

National College of Ireland
BSHC Computing

Software Development

2022/2023

Eoghan Feighery

x19413886

x19413886@student.ncirl.ie

MedsUpApp

Technical Report

1

Contents
Executive Summary ... 2

1.0 Introduction .. 2

1.1. Background ... 2

1.2. Aims ... 3

1.3. Technology .. 3

1.4. Structure ... 4

2.0 System ... 4

2.1. Requirements .. 4

2.1.1. Functional Requirements .. 4

2.1.1.1. Use Case Diagram ... 12

2.1.1.2. Requirement 1: User Registration .. 12

2.1.1.3. Description & Priority .. 12

2.1.1.4. Use Case S1 ... 12

2.1.1.2.1 Description & Priority .. 14

2.1.1.3.2 Use Case S2 .. 14

2.1.1.3.1 Description & Priority .. 16

2.1.1.3.2 Use Case S3 .. 16

2.1.1.4.1 Description & Priority .. 18

2.1.1.3.2 Use Case S4 .. 18

2.1.1.5.1 Description & Priority .. 20

2.1.1.3.2 Use Case S5 .. 20

2.1.1 Data Requirements ... 22

2.1.2 User Requirements ... 22

2.1.3 Environmental Requirements ... 22

2.1.4 Usability Requirements ... 22

2.2 Design & Architecture ... 23

2.3 Implementation .. 25

2.4 Graphical User Interface (GUI) .. 47

2.5 Testing ... 62

2.6 Evaluation ... 71

3 Conclusions ... 73

4 Further Development or Research ... 74

5 References .. 74

6 Appendices .. 75

6.1 Project Proposal .. 75

2

6.2 Reflective Journals .. 76

Executive Summary
The purpose of the report is to detail how the MedsUp application will work in terms of
functionality, data saves and what requirements I set out to achieve.

The app is designed to cater to the general public, elderly people who may struggle with
remembering when to take their medication, parents who may want to help keep track for
their kids’ medicine. It can even be used by young and middle-aged adults who are
swamped with work and other life commitments and may forget about their medication
(varies on the person) requirements.

1.0 Introduction
1.1. Background
I chose to create the application because since we’ve reached the end of the Covid-19
pandemic, we’ve all gotten somewhat weary about our state of health and that can even
be extended to elderly relatives and to the younger set.

And now that everyone is back in school/work and/or college, we can be so caught up in
that busy mindset and for anyone with prescribed medication, it can be easy to forget
about when we need to take them.

On top of that, while there are many medical reminder applications, very few of them
have the option to scan prescriptions to get the desired text needed and add it to a
calendar.

As such, my application sets out to address these two concerns so that users and their
relatives can be informed with one another about when they follow through with their
medication.

For example, Medisafe Pill & Med Reminder (Google Play, 2023) has features such as
medicine trackers and reminders for refills and health measurement and medicine
trackers. It even contains a manager and calendar system for doctor appointments. It
does contain a lot of features and does have a medication reminder functionality, but it
doesn’t seem to mention any microphone recorder options for the reminder.
MyTherapy Pill Reminder (MyTherapy, 2023) is similar to Medisafe, except the former
has a health journal for a user’s doses, tablets and state of mind which also contributes
to a pill diary for taking necessary doses.

CareZone (Medicare.org, 2023) is a multi-user app that lets families handle medications
and appointments with pill reminders and an incrementor for taken doses plus a camera
function to import details regarding a prescription. Family members can co-ordinate
with each other especially in an emergency. MangoHealth takes the concept of
managing healthcare and medication rounds and makes it more fun. MangoHealth
(Treichler, 2022) lets users organise a schedule with medication reminders and health

3

habit customisation options. On top of that, the app records medication data so users
can see how a medication can coincide with other medications and food items. Finally, it
has a note taker for tracker user medication progress and results whilst also letting them
share the information with their GP along with a reward system.

From these 4 examples, while the idea of a medication reminder isn’t the most original
one, it did help me to confirm that a speech-to-text recogniser hasn’t been attempted as
frequently compared to the features I mentioned in the other applications.

1.2. Aims
One aim of my project is to create a text recogniser functionality for the application that
can find text from prescriptions and medication box information. Users can activate a
microphone and say out loud their medication instructions to theoretically produce the
desired text they need. Next, a button will also copy the details and adds them to the
clipboard.

Another aim would be to save user details when they register an account to a user
profile that can display various details such as gender (if they feel comfortable in doing
so) age, and email address. Plus, I also plan to let users add contacts so that an email or
a text message can be sent to a contact through their own pages. I also plan to allow
users to save medication instructions and any medical diagnosis via the CRUD
methodology.

Finally, yet another aim is to allow the ability to feature a reminder of medication details
to a calendar interface that can let users set a title, detail, and time for when the
reminder goes. One option would be to use an API for Google Calendar that can support
this functionality or use Android Intent to allow users to add the reminder to their
Google Calendar.

1.3. Technology
One technology that I’ve set out to use is Android Studio alongside with Java. After some
issues with trying to use Ionic and React for my application, I decided to stick to a
technology that I had more familiarity with. Since I’ve studied with Java the most ever
since my PLC course, it made the most sense to go with that instead.

To use Android Studio, I need to create the layout for the app’s pages that can provide
the structure for where the features will be placed, and the code needed to implement
the functionalities outlined above. The same even rings true when developers use Kotlin.

As for the database needed to store the user accounts, contact details and medication
information, I plan on using Firebase. Firebase’s authentications offer backend services
and UI libraries that can better authenticate users when they register for the first time.
In their official documentations (Firebase, 2023), it offers multi-factor authentication
which brings in extra security. Additionally, its Realtime Database can be stored locally
and synchronised for any data changes even when offline. Meanwhile, the Cloud
FireStore database offers quicker query speeds and better scaling.

4

1.4. Structure
If MedsUp could be split into stages, it would be the following:

The first one will be centered around the maintenance and the operations of the app
itself, user authentication and creation, adding contact details, saving medication-based
text results, and connecting to Firebase databases to store all the aforementioned
information.

The app’s pages will go like this:

1) Home page
2) Notification creator page
3) Speech to text Recognition page
4) Contact Page
5) Medication page
6) User Profile

The second module is responsible for the text recognition functionality via speech to
text transcription technology. Since, this will function much like the microphone button
in Google Translate to better implement the feature so that it can allow the user to scan
the required instructions with the click of a button.

The third potential module will handle how to use the Google Calendar API. One option
can be to add events to a user’s Google Calendar by typing the title and description for
that reminder and setting the reminder time and duration accordingly. Another option
would be to create a CRUD feature to add events to a date chosen by a user.

2.0 System
2.1. Requirements
Security and privacy can be considered the higher priorities since users want the
reassurance that their account details and personal information will be protected and
store safely. The same rings true for practically every web-based application whether its
mobile or desktop-based.

2.1.1. Functional Requirements
The home page will offer a brief description of what the app is about and the
functionalities it provides will be displayed as buttons. Each page will also have a
button that can bring them back to the home page for easier navigation.

