially caused some dire
cybersecurity risks.

Unit testing involved testing out a few core functionalities with minor code modifications.
For all 3 CRUD functionality pages, | decided to test out the method involving saving CRUD
notes and returning them as a complete String object via the combining of both a note’s
title and its content.

70

The typical test case | coded out in Android Studio will look something like this:

@Test

public void saveMedicalNote() throws Exception{
String medicNoteTitle = "Contact note #28";
String output;
String medicNoteContent = "Name: Diagnosis";

MedicDetails medicDet = new MedicDetails();
output = medicDet.toString(medicNoteTitle, medicNoteContent);

System.out.println(output);

Figure 98: Test case example for CRUD Note

The basic idea in this test method is to use pre-written note information and combine them
into a single String. When | run the test case, it will trigger the combined note content and
title as one String value.

2.6 Evaluation

After conducting the 5 test cases, the 3 CRUD functionalities are working as they were
intended and coded out. | also tested out the speech to text recogniser and the Calendar
objects. For the email maker and Calendar Intent, the user will be prompted to log into their
Gmail accounts for these functions, but they’d be only asked to do this once.

The alarm reminder function took some time to implement and code since the reminder will
trigger 2 minutes after the intended time but | figured out from a tutorial about the
functionality, that the reminder will still trigger even if it’s in-between the seconds of a
specified time; like how if the reminder is set for 12:00pm, the alarm will still trigger if it’s 30
seconds after 12pm.

|stages
fstage 1
seaze 2
stage 3
stage 4
staze 5
stage 6
staze 7
staze 2
stage 3
staze 10
jstage 11

v |17 Oct 1022 0ct2022 | * |240ctto310ct2022 | = | 1Novto 20Dec2022 | |1Janto 18Jan2023 | v |19Janto 15 Feb 2022 | = |16 Febto 28 Feb 2023 | » |1 Marto 1Apr2023 | v |21 Marto 14 May2023 | =

Stage Actions

1 Research Android Stugio
2 Draft up wireframe and database tables
3 Create user login =nd registration
4 Build home page and CRUD functionality [Contact)
5 Midpoint Submission
& Develop Speech To Text Recognition and Calendar Intent
7 Establish Firebase Authentication and build user profile
8 Add 2 more CRUD functionalities - Medication and Health Dizgnosis]
3 Testingand bugchecks

10 Figure out Android App Deployment

11 Final Project Submission and Technical Report

Figure 99: Project timeline and stages

I also used Snyk, which is a website that, according to the company’s website (Snyk, 2023)
allows users to import their application’s code and cloud environments to scan and fix any
security vulnerabilities and known issues found in the code. Through an analysis of

71

MedsUpApp's Git repository, it was discovered that there no issues in the project’s code

files, Gradle setups and dependency builds.

0 MedsUpApp @ | msser

& Code Analysis

Snapshot taken by snyk io a few seconds ago | Retest now

MEORTED BY PROJECT OWNER ANALYSIS SUMMARY

&g eoghanrcfeighery@gmail.com (® Add a project owner 103 analyzed files (54%) Repo breakdown
Issue
v Q, search

X

There are no issues for this project.

Overview History Semings

Figure 100: Code analysis results from Snyk.

& build.gradle®

Wed 26th Apr 2023 | Snapshot taken by snyk.io a few seconds ago | Retest now

MPORTED BY

@) eoghanrcteighery@gmail.com

LIFECYCLE

@ Add avalue

O Critical
=B pid you know.
[High
You car the backlog of e ulnerabilities at a manageable pace with prioritized fix pull
] Medium 0 requests - e
0L

X

There are no issues for this project.

BUSINESS CRITICALITY

@ Add a value

Overview History Settings

Figure 101: Gradle build analysis result from Snyk.

72

In the Profiler screenshot down below, the application consumes around 256 megabytes
worth of memory while the amount of energy consumption is on a medium-scale at the
start of the application working but the more time spent on the application, the energy
consumed grows smaller. As such, the energy gauge ranges from medium (application
session start) to light (middle and end of application session). CPU consumption is on a
similar observation since at the start of the application working, it goes from 21% to 0%
which wildly varies depending on the functionality that the user will trigger.

ENERGY

IIlIIIlII B0 En AN N NEEEENE B EEER _mER annnnnnl Illlll [T 1 IIII|II |IIIIIII NERNREERN NEEE NEEN NEER RN N AR N R E R [T T
0100000 0195000 o000 0115000 0120000 0125000

Figure 102: Profiler charter for MedsUpApp.

3 Conclusions

The advantage to using Android Studio was that | was able to better utilise my knowledge of
Java since the former has a lot of similar code methods, I've studied previously such as
instantiable classes converted into ArrayList objects. On top of that, I've had a lot of creative
liberty in placing certain visual features and deciding on a more consistent color theme. This
is why the app’s color scheme mostly consisted of white and green, since they’re a constant
color scheme associated with hospitals and chemists.

The biggest limitation with Android Studio is that when it came to developing the
application, it seems very delicate since one tiny change can lead to the entire project
having errors in a few areas. On top of that, | had to work under some design constraints.
For example, for the Add Contact page, the tutorial | found as part of my research used a
LinearLayout format for the page’s layout so that meant | had to work within that
confinement which is why the buttons | added had to remain at the bottom or it would
cause the layout of the page to look out of sync position-wise.

Finding tutorials for the Firebase RealTime Database utilisation had some difficulty since
certain videos | found on YouTube had methods that would be outdated or may not work

73

when | tested out the code. Fortunately, | did find out that any deprecated code was able to
function regardless. Not to mention because Realtime Database is a NoSQL database, | had
to rely on other methods to allow the app to be able find the right table entries for both the
user and the CRUD pages. Fortunately, according to Odhiambo (Odhiambo, 2022), there’re
quite a few workaround ways when it comes to sorting and filtering Firebase data. With the
use of the orderByValue, orderByKey and orderByChild methods, the application can sort
out the data by both using child and key values as a reference point. This in turn, gives it a
sort of semblance of linked database tables.

But during the final stages of development, | found out that saved CRUD data entries from
past user sessions were bleeding into each other and could potentially pose a cyber-security
risk. After finding no video tutorials for configuring user IDs for CRUD data with RealTime
Database, | eventually attempted a tutorial that used Cloud FireStore Database which
thankfully managed to work in my favour.

Then for the user login, for some reason despite an account being saved onto the users
table, the app would remain at the login screen with a notification saying to check user
credentials. As such, | had to create an extra if else statement with the login confirmation
code pasted inside which was the only way that it was guaranteed to work 100% of the
time. The speech to text recognition works better when testing it out on actual Android
phones as when it’s done in emulators, it stops when | click on the microphone button.

Overall, the application’s development history has had its fair share of peaks and valleys
from conception to implementation, though if nothing else, | was able to develop a fully
functioning app ready made for Android smartphones.

My application’s Git repository is in this link:
https://github.com/Efeighery/MedsUpReminder

4 Further Development or Research

If | had extra time and resources for MedsUpApp, it would’ve taken a direction of being on
both Android and I0S platforms for cross-technological accessibility. | also feel that it would
be an interesting challenge to have implemented both speech-to-text and image-to-text
recognition; the latter of which could work like the likes of Cam Scanner and/or Google
Translates camera transcribe feature.

Additionally, I'd have more time to deploy it to Google Play Store in the near future since
while | gave it a shot to be sure, | realised it would take a lot more time to do that but I'll put
that on the back burner for the time being.

5 References
Firebase, G., 2023. Firebase Realtime Database. [Online]

Available at: https://firebase.google.com/docs/database
[Accessed 4 March 2023].