5

Upon starting up the app, you’ll first see the splash screen that displays the app’s
official logo which loads into the account registration page.

Figure 1: How the home page will look to the user

Figure 2: Transition from the splash-screen to the register screen

6

The registration page (Transitioned from Figures 1 to 2) will allow users to create an
account and add their details (age, gender). It also contains a button for moving to
the login page if the user has made an account beforehand. The login page does
have similarities to the registration expect it lets registered users re-enter their
account once they made an account and return to the homepage. The additional
register button takes you back to the registration page if you haven’t made an
account beforehand (Navigation would be Figure 2 to Figure 3 and vice versa).

Clicking on the first button titled Speak Audio (Figure 4) will bring you to the Speech
to Text page (Figure 5). Here, users can click on the microphone button to activate
the speech recogniser technology to record and grab text from any audio it finds.

Figure 3: The overall look of the login screen and the required credentials

7

When the microphone button is clicked, you’ll see a screen prompting to say out
loud your medication instructions. Once you do that, whatever text was found from
the audio will be shown on the box. Next to the microphone is the button that can
allow you to copy the text onto your phone’s clipboard.

The camera page lets users use the camera feature to take a picture of a medication
box or writing and click another button to use an OCR to scan for any text (From
Figure 4 to 5).

If the user clicks the “Create a Reminder” button, they’ll be taken to the following
screen. Choosing the first button will take you to your Google Calendar where you
can paste the medication instrcutions you got from the Speech to Text page to the

Figure 4: Going to the Recognise Audio page from the home page.

Figure 5: Clicking on the microphone will lead to this prompt where users can say their medication instructions
out loud. The recogniser technology will then produce the found text into the grey text box.

8

calendar reminder field and can adjust it to however long you want it to be. One
thing to note is that when you first start it out, it will ask you to sign in to your Gmail
account but luckily you’ll only have to do it once. When you save it, the reminder
should function as usual.

Clicking on the Notification Maker button will take you to a screen (Figure 6 from
image 1) where you can make a reminder with the Date Time Picker schematics
similar to the Real Time Bus App. Here, you can adjust the time for when to take
your medication by altering the time to what you want. Saving it will mean that the
alarm and notification will trigger at the designated time.

The contact page grants the ability to save contacts to a Firebase Realtime Database
and buttons that can let them send emails/text messages for when a user goes
through a medication. This will go from Figure 4 to Figure 7.

When the user enters the Contact List page, they should see a scrollable list of saved
contacts (if they saved one prior) and a series of buttons down below.

Figure 6: Demonstrating how the Google Calendar Intent object will function.

Figure 7: How a user can create a notification reminder to trigger at a certain time.

9

Clicking on the Add Contact button will bring you to a small pop-up window that can
allow you to enter a name, email address and telephone number for a contact.
Saving it will add the entry into the list view which also contains two buttons: Edit
which lets users alter any of the three fields which are then displayed when saved or
Delete which will remove the contact entry if you no longer need it.

Clicking on the Email Maker will take you to a page that can let you craft an email to
a contact to say that you’ve taken your medication. Once the sender, subject and the
email body is all filled in, you can click a button that can take all of these and put
onto a draft in Gmail. After sending you’ll need to exit from Gmail and go back to the
MedsUpApp using the back button. (Figure 8 from Figure 4)

If you want to send a text message instead, clicking on the button titled “Text
Maker” will bring to this page. Here, to send a text message, you’ll need to enter a
phone number and type in a message in the field below.

Then, click the Send button to send the text message which should display a
notification saying that it went through.

Figure 8: Demonstrating how a contact entry can be added to the database and how the email maker will
function in conjunction with Gmail.

10

The profile page is where the user’s account details are stored and displayed to the
user. It will take the desired account information from the users table in the
database and place them in the appropriate fields. Important note is that the profile
functions on the Realtime Database while the registration and login pages work
under the Firebase Authentication schematic. Like all the other pages, there’s a
home page button for smoother navigation between pages (In Figure 10, indicated
by the red arrows).

Figure 9: Demonstrating the page where users can send text messages to users.

11

Selecting the “Add Medication” button will bring you to the designated page
featuring a scrollable list of saved medication items. Clicking the add medication
button will bring you to a pop-up where you can add a name of the medication and
the instructions for them. Saving them will add the entry box onto the list and
feature two extra buttons inside. “Edit” involves editing the fields of an entry and
saving them accordingly and “Delete” will remove the entry from the list.

Selecting the “Add Diagnosis” button will bring you to the designated page featuring
a scrollable list of saved medication items. Clicking the add medication button will
bring you to a pop-up where you can add any known medical diagnosis that a user
may have. Saving them will add the entry box onto the list and feature two extra
buttons inside. Edit involves editing the fields of an entry and saving them
accordingly and Delete will remove the entry from the list (A three way system in
both figures 11 and 12).

Figure 10: Transition from the home page to the User Profile. Also showcases what should happen when the
profile is viewed by the user.

Figure 11: Demonstrating the CRUD functionality in the Add Medication Page

12

2.1.1.1. Use Case Diagram
2.1.1.2. Requirement 1: User Registration
2.1.1.3. Description & Priority
The use case allows users to create a new account to be given access to the app’s
functionalities and features. It’s essential since it’s needed to save user details to the
Firebase database.

2.1.1.4. Use Case S1
Scope

The scope of this use case is to offer users the ability to register a new account.

Description

This use case describes the new user registration methodology.

Figure 12: Showcasing the CRUD functionality for any known medical diagnosis.

13

Use Case Diagram

Flow Description

Precondition

The system opens at the registration page

Activation

This use case starts when a user opens the app and wishes to make a new
account

Main flow

1. The user types in all the fields needed for a new account to be added to
the database

2. The system takes all of the details and adds them into a user table on
Realtime (See A1)

3. The system then moves to the Log in(See E1)
4. The User logins in with their email and password

Alternate flow

A1 : Go to the Login Page
1. The system will have the user details saved on the database

Figure 13: Use Case Diagram for the User Registration and Login

14

2. The User will click on the button that will take them to the login
page.

3. The use case continues at position 3 of the main flow

Exceptional flow

E1 : Missing Details
4. The system will recognise the missing fields and inform the user of it.
5. The User will need to fill the fields.
6. The use case continues at position 4 of the main flow

Termination

The system presents the next stage which is the home page

Post condition

The system goes into a wait state

2.1.1.2 Requirement 2: Text Recognition

2.1.1.2.1 Description & Priority
The use case allows users to create a new account to be given access to the app’s
functionalities and features. It’s essential since it’s needed to grant authorisation from
Firebase.

2.1.1.3.2 Use Case S2
Scope
The scope of this use case is to use the camera interface to take a picture and
recognise the text to produce the text results

Description
This use case describes the camera and text recognition features.

Use Case Diagram

15

Flow Description

Precondition

The system enters the camera page when the button is clicked.