74

https://github.com/Efeighery/MedsUpReminder

Medicare.org, 2023. 5 Best Pill Reminder Apps. [Online]
Available at: https://www.medicare.org/articles/5-best-pill-reminder-apps/
[Accessed 1 May 2023].

MediSafe, 2023. Medisafe Pill & Med Reminder. [Online]

Available at:
https://play.google.com/store/apps/details?id=com.medisafe.android.client&hl=en&gl=US
[Accessed 1 May 2023].

MyTherapy, 2023. MyTherapy Pill Reminder. [Online]

Available at:
https://play.google.com/store/apps/details?id=eu.smartpatient.mytherapy&hl=en&gl=US
[Accessed 1 May 2023].

Odhiambo, B., 2022. Implementing Custom Searching and Filtering in Firebase Database in Android.
[Online]

Available at: https://www.section.io/engineering-education/custom-searching-and-filtering-in-
firebase-database-in-android/

[Accessed 14 February 2023].

Snyk, 2023. Introducing Snyk. [Online]
Available at: https://docs.snyk.io/getting-started/introducing-snyk
[Accessed 25 April 2023].

Treichler, C., 2022. THE 10 BEST MEDICATION REMINDER APPS. [Online]
Available at: https://www.onlinedoctor.com/best-medicine-reminder-apps
[Accessed 1 May 2023].

6 Appendices

6.1 Project Proposal

The main objective that | want to achieve with this project is to design a scanner for mobile
devices that can scan the front of a prescribed medication (cream, pills, medicine) to
produce a list of instructions for how and when to take them.

Another objective is to investigate how to figure out how | can create a feature that can add
the list to the user’s Google Calendar. Also, | would need to research how to program a
notification feature and implement to function properly on after every 3 or 4 hours.

Finally, | want to be able to figure out what | can do to synchronise the reminder to the
user’s relatives where it can send a message to notify them that the former has or hasn’t
taken their medication yet.

That last functionality would need to be able to send an automatic message to their phones
which can produce updates in the same time interval that | outlined in the second objective
above.

| chose to undertake the project because | feel that, in the aftermath of the Covid-19
pandemic, people have become a lot more self-conscious about their health conditions and

75

naturally, they have been a lot more worried for their elderly relatives. Another common
aspect is that with everyone gradually returning to college, work and/or school after almost
two years of quarantines.

With that busy state of mind, we also may end up forgetting to take any prescribed
medication amidst the hustle and bustle of day-to-day life. In fact, if we had a little reminder
about taking them every day, people wouldn’t be as stressed about forgetting about it.

Since one of my aims is to create a camera scanner like the kind that can scan documents, |
would need to research how | can build a scanner program to work for smartphones and
look at how the code functions that way. Additionally, | plan to research how to program a
reusable pop-up notification and figure out how I link it with the scanner application.

For the Google Calendar synchronisation, that also needs a look into online examples to see
if it’s possible to code up the share options that usually seen in messaging apps like
WhatsApp. The automatic text message will need to be researched as well to see how it
works.

6.2 Reflective Journals
Reflective Journal — October:

Supervision & Reflection Template

Student Name Eoghan Feighery

Student Number X19413886

Course Software Development BSHCSD
Supervisor Adriana Chis

What?

Reflect on what has happened in your project this month?

So far, I've submitted my Project pitch and have decided to use the Flutter technology for building my
application. But after talking with the Computing Project support supervisor, | decided to choose lonic as my
official technology framework since I’'ve more familiarity with CSS, JavaScript, and HTML.

For the testing phase, | decided to have certain members of my family to try out the app and give feedback
on how it functions, for any errors that still exists and if it does what it was designed to do.

| used Figma to chart out how the functions will play out, what the pages will look like and how they all
connect to each stage by stage.

So What?

76

Consider what that meant for your project progress. What were your successes? What challenges still
remain?

In terms of my project success, it means that | managed to make a starting point for the project. Not to
mention, since lonic is entirely based on recognisable programming languages and it does have some
recognisable code structures. Of course, | still need to figure out how lonic code is done and how an app for
it is developed with that technology. On top of that, | need to figure out how to store phone numbers in a
way that respects data privacy especially for underage and vulnerable users of the app. Then, | need to look
into how the camera scanner since | did find a guide for developing a camera and photo gallery using lonic.

Now What?
What can you do to address outstanding challenges?

To resolve the challenges, | need to discuss my project idea further with my supervisor about how | can sort
out how to store phone numbers safely and securely, how to make the scanner work in conjunction with the
app and figure how to implement the log in system and data encryption.

For lonic, | plan to have a look at a few tutorials and documentations based on lonic so that | can have a clear
idea of how | can approach the code the application and what io expect with using the technology.

For the pop-up notification, I'll need to investigate how | can make it when it scans an item to produce a small
list of instructions to be copied and shared with a device’s calendar app. For now, though, I'll need to make
an ERD before | get to the complex coding schematics.

Reflective Journal — November:

Supervision & Reflection Template

Student Name Eoghan Feighery

Student Number X19413886

Course Software Development BSHCSD
Supervisor Adriana Chis

What?

Reflect on what has happened in your project this month?

So far, | had a look at lonic, but | was building the prototype for the app, | had some difficulties in trying to
implement the OCR technology and the Firebase database. After my talk with my supervisor, she suggested
to think over what you’re more familiar with.

77

And after a little bit of digging and thinking, | decided to stick with Android Studio and Java, so that | don’t
overthink on how my app will work on multiple platforms.

So What?

Of course, since | have a prototype that’s due a few days before Christmas, I'll need to focus on getting the
OCR technology to work whilst also implementing a bit of the functionalities. Fortunately, my past attempt in
lonic will suffice as a proof of concept.

Since this is a little tight, | will need to prioritize it as very important especially for the video demonstration
and other project commitments.

Now What?
What can you do to address outstanding challenges?

To better address the aforementioned potential hurdles, I'll focus on the camera OCR function first since this
would be the more difficult functionality I'll ever implement in this project. Then, | can add a little function to
the calendar page since | found out that you can add events via Google Calendar Intent.

As for the login credentials, | may need to move the age, gender and name into the User Profile and figure
out how to edit a User Profile like a reusable form. While this does seem like a tight schedule, at the very least
it’s still doable.

In hindsight, | probably should’ve just stuck to Android Studio from the very start, but at least | have a clear
view on the project now.

Reflective Journal — December:

Supervision & Reflection Template

Student Name Eoghan Feighery

Student Number X19413886

Course Software Development BSHCSD
Supervisor Adriana Chis

78

What?
Reflect on what has happened in your project this month?

After a chat with the college’s Computing Support lecturer, | had to rebuild the application from the ground
up to include the Realtime Firebase database. While | had some issues with confirming log-in functionality, |
was able to have a functional prototype with the CRUD functionality for adding and removing contact inputted
by the user.

So What?

After a little bit of digging, | found a series of videos that have more clearer and concise guidelines for the text
recogniser camera function, the Calendar intent object, and the notification creator.

For the latter two, it may be possible to have a page with two buttons; one can used to add the medication
reminder to the Google Calendar (if applicable) and another can be used to set a time for when the user can
take their medication and will produce a notification for this.

| also found a 4-video part playlist on YouTube where it’s possible to let users add events to a calendar and
display the notifications like that of Google Calendar.

Now What?
What can you do to address outstanding challenges?

For the time being, I'll start with the text recognition functionality and the copy to clipboard combination
since that feature is the main focal point of MedsUp App. I'll also make a spare copy of my current application
build which can be used for the aforementioned notification and calendar intent functionality page and will
asked my supervisor if this is feasible for the final build.