Activation

This use case starts when a user activates the camera

Main flow

1. The system will ask for permission when the camera is used.
2. The User allows the permission grant and takes a photo of some text.
3. The system will activate the OCR to find the required text
4. The User can then either copy text to a clipboard or make edits to the text result.

Figure 14: Showcasing the text recogniser functionality.

16

Alternate flow

A1 : Edit Text Results
1. The system takes the user to a page with the found text to make any

edits.
2. If step 3 of the main flow succeeds, then the user will make edits for

any perceived orders from a GP.
3. The use case continues at position 4 of the main flow

Exceptional flow

E1 : No Text Found
4. The system will run the text recognition technology but find no text in the

photo
5. The User will need to then choose/take a picture of text to remedy it
6. The use case continues at position 4 of the main flow

Termination

The system will save the edits to a clipboard and returns the user to the home
page.

Post condition

The system goes into a wait state

2.1.1.3 Requirement 3: Calendar

2.1.1.3.1 Description & Priority
The use case lets users interact with a calendar layout to paste in the medical
information in a chosen date and set the duration and alarm reminders which is passed
as a notification.

2.1.1.3.2 Use Case S3
Scope

The scope of this use case is to allow a user the ability to use a calendar and
enable a reminder which can display the medical information via notifications

Description

This use case describes the calendar interface.

Use Case Diagram

Figure 15: Use case diagram for how users can add reminders to the
Google Calendar

17

Flow Description

Precondition

The system is in the calendar page for the current month.

Activation

This use case starts when the user will click on the Calendar button.

Main flow

1. The system identifies the current month and date
2. The User will choose a date and paste the text into the fields while setting the times

for it.
3. The system will save the reminder and the calendar will display it accordingly.
4. The User can click on the date to see the newly created reminder

18

Alternate flow

A1 : No reminders added
5. The system will display the current date without reminders
6. The User can see the default calendar view with no events added.
7. The use case continues at position 2 of the main flow

Exceptional flow

E1 : No entries filled
8. The system will remind user if they want to continue.
9. The user will choose Yes to exit.
10. The use case continues at position 4 of the main flow

Termination

The system presents the calendar view to the user

Post condition

The system goes into a wait state

2.1.1.4 Requirement 4: Adding contacts

2.1.1.4.1 Description & Priority
The use case lets users enter and save contact information onto the database once
certain specified information requirements are met. They can even edit and remove
saved contacts if they wish to do so.

2.1.1.3.2 Use Case S4
Scope

The scope of this use case is to allow a user the ability to enter details of a
potential emergency contact via the CRUD methodology (Create, Read, Update,
Delete).

Description

This use case describes the adding contacts interface.

Use Case Diagram

19

Flow Description

Precondition

The system is in the Contact list page

Activation

This use case starts when a user activates the Add Contact Button

Main flow

11. The system identifies any contacts that were saved (if applicable)
12. The User will add all of the details
13. The system will save the information to the database and in the list
14. The User will be able to see newly create contacts.

Figure 16: Use Case Diagram for adding contacts and sending messages and emails to
them.

20

Alternate flow

A1 : Send text/email
15. The system will let the user confirm the email to send to the contact
16. The User will allow the confirmation needed for the email.
17. The use case continues at position 3 of the main flow

Exceptional flow

E1 : No fields filled
18. The system will confirm that no edits are made to the contact
19. The user will add the details if they decide to do so
20. The use case continues at position 13 of the main flow

Termination

The system presents the updated contact list.

Post condition

The system goes into a wait state

2.1.1.5 Requirement 5: Update User Profile

2.1.1.5.1 Description & Priority
The use case is where the user profile will be created when the user creates a new
account and allow for the addition of new user details.

2.1.1.3.2 Use Case S5
Scope

The scope of this use case is to allow a user the ability to view and edit their user
profile to add any more information they want to confirm.

Description

This use case describes the user profile.

Use Case Diagram

21

Flow Description

Precondition

The system will be in the direction of the user profile

Activation

This use case starts when a user clicks on the Edit Profile Button.

Main flow

21. The system identifies the button click and brings the user to Edit page
22. The User will be able to make any edits to the profile variables
23. The system will check for any confirmed edits done and if so, will save it

to the database.
24. The User will be able to see their confirmed profile edits.

Figure 17: Use case diagram for the User Profile

22

Alternate flow

A1 : No edits made
25. The system will display a message saying no edits were made.
26. The User will be directed back to the home page
27. The use case continues at position 3 of the main flow

Exceptional flow

E1 : Fields not filled in
28. The system will say that the fields must be filled in
29. The user will add in the details needed to confirm the edits
30. The use case continues at position 4 of the main flow

Termination

The system presents the newly edited profile to the user.

Post condition

The system goes into a wait state

List further functional requirements here, using the same structure as for Requirement1.

2.1.1 Data Requirements
To save user accounts, contact details and medical tables, users will need to enter data for
certain fields so that the Realtime Database can be able to save the data for the
aforementioned tables. This is also essential since there will be instances where stored data
will be retrieved for any updates to the user profile and/or the contact information.

On top of that, for the login schematics, the email and password for each user is stored in
order to allow post-registered users to enter back into the application’s home page. The two
fields are also enhanced with a Firebase Authentication schematic to help ensure secure
information storage.

2.1.2 User Requirements
When a person uses the application on their phone, they will need a page that can let them
register their account by entering their email and password and personal details.
Incidentally, users will also require a home page to clearly specify what the app is all about
and what functions it will provide. Each service page will have simple instructions on how
users can navigate through each functionality.

2.1.3 Environmental Requirements

2.1.4 Usability Requirements

23

2.2 Design & Architecture
The Architecture Diagram centers around 3 tiers.

When the user registers a new account in the system, the database will take the user
account details and save them to a table within the Realtime database. A Firebase
authentication object is used to help add a layer of security to the user object. Then, when a
user wishes to view their profile, the Realtime database will find the right user entry using a
designated ID to ensure the user is found easily. Then the account details will be stored in
the correct parameters.

Here, the CRUD functionalities are identical for adding contact, medication information and
diagnoses. When a user fills in the required information parameters then the database will
add them to their respective tables. If an entry has been updated, then the database will be
able to adjust to the changes using an id to ensure that the chosen data entry will match up

Figure 18: Architecture diagram demonstration processes and actions within each page of the
application

24

with what’s inside the table. The same logic will also apply for when a data entry is removed
as the database will use an id to find the entry that will be removed from the table.

For the speech to text recogniser, the user will click on the microphone causing the system
to display the prompt which allows for audio to be recorded. Once the text has been found,
the system should in theory, display the acquired text to the user allowing them to edit it to
how they see fit.

For the email and calendar schematics, the user will click on the respective buttons which
will trigger the system to bring to Gmail/Google Calendar where the user can fill in the
required fields (email address, subject and content for an email and frequency and dates for
a calendar event).

As for the notification maker, the user will save a title and a designated time for an alarm to
trigger. The system should save the notification and activate it when the assigned time is
reached (e.g. the alarm will go off at 4:15pm today).