For the other build | have so far, | can test the calendar tutorial | found to check if it won’t cause any errors
when | run the emulator in Android Studio.

Reflective Journal — January:

Supervision & Reflection Template

Student Name Eoghan Feighery

Student Number X19413886

Course Software Development BSHCSD
Supervisor Adriana Chis

79

What?
Reflect on what has happened in your project this month?

With the midpoint submission over and done with, | got to work in trying to get the image to text OCR function
to work but unfortunately | wasn’t able to get it running on the emulator. After some thinking, | remembered
that there’s a functionality that can let you speak into a microphone and can produce the text captures from
your recording. | tested it out on my phone and to my delight, it was working in the way that it should plus it
can let users edit the text if a GP gave some changes to a medication prescription.

Additionally, | found out that people can add events to Google Calendar and compose emails with Intent
objects. This was a bit of an awakening to me since it can allow reminders to be added in a more consistent
fashion. Also, | added a timer as an alternative when people want to set a reminder without Google Calendar
and added a splash screen to my app for visual fidelity.

So What?

How | got the speech to text recogniser functionality to work is that | found a tutorial that was created recently
and then tried out a test version of it on my phone. Luckily it was functioning very well, and the text result
can even be copied to the clipboard by holding on the text field.

Next, | had to watch some tutorials to get a better understanding of how the Calendar and Gmail Intents can
work in Android Studio. Then I made a small test app for adding events to Google Calendar, texting a contact,
and using Gmail Intents. Upon testing, | found that all three of these functionalities worked effectively. Not
to mention, it would theoretically mean that the user would only need to log in to their Gmail account once
when they activate it the first time.

While | did try a 4-video playlist about making a Google Calendar clone in Android Studio, it did use a sort of
stylesheet type of thing that unfortunately | couldn’t find so | decided to scrap it.

Now What?
What can you do to address outstanding challenges?

For the user profile, | noticed that when | tried to run the Edit Profile function, it caused the emulator to crash.
After a little digging, | found a 3-part tutorial on YouTube where the login/registration leads into the user
profile page and allows the chance to edit the profile. So, this would mean that if | changed the journey from
the login page to the profile page and add a button to take users to the home page in the latter, | can avoid
the app crashing when | run it.

As | plan on having a function that can let users save medical details and medication details, | need to talk to
my supervisor about how | can approach. Ordinarily, that could mean taking the code | have for the add
contact page and modifying it for adding medical information. | could do 2 separate entry boxes though that
does run the risk of making the code looking all over the place; but it’s best to talk to Adriana first before | go
from there.

Reflective Journal — February:

80

Supervision & Reflection Template

Student Name Eoghan Feighery

Student Number X19413886

Course Software Development BSHCSD
Supervisor Adriana Chis

What?

Reflect on what has happened in your project this month?

At the start of the semester, | had an accidental run-in with some malware, and | thought my application was
ruined but luckily, | was able to recreate all of the pages and functions. | also managed to add an
authentication object to the registration and login systems as my supervisor suggested to help make user
account details more secure in Firebase.

Then, | made sure to create two extra CRUD functionalities for adding diagnoses and medication items which
wasn’t so hard to do since their functions are near identical to the one where users can add contacts. Finally,
| was able to test out a tutorial that allowed a user profile to display retrieved data from the database table
and managed to work as intended alongside the Firebase Authentication object mentioned in the above
paragraph.

| recently added my project onto a GitHub repository so that it can act like a spare backup and lets me
frequently update it as time goes on.

So What?

Since | technically have all the functionalities in my application completed, the next step would be to get
feedback on how the overall application functions, are all the functionalities working as they intended.

I would also need to figure out how I'll carry out the testing for the application especially there could be bugs
that could severely cripple the app if left unchecked.

Now What?
What can you do to address outstanding challenges?