For the class diagram, there’s around 7 tables in total. Initially, I planned to have a calendar
table but after some reflection, I realised that it seemed a little arbitrary to have. This is also
because it’s possible to make a recreation of Google Calendar and its reminder systems or
even using an API for the former to work.

Figure 19: Class diagram for MedsUpApp

25

2.3 Implementation
As mentioned previously, my initial plan was to use Ionic to develop my application.
Unfortunately, during my research and practice, I had some struggles with trying to
make the database storage and the text recognition work for me. After a few discussions
with my supervisor, I decided to stick to Android Studio and Java as the latter is the one
programming language that I have studied the most. In a somewhat similar vein in terms
of databases, I initially decided using Realtime Firebase for saving CRUD data but after
some difficulty with preventing saved data entries from bleeding in user sessions, I went
with FireStore since there was more tutorials that covered saving CRUD data via user
IDs.

Below are several code snippets with comments that specify what goes on in each code
line:

Profile.java:

Figure 20: Demonstrating how a profile is created for a user.

26

Figure 21: Demonstrating how a profile can be shown to a user.

27

EditProfile.java:

28

Figure 22: How the Profile changes are confirmed to the user and how they’re added to the profile.
See screenshots above.

Figure 23: Acquiring data from the user table and how a profile field can be checked
for any changes.

29

SpeechToText.java:

Figure 24: Showing how the microphone functions.

Figure 25: How the found text is produced and the schematics for the copy button

30

Login.java:

Figure 26: The fact checkers for user login schematics.

Figure 27: Adding authorisation for a user logging in.

31

AddReminder.java:

EmailMaker.java:

Figure 28: Parameters for a Google Calendar event notification

Figure 29: Showcasing how a formatted email is set up in Gmail.

32

TextMaker.java:

NotificationCreator.java:

Figure 30: The parameters for sending a text message to a recipient.

Figure 31: The methods for setting a reminder time, via the Calendar instance.

33

ContactBox.java:

Figure 32: Methods for confirming and cancelling a newly created alarm respectively.

Figure 33: The instantiable class that allows the application to collect all of the saved contact notes in their
designated database table.

34

ContactNotes.java:

ContactNoteAdapter.java:

Figure 34: Gathering the saved contact notes from FireStore and setting up
them in a list view.

Figure 35: Setting the ViewHolder for the Adapter object for Contact Notes with an object of the instantiable
class.

35

ContactDetails.java:

Figure 36: The ViewHolder binder and initialising the note item for Contact notes.

Figure 37: The method where a user deletes a Contact note from its FireStore Database table.

36

Figure 38: The method where a user saves a Contact note to the FireStore Database table using a designated ID.

Figure 39: The first save note method which uses an object of the instantiable class.

37

DiagBox.java:

DiagnosesNotes.java:

Figure 40: The instantiable class that allows the application to collect all of the saved diagnosis notes in their
designated database table.

Figure 41: Gathering the saved diagnosis notes from FireStore and setting up them
in a list view.

38

DiagnosisDetails.java:

Figure 42: The method where a user deletes a Diagnosis note from its FireStore Database table.

Figure 43: The first save note method which uses an object of the instantiable class.

39

DiagNoteAdapter.java:

Figure 44: The method where a user saves a Diagnosis note to the FireStore Database table using a
designated ID.

Figure 45: Setting the ViewHolder for the Adapter object for Diagnosis Notes with an object of the
instantiable class.

40

DiagNoteAdapter.java:

MedicBox.java:

MedicNotes.java:

Figure 46: The ViewHolder binder and initialising the note item for Diagnosis notes.

Figure 47: The instantiable class that allows the application to collect all of the saved medication notes in their
designated database table.

Figure 48: Gathering the saved medication notes from FireStore and setting up them in a list view.

41

MedicDetails.java:

Figure 49: The first save note method which uses an object of the instantiable class.

Figure 50: The method where a user saves a Medication note to the FireStore Database table
using a designated ID.

42

MedicDetails.java:

MedicNoteAdapter.java:

Figure 51: The method where a user deletes a Medication note from its FireStore Database table.

Figure 52: Setting the ViewHolder for the Adapter object for Medication Notes with an object of the
instantiable class.

43

MedicNoteAdapter.java:

Figure 53: The ViewHolder binder and initialising the note item for
Medication notes.

44

Register.java:

Figure 54: The process of adding authentication to a new user.

45

Figure 55: The method used to register a new User to the Database table.

46

SplashScreen.java:

Figure 56: Demonstrating what makes a Splasher screen and how the app's logo is displayed for
branding and aesthetics.

47

2.4 Graphical User Interface (GUI)

Registration Page:

When the user boots up the app, they will be taken to the registration page which allows users to
register their information to create an account. If the fields are empty, the system will notify the
user to fill them in so that the user account can be confirmed into the Firebase database user table.
If they already created an account, they could click the button below the Register Account one, to
log in.

Figure 57: Registration page with an option to log in if a user has
logged in previously.

48

Login Page:

In the login page, users only need to enter their usernames and password to enter the home page if
they have already made an account prior. Otherwise, the query button below the Registration page
will be used to create an account.

Figure 58: The overall layout of the login page

49

Home Page:

Once the users make it through either pathway, they’ll be taken to the home page which gives a
brief description on what each page does and offers buttons to access said pages. There’s even a log
out button to exit the application.

Figure 59: The home page featuring a description of what you can do
in the application.

50

User Profile and Edit Pages:

In the user profile, the user account details will be searched in the database and taken to display
them in the profile. The edit profile page will allow users to change any of the fields to whatever
they see fit. Once they click the save button, the new user details will be added to the current
profile.

Figure 60: The user profile which acts as a sort of data retrieval
function.

51

Contacts Page:

In the contacts page, a user can add a note containing information about a contact by entering their
name, email address and phone number.

Once the details are added, the contact can be saved to a database table and will be displayed in the
following format as seen in the image below.

Figure 61: The menu that displays saved contact notes.

Figure 62: The layout of the note’s contents (title and content)

52

If a contact is chosen to be deleted, the message found at the bottom of the page will be used to
confirm if the user wants to go through with this. If they click it, the contact will be permanently
deleted, if they choose not to, the contact will remain in the list.

Figure 63: How a contact entry will appear when saved on the respective list.

53

Email Maker page:

When the user goes into the email page from the add contact one, they’ll have to type in an email
address, the subject of the email and the message body. In this case, letting a contact know you took
your medication for the day. When you click on the format email button, it can take you straight to
your Gmail. As with the calendar maker button, you’ll be asked to login to your Gmail but only once.

Figure 64: The email maker page layout

54

Speech to Text Page:

In the speech to text page, you should see a microphone button and an empty text box. The user
needs to click on the microphone which will showcase a prompt for the user to say their medication
instructions out loud. Once the recogniser technology finds all of the words in the captured audio,
the text box will display these words and the user can click on the “Copy Text” button. Doing this will
save the text onto the clipboard.

Figure 65: The speech to text page which functions similar to the
microphone option in YouTube and Google Translate.

55

Text Message Maker Page:

In the add contact list page, clicking on the button titled “Send Text” will bring you to the Text Maker
page. In a somewhat similar vein to the Email Maker page, you’ll be able to notify a contact by text
message. This will typically require both a contact and a message containing text, i.e., “Message: I
just took my medication for the day/I finished my medication round”.

Figure 66: The text message maker page and a button to go back to the Add Contact List.

56

Add Reminder Page:

In the add reminder page, you’ll be presented with two options, one where you can paste the
medication text found in the Speech to Text page into a Google Calendar reminder and the other can
allow you create a notification reminder that will activate when set to the desired time. The latter
option was added to give the user some flexibility in terms of how they want to make a medication
reminder for themselves.

In the former option, they’ll taken to their Google Calendar and will be asked to sign into their Gmail
to save and create a reminder on it. Fortunately, if you already signed in, you’ll only be asked to do
this once. The code in the Java page for AddReminder is designed to be set to a frequent reminder
since realistically, medication rounds will happen in the span of a week or 2 depending on what their
doctor/GP advised them.

Figure 67: The layout for the Reminder Creator page and the buttons provided.

57

Notification Creator Page:

When the user clicks on the button titled “Create a medical notification”, they should see this page
containing a reminder title and a Time Picker which is used to set the reminder to activate at a
certain time (Trigger at 5:20pm for example). Once you’re happy with everything, you can click on
Finish to save the notification and it should activate at the specified time. The clock selector will
function similar to the one found in the Real-time Bus App (Can be navigated from the Calendar
Intent in Figure 67 and from the home page in Figure 59).

Figure 68: The page for creating a notification and the Time Picker used to create a timed alarm.

58

Add Diagnosis Page:

When the user clicks on the “Save Diagnosis” button in the home page, they’ll be taken to this page
where a user can record any known medical diagnosis/conditions into a table on the database. They
can also remove an entry if they’re in remission or no longer have said diagnosis.

Figure 69: The page for adding medical diagnoses to the FireStore Database.

59

After clicking the add button, the user should see a pop up where they must enter a medical
diagnosis they may have.

If a user wants to delete a diagnosis (if a user has had cancer and are in remission now for
example), the message found at the bottom of the page will be used to confirm if the user wants
to go through with this. If they click it, the diagnosis note will be permanently deleted, if they
choose not to, the note will remain in the list.

Figure 70: How a saved diagnosis entry will look when saved to the list

Figure 71: The popup used to save a diagnosis entry to the database.

60

Add Medication Page:

When the user clicks on the plus button in the home page, they’ll be taken to this page where a user
can record any medication and its instructions into a table on the database. They can also remove an
entry if they’re no longer taking said medication.

Figure 72: The page for adding medication information to the FireStore Database.

61

After clicking the add button, the user should see a pop up where they must enter a prescribed
medication they may be taking, and the instructions assigned to them.

Saving the entry will lead to a list object created to be added to the Medication Entry List.

If a user wants to delete a medication (if they’re no longer taking it for example), the message
found at the bottom of the page will be used to confirm if the user wants to go through with
this. If they click it, the diagnosis note will be permanently deleted, if they choose not to, the
note will remain in the list.

Figure 73: The pop up that users will use to save medication information to the database.

Figure 74: The medication entry list that will be shown when an entry has been
saved to its respective table in the database.

62

2.5 Testing
 For the test plan, I tested the CRUD functionalities (adding notes of medication and
diagnosis information and contact details), the Google Calendar Intent and finally the
reminder alarm creator.

CRUD functionalities were tested via White-Box testing which involves executing all
program statements. I started by setting up 5 examples of test users with made up
account details and CRUD note information as seen in this screenshot below.

Test case 1:

User profile:

Figure 75: Series of test user cases and test data

Figure 76: Test user 1 profile with confirmed details

63

Contact note:

Diagnosis note:

Medication note:

Test case 2:

User profile:

Figure 77: Saved contact note for Test user case 1.

Figure 78: Saved diagnosis note for Test user case 1.

Figure 79: Saved diagnosis note for Test user case 1.

Figure 80: Saved user profile for Test user case 2.

64

Contact note:

Diagnosis note:

Medication note:

Figure 81: Saved contact note for Test user case 2.

Figure 82: Saved diagnosis note for Test user case 2.

Figure 83: Saved medication note for Test user case 2.

65

Test case 3:

User profile:

Contact note:

Diagnosis note:

Figure 84: User profile for Test user case 3.

Figure 86: Saved diagnosis note for Test user case 3.

Figure 85: Saved contact note for Test user case 3.

66

Medication note:

Test case 4:

User profile:

Contact note:

Figure 87: Saved medication note for Test user case 3.

Figure 88: User profile for Test user case 4.

Figure 89: Saved contact note for Test user case 4.

67

Diagnosis note:

Medication note:

Test case 5:

User profile:

Figure 90: Saved diagnosis note for Test user case 4.

Figure 91: Saved medication note for Test user case 4.

Figure 92: User profile for Test user case 5.

68

Contact note:

Diagnosis note:

Medication note:

I also used Espresso to record functional tests. These involved starting from the login
and registration pages and creating some test examples for the note maker functions,
creating a reminder with the Google Calendar intent and editing a user profile.

In Figure 96, the following generated code from the 1st recording illustrates some of the
saved edits made to the user profile which also reflected in the Firebase user table
entry.

Figure 93: Saved contact note for Test user case 5.

Figure 94: Saved diagnosis note for Test user case 5.

Figure 95: Saved medication note for Test user case 5.

69

And with the 2nd Espresso recording, according to Figure 97, the following code in the
associated screenshot will replace the blank page entry with the confirmed note
information for saving a contact note’s title and details. This logic will also apply to the
other CRUD note functionalities (Incidentally, medication and diagnosis all have identical
functions to the contact note one).

I also carried out White Box Testing throughout the development of my application. This
in turn consisted of testing out the application on my own phone and trying out the
functions one at a time based on high and low priorities respectively.

Each time I added a new function page, I’d always test it to for any bugs, errors and if the
code is carrying out the way it’s declared in the application’s code schematics.

Figure 96: Profile entry edits made in the first Espresso recording.

70

During one of my Project supports, my lecturer noted how with RealTime Database, the
CRUD entries saved from past user sessions would carry over each time, which was a close
call since had I not noticed the error sooner, it could’ve potentially caused some dire
cybersecurity risks.

I also carried out White Box Testing throughout the development of my application. This
in turn consisted of testing out the application on my own phone and trying out the
functions one at a time based on high and low priorities respectively.

Each time I added a new function page, I’d always test it to for any bugs, errors and if the
code is carrying out the way it’s declared in the application’s code schematics.