Since | have to demonstrate my application to my Computing Project support teacher next week, I'll ask for
any feedback and suggestions since Android Studio can at times feel like a tightrope act when it comes to
testing out functionalities and applications. I'll also ask my supervisor about how | can tackle the testing and
integration of my application since it’s essential for the Technical report documentation.

81

Reflective Journal — March:

Supervision & Reflection Template

Student Name Eoghan Feighery

Student Number X19413886

Course Software Development BSHCSD
Supervisor Adriana Chis

What?

| was able to implement the alarm clock feature and the text message and email creator functionalities. During
a Computing Project Support, | noticed that saved CRUD data entries from past user sessions were actually
bleeding into each other. After some research, | concluded that Firebase RealTime wasn’t the correct
database option for the CRUD functionalities.

So What?

Before | can start any testing with Espresso and dummy emails, | decided to investigate FireStore which is
another database that Firebase offers. After correctly implementing FireStore as a database, | found an hour-
long tutorial on YouTube which mentions how saved CRUD entries in FireStore can be tracked and uploaded
to specific user IDs. This involves with creating notes which functions very similar to the RealTime version of
CRUD functionalities.

Now What?

I've done the code for one of my CRUD entries which is saving notes about medication instructions. I'll need
to do the same for the other two (diagnoses and contacts) but the overall code is pretty similar to my
aforementioned prototype. Because | have all of the other non-CRUD functionalities working, | can focus on
the FireStore database first and then worry about testing and using Espresso for my application.

Reflective Journal — April:

Supervision & Reflection Template

Student Name Eoghan Feighery

Student Number X19413886

82

Course Software Development BSHCSD

Supervisor Adriana Chis

Month: April

What?

I managed to complete some Whitebox testing for my Android application and also recorded a few Espresso
sessions. With that out of the way, all of the functionalities are functioning as they were all declared. All that’s
left for me to do is the documentation and the deployment for my application.

So What?

As for deployment, while | still plan to deploy my application for the Google Play Store in the near future, |
realised that it actually was technically optional. Not to mention the presentation video will take up to at least
by the start of next week at most if things go according to plan.

Now What?

| asked on my college WhatsApp for any other alternatives with deploying my application. One of my friends
suggested using F-Droid which is identical to Google Play Store except the former allows for free and open-
source applications. For the time being, I'll look into the documentation my friend shared with me which
should take about the guts of an hour. If | don’t deploy it, it’s no loss since it wasn’t a mandatory requirement.

Although, the development of MedsUpApp was far from easy, | still feel proud knowing that | was able to at
least create a fully functioning Android application regardless.

83

	Executive Summary
	1.0 Introduction
	1.1. Background
	1.2. Aims
	1.3. Technology

	As for the database needed to store the user accounts, contact details and medication information, I plan on using Firebase. Firebase’s authentications offer backend services and UI libraries that can better authenticate users when they register for t...
	1.4. Structure

	2.0 System
	2.1. Requirements
	2.1.1. Functional Requirements
	2.1.1.1. Use Case Diagram
	2.1.1.2. Requirement 1: User Registration
	2.1.1.3. Description & Priority
	2.1.1.4. Use Case S1
	2.1.1.2.1 Description & Priority
	2.1.1.3.2 Use Case S2
	2.1.1.3.1 Description & Priority
	2.1.1.3.2 Use Case S3
	2.1.1.4.1 Description & Priority
	2.1.1.3.2 Use Case S4
	2.1.1.5.1 Description & Priority
	2.1.1.3.2 Use Case S5
	2.1.1 Data Requirements
	2.1.2 User Requirements
	2.1.3 Environmental Requirements
	2.1.4 Usability Requirements
	2.2 Design & Architecture
	2.3 Implementation
	2.4 Graphical User Interface (GUI)
	2.5 Testing
	2.6 Evaluation

	3 Conclusions
	4 Further Development or Research
	5 References
	6 Appendices
	6.1 Project Proposal
	6.2 Reflective Journals