During one of my Project supports, my lecturer noted how with RealTime Database, the
CRUD entries saved from past user sessions would carry over each time, which was a close
call since had I not noticed the error sooner, it could’ve potentially caused some dire
cybersecurity risks.

Unit testing involved testing out a few core functionalities with minor code modifications.
For all 3 CRUD functionality pages, I decided to test out the method involving saving CRUD
notes and returning them as a complete String object via the combining of both a note’s
title and its content.

Figure 97: Added contact note and designated content of note
body from the second Espresso recording.

71

The typical test case I coded out in Android Studio will look something like this:

The basic idea in this test method is to use pre-written note information and combine them
into a single String. When I run the test case, it will trigger the combined note content and
title as one String value.

2.6 Evaluation
After conducting the 5 test cases, the 3 CRUD functionalities are working as they were
intended and coded out. I also tested out the speech to text recogniser and the Calendar
objects. For the email maker and Calendar Intent, the user will be prompted to log into their
Gmail accounts for these functions, but they’d be only asked to do this once.

The alarm reminder function took some time to implement and code since the reminder will
trigger 2 minutes after the intended time but I figured out from a tutorial about the
functionality, that the reminder will still trigger even if it’s in-between the seconds of a
specified time; like how if the reminder is set for 12:00pm, the alarm will still trigger if it’s 30
seconds after 12pm.

I also used Snyk, which is a website that, according to the company’s website (Snyk, 2023)
allows users to import their application’s code and cloud environments to scan and fix any
security vulnerabilities and known issues found in the code. Through an analysis of

Figure 99: Project timeline and stages

Figure 98: Test case example for CRUD Note

72

MedsUpApp’s Git repository, it was discovered that there no issues in the project’s code
files, Gradle setups and dependency builds.

Figure 100: Code analysis results from Snyk.

Figure 101: Gradle build analysis result from Snyk.

73

In the Profiler screenshot down below, the application consumes around 256 megabytes
worth of memory while the amount of energy consumption is on a medium-scale at the
start of the application working but the more time spent on the application, the energy
consumed grows smaller. As such, the energy gauge ranges from medium (application
session start) to light (middle and end of application session). CPU consumption is on a
similar observation since at the start of the application working, it goes from 21% to 0%
which wildly varies depending on the functionality that the user will trigger.

3 Conclusions
The advantage to using Android Studio was that I was able to better utilise my knowledge of
Java since the former has a lot of similar code methods, I’ve studied previously such as
instantiable classes converted into ArrayList objects. On top of that, I’ve had a lot of creative
liberty in placing certain visual features and deciding on a more consistent color theme. This
is why the app’s color scheme mostly consisted of white and green, since they’re a constant
color scheme associated with hospitals and chemists.

The biggest limitation with Android Studio is that when it came to developing the
application, it seems very delicate since one tiny change can lead to the entire project
having errors in a few areas. On top of that, I had to work under some design constraints.
For example, for the Add Contact page, the tutorial I found as part of my research used a
LinearLayout format for the page’s layout so that meant I had to work within that
confinement which is why the buttons I added had to remain at the bottom or it would
cause the layout of the page to look out of sync position-wise.

Finding tutorials for the Firebase RealTime Database utilisation had some difficulty since
certain videos I found on YouTube had methods that would be outdated or may not work

Figure 102: Profiler charter for MedsUpApp.

74

when I tested out the code. Fortunately, I did find out that any deprecated code was able to
function regardless. Not to mention because Realtime Database is a NoSQL database, I had
to rely on other methods to allow the app to be able find the right table entries for both the
user and the CRUD pages. Fortunately, according to Odhiambo (Odhiambo, 2022), there’re
quite a few workaround ways when it comes to sorting and filtering Firebase data. With the
use of the orderByValue, orderByKey and orderByChild methods, the application can sort
out the data by both using child and key values as a reference point. This in turn, gives it a
sort of semblance of linked database tables.

But during the final stages of development, I found out that saved CRUD data entries from
past user sessions were bleeding into each other and could potentially pose a cyber-security
risk. After finding no video tutorials for configuring user IDs for CRUD data with RealTime
Database, I eventually attempted a tutorial that used Cloud FireStore Database which
thankfully managed to work in my favour.

Then for the user login, for some reason despite an account being saved onto the users
table, the app would remain at the login screen with a notification saying to check user
credentials. As such, I had to create an extra if else statement with the login confirmation
code pasted inside which was the only way that it was guaranteed to work 100% of the
time. The speech to text recognition works better when testing it out on actual Android
phones as when it’s done in emulators, it stops when I click on the microphone button.

Overall, the application’s development history has had its fair share of peaks and valleys
from conception to implementation, though if nothing else, I was able to develop a fully
functioning app ready made for Android smartphones.

My application’s Git repository is in this link:
https://github.com/Efeighery/MedsUpReminder

4 Further Development or Research
If I had extra time and resources for MedsUpApp, it would’ve taken a direction of being on
both Android and IOS platforms for cross-technological accessibility. I also feel that it would
be an interesting challenge to have implemented both speech-to-text and image-to-text
recognition; the latter of which could work like the likes of Cam Scanner and/or Google
Translates camera transcribe feature.

Additionally, I’d have more time to deploy it to Google Play Store in the near future since
while I gave it a shot to be sure, I realised it would take a lot more time to do that but I’ll put
that on the back burner for the time being.

5 References

Firebase, G., 2023. Firebase Realtime Database. [Online]
Available at: https://firebase.google.com/docs/database
[Accessed 4 March 2023].

https://github.com/Efeighery/MedsUpReminder

75

Medicare.org, 2023. 5 Best Pill Reminder Apps. [Online]
Available at: https://www.medicare.org/articles/5-best-pill-reminder-apps/
[Accessed 1 May 2023].

MediSafe, 2023. Medisafe Pill & Med Reminder. [Online]
Available at:
https://play.google.com/store/apps/details?id=com.medisafe.android.client&hl=en&gl=US
[Accessed 1 May 2023].

MyTherapy, 2023. MyTherapy Pill Reminder. [Online]
Available at:
https://play.google.com/store/apps/details?id=eu.smartpatient.mytherapy&hl=en&gl=US
[Accessed 1 May 2023].

Odhiambo, B., 2022. Implementing Custom Searching and Filtering in Firebase Database in Android.
[Online]
Available at: https://www.section.io/engineering-education/custom-searching-and-filtering-in-
firebase-database-in-android/
[Accessed 14 February 2023].

Snyk, 2023. Introducing Snyk. [Online]
Available at: https://docs.snyk.io/getting-started/introducing-snyk
[Accessed 25 April 2023].

Treichler, C., 2022. THE 10 BEST MEDICATION REMINDER APPS. [Online]
Available at: https://www.onlinedoctor.com/best-medicine-reminder-apps
[Accessed 1 May 2023].

6 Appendices
6.1 Project Proposal
The main objective that I want to achieve with this project is to design a scanner for mobile
devices that can scan the front of a prescribed medication (cream, pills, medicine) to
produce a list of instructions for how and when to take them.

Another objective is to investigate how to figure out how I can create a feature that can add
the list to the user’s Google Calendar. Also, I would need to research how to program a
notification feature and implement to function properly on after every 3 or 4 hours.

Finally, I want to be able to figure out what I can do to synchronise the reminder to the
user’s relatives where it can send a message to notify them that the former has or hasn’t
taken their medication yet.

That last functionality would need to be able to send an automatic message to their phones
which can produce updates in the same time interval that I outlined in the second objective
above.

I chose to undertake the project because I feel that, in the aftermath of the Covid-19
pandemic, people have become a lot more self-conscious about their health conditions and

76

naturally, they have been a lot more worried for their elderly relatives. Another common
aspect is that with everyone gradually returning to college, work and/or school after almost
two years of quarantines.

With that busy state of mind, we also may end up forgetting to take any prescribed
medication amidst the hustle and bustle of day-to-day life. In fact, if we had a little reminder
about taking them every day, people wouldn’t be as stressed about forgetting about it.

Since one of my aims is to create a camera scanner like the kind that can scan documents, I
would need to research how I can build a scanner program to work for smartphones and
look at how the code functions that way. Additionally, I plan to research how to program a
reusable pop-up notification and figure out how I link it with the scanner application.

For the Google Calendar synchronisation, that also needs a look into online examples to see
if it’s possible to code up the share options that usually seen in messaging apps like
WhatsApp. The automatic text message will need to be researched as well to see how it
works.

6.2 Reflective Journals
Reflective Journal – October:

Supervision & Reflection Template

Student Name Eoghan Feighery

Student Number X19413886

Course Software Development BSHCSD

Supervisor Adriana Chis

What?

Reflect on what has happened in your project this month?

So far, I’ve submitted my Project pitch and have decided to use the Flutter technology for building my
application. But after talking with the Computing Project support supervisor, I decided to choose Ionic as my
official technology framework since I’ve more familiarity with CSS, JavaScript, and HTML.

For the testing phase, I decided to have certain members of my family to try out the app and give feedback
on how it functions, for any errors that still exists and if it does what it was designed to do.

I used Figma to chart out how the functions will play out, what the pages will look like and how they all
connect to each stage by stage.

So What?

77

Consider what that meant for your project progress. What were your successes? What challenges still
remain?

In terms of my project success, it means that I managed to make a starting point for the project. Not to
mention, since Ionic is entirely based on recognisable programming languages and it does have some
recognisable code structures. Of course, I still need to figure out how Ionic code is done and how an app for
it is developed with that technology. On top of that, I need to figure out how to store phone numbers in a
way that respects data privacy especially for underage and vulnerable users of the app. Then, I need to look
into how the camera scanner since I did find a guide for developing a camera and photo gallery using Ionic.

Now What?

What can you do to address outstanding challenges?

To resolve the challenges, I need to discuss my project idea further with my supervisor about how I can sort
out how to store phone numbers safely and securely, how to make the scanner work in conjunction with the
app and figure how to implement the log in system and data encryption.

For Ionic, I plan to have a look at a few tutorials and documentations based on Ionic so that I can have a clear
idea of how I can approach the code the application and what io expect with using the technology.

For the pop-up notification, I’ll need to investigate how I can make it when it scans an item to produce a small
list of instructions to be copied and shared with a device’s calendar app. For now, though, I’ll need to make
an ERD before I get to the complex coding schematics.

Student Signature

Reflective Journal – November:

Supervision & Reflection Template

Student Name Eoghan Feighery

Student Number X19413886

Course Software Development BSHCSD

Supervisor Adriana Chis

What?

Reflect on what has happened in your project this month?

 So far, I had a look at Ionic, but I was building the prototype for the app, I had some difficulties in trying to
implement the OCR technology and the Firebase database. After my talk with my supervisor, she suggested
to think over what you’re more familiar with.

78

And after a little bit of digging and thinking, I decided to stick with Android Studio and Java, so that I don’t
overthink on how my app will work on multiple platforms.

So What?

Of course, since I have a prototype that’s due a few days before Christmas, I’ll need to focus on getting the
OCR technology to work whilst also implementing a bit of the functionalities. Fortunately, my past attempt in
Ionic will suffice as a proof of concept.

Since this is a little tight, I will need to prioritize it as very important especially for the video demonstration
and other project commitments.

Now What?

What can you do to address outstanding challenges?

To better address the aforementioned potential hurdles, I’ll focus on the camera OCR function first since this
would be the more difficult functionality I’ll ever implement in this project. Then, I can add a little function to
the calendar page since I found out that you can add events via Google Calendar Intent.

As for the login credentials, I may need to move the age, gender and name into the User Profile and figure
out how to edit a User Profile like a reusable form. While this does seem like a tight schedule, at the very least
it’s still doable.

In hindsight, I probably should’ve just stuck to Android Studio from the very start, but at least I have a clear
view on the project now.

Student Signature

Reflective Journal – December:

Supervision & Reflection Template

Student Name Eoghan Feighery

Student Number X19413886

Course Software Development BSHCSD

Supervisor Adriana Chis

79

What?

Reflect on what has happened in your project this month?

After a chat with the college’s Computing Support lecturer, I had to rebuild the application from the ground
up to include the Realtime Firebase database. While I had some issues with confirming log-in functionality, I
was able to have a functional prototype with the CRUD functionality for adding and removing contact inputted
by the user.

So What?

After a little bit of digging, I found a series of videos that have more clearer and concise guidelines for the text
recogniser camera function, the Calendar intent object, and the notification creator.

For the latter two, it may be possible to have a page with two buttons; one can used to add the medication
reminder to the Google Calendar (if applicable) and another can be used to set a time for when the user can
take their medication and will produce a notification for this.

I also found a 4-video part playlist on YouTube where it’s possible to let users add events to a calendar and
display the notifications like that of Google Calendar.

Now What?

What can you do to address outstanding challenges?

For the time being, I’ll start with the text recognition functionality and the copy to clipboard combination
since that feature is the main focal point of MedsUp App. I’ll also make a spare copy of my current application
build which can be used for the aforementioned notification and calendar intent functionality page and will
asked my supervisor if this is feasible for the final build.

For the other build I have so far, I can test the calendar tutorial I found to check if it won’t cause any errors
when I run the emulator in Android Studio.

Student Signature

Reflective Journal – January:

Supervision & Reflection Template

Student Name Eoghan Feighery

Student Number X19413886

Course Software Development BSHCSD

Supervisor Adriana Chis

80

What?

Reflect on what has happened in your project this month?

With the midpoint submission over and done with, I got to work in trying to get the image to text OCR function
to work but unfortunately I wasn’t able to get it running on the emulator. After some thinking, I remembered
that there’s a functionality that can let you speak into a microphone and can produce the text captures from
your recording. I tested it out on my phone and to my delight, it was working in the way that it should plus it
can let users edit the text if a GP gave some changes to a medication prescription.

Additionally, I found out that people can add events to Google Calendar and compose emails with Intent
objects. This was a bit of an awakening to me since it can allow reminders to be added in a more consistent
fashion. Also, I added a timer as an alternative when people want to set a reminder without Google Calendar
and added a splash screen to my app for visual fidelity.

So What?

How I got the speech to text recogniser functionality to work is that I found a tutorial that was created recently
and then tried out a test version of it on my phone. Luckily it was functioning very well, and the text result
can even be copied to the clipboard by holding on the text field.

Next, I had to watch some tutorials to get a better understanding of how the Calendar and Gmail Intents can
work in Android Studio. Then I made a small test app for adding events to Google Calendar, texting a contact,
and using Gmail Intents. Upon testing, I found that all three of these functionalities worked effectively. Not
to mention, it would theoretically mean that the user would only need to log in to their Gmail account once
when they activate it the first time.

While I did try a 4-video playlist about making a Google Calendar clone in Android Studio, it did use a sort of
stylesheet type of thing that unfortunately I couldn’t find so I decided to scrap it.

Now What?

What can you do to address outstanding challenges?

For the user profile, I noticed that when I tried to run the Edit Profile function, it caused the emulator to crash.
After a little digging, I found a 3-part tutorial on YouTube where the login/registration leads into the user
profile page and allows the chance to edit the profile. So, this would mean that if I changed the journey from
the login page to the profile page and add a button to take users to the home page in the latter, I can avoid
the app crashing when I run it.

As I plan on having a function that can let users save medical details and medication details, I need to talk to
my supervisor about how I can approach. Ordinarily, that could mean taking the code I have for the add
contact page and modifying it for adding medical information. I could do 2 separate entry boxes though that
does run the risk of making the code looking all over the place; but it’s best to talk to Adriana first before I go
from there.

Student Signature

Reflective Journal – February:

81

Supervision & Reflection Template

Student Name Eoghan Feighery

Student Number X19413886

Course Software Development BSHCSD

Supervisor Adriana Chis

What?

Reflect on what has happened in your project this month?

At the start of the semester, I had an accidental run-in with some malware, and I thought my application was
ruined but luckily, I was able to recreate all of the pages and functions. I also managed to add an
authentication object to the registration and login systems as my supervisor suggested to help make user
account details more secure in Firebase.

Then, I made sure to create two extra CRUD functionalities for adding diagnoses and medication items which
wasn’t so hard to do since their functions are near identical to the one where users can add contacts. Finally,
I was able to test out a tutorial that allowed a user profile to display retrieved data from the database table
and managed to work as intended alongside the Firebase Authentication object mentioned in the above
paragraph.

I recently added my project onto a GitHub repository so that it can act like a spare backup and lets me
frequently update it as time goes on.

So What?

Since I technically have all the functionalities in my application completed, the next step would be to get
feedback on how the overall application functions, are all the functionalities working as they intended.

I would also need to figure out how I’ll carry out the testing for the application especially there could be bugs
that could severely cripple the app if left unchecked.

Now What?

What can you do to address outstanding challenges?

Since I have to demonstrate my application to my Computing Project support teacher next week, I’ll ask for
any feedback and suggestions since Android Studio can at times feel like a tightrope act when it comes to
testing out functionalities and applications. I’ll also ask my supervisor about how I can tackle the testing and
integration of my application since it’s essential for the Technical report documentation.

Student Signature

82

Reflective Journal – March:

Supervision & Reflection Template

Student Name Eoghan Feighery

Student Number X19413886

Course Software Development BSHCSD

Supervisor Adriana Chis

What?

I was able to implement the alarm clock feature and the text message and email creator functionalities. During
a Computing Project Support, I noticed that saved CRUD data entries from past user sessions were actually
bleeding into each other. After some research, I concluded that Firebase RealTime wasn’t the correct
database option for the CRUD functionalities.

So What?

Before I can start any testing with Espresso and dummy emails, I decided to investigate FireStore which is
another database that Firebase offers. After correctly implementing FireStore as a database, I found an hour-
long tutorial on YouTube which mentions how saved CRUD entries in FireStore can be tracked and uploaded
to specific user IDs. This involves with creating notes which functions very similar to the RealTime version of
CRUD functionalities.

Now What?

I’ve done the code for one of my CRUD entries which is saving notes about medication instructions. I’ll need
to do the same for the other two (diagnoses and contacts) but the overall code is pretty similar to my
aforementioned prototype. Because I have all of the other non-CRUD functionalities working, I can focus on
the FireStore database first and then worry about testing and using Espresso for my application.

Student Signature

Reflective Journal – April:

Supervision & Reflection Template

Student Name Eoghan Feighery

Student Number X19413886

83

Course Software Development BSHCSD

Supervisor Adriana Chis

Month: April

What?

I managed to complete some Whitebox testing for my Android application and also recorded a few Espresso
sessions. With that out of the way, all of the functionalities are functioning as they were all declared. All that’s
left for me to do is the documentation and the deployment for my application.

So What?

As for deployment, while I still plan to deploy my application for the Google Play Store in the near future, I
realised that it actually was technically optional. Not to mention the presentation video will take up to at least
by the start of next week at most if things go according to plan.

Now What?

I asked on my college WhatsApp for any other alternatives with deploying my application. One of my friends
suggested using F-Droid which is identical to Google Play Store except the former allows for free and open-
source applications. For the time being, I’ll look into the documentation my friend shared with me which
should take about the guts of an hour. If I don’t deploy it, it’s no loss since it wasn’t a mandatory requirement.

Although, the development of MedsUpApp was far from easy, I still feel proud knowing that I was able to at
least create a fully functioning Android application regardless.

Student Signature

	Executive Summary
	1.0 Introduction
	1.1. Background
	1.2. Aims
	1.3. Technology

	As for the database needed to store the user accounts, contact details and medication information, I plan on using Firebase. Firebase’s authentications offer backend services and UI libraries that can better authenticate users when they register for t...
	1.4. Structure

	2.0 System
	2.1. Requirements
	2.1.1. Functional Requirements
	2.1.1.1. Use Case Diagram
	2.1.1.2. Requirement 1: User Registration
	2.1.1.3. Description & Priority
	2.1.1.4. Use Case S1
	2.1.1.2.1 Description & Priority
	2.1.1.3.2 Use Case S2
	2.1.1.3.1 Description & Priority
	2.1.1.3.2 Use Case S3
	2.1.1.4.1 Description & Priority
	2.1.1.3.2 Use Case S4
	2.1.1.5.1 Description & Priority
	2.1.1.3.2 Use Case S5
	2.1.1 Data Requirements
	2.1.2 User Requirements
	2.1.3 Environmental Requirements
	2.1.4 Usability Requirements
	2.2 Design & Architecture
	2.3 Implementation
	2.4 Graphical User Interface (GUI)
	2.5 Testing
	2.6 Evaluation

	3 Conclusions
	4 Further Development or Research
	5 References
	6 Appendices
	6.1 Project Proposal
	6.2 Reflective Journals

