National
College o
Ireland

National College of Ireland

BSCH In Computing
Cyber Security
2022/2023
Nathan Andrews
X19135394
X19135394@student.ncirl.ie

Salt N Pepper

Technical Report

Contents

E X CUTIVE SUMIMIA Y e ittt e e et eee e e e et e s e e e e eeeeeeeaeaeaeeaeeaeeaeaeaaaees 2
0 R - = Yol €= o YU T o o SRR 2
00 N | o 4 [P OTSPOPRPP 3
0 T = Tol 1 Vo] o -V PSSP 3
Y ¥ ot (U o =TT PP PP 3

2.0 R =] 1 PRSPPI 4
0t T 0= Yo [81 =] o = o 4
2.1.1. FUNCLIONAl REQUITEMENTS...uiiiiciiiie ettt ettt e e e e s e e e e s bee e e e sabae e e eanres 4
2.1.1.1. USE CaSe DIQBIam ceceiiiiiiiiiiiiiieeeeeeeeeeee et e s e s 4
2.1.1.2. Requirement ENCIYPt FIlEueiiieiiee ettt e e e e e e e e e 4
2.1.1.3. [DTTY o gt o A To] </ o o o} 4V AR 4
2.1.1.4. USE CaS@ ..ttt e e s 5
2.1.1.5 USE CaSE DIABIram ..ccciiiiiiiiiiiiiiiieeeeeeeeeeeee ettt e e e e e e e e s 5
2.1.1.6 DesCription & PriOriTy «.ooeceeieieeee ettt e e e e s e s st ara e e e e e s s naabraaeeaeeean 5
2.1.0.7 USE CaS.iiiiiiiiiiiiiitiic ittt e a e a e e s era e e e snns 5
2.1.1.8 USE CaSe DIaBram ...cciiiiiiiiieiii e 6
2.1.1.9 Description & Priority e ———— 6
2.1.1.00 USE CaASL. ittt ettt e e sttt e e s st e e e e e s raeere e s s 6
D O B R U LY O R D I == -] o IO N 7
2.1.1.12 DeSCription & Priority cocuuieeeeee et e e e et e e e e e e st re e e e e e e s nnnnreneeeeeean 7
R T = = PPN 7
0 N B U L O Ty B - =4 =Y o PSP 7
2.1.1.15 DeSCription & PriOFiTY «oovceeiiieeeei ittt sttt e e st e e e e s s s satrbe e e e e e s s sasbenaeeees s 7
0t R U LY = = PSP OP PR PPRTY 8
N N B Y A U I O Tl B 1 - = - o IO PP 8
2.1.1.18 DesCription & PriOrity c.ceeeeieeieeeeeeeeeeeeeee e 8
B T R B U LY - 1Y OO P PP TP PPTTPTT 8
2.1.2. UsSer ReQUITEMENTS ..o aeesannees 9
2.1.3. Data ReQUITEIMENTS cooiiiieiiiiie ettt babebababebanere 9
2.1.4. (6 R o111 VA R (=T U1 =T g T=T L SR 9
2.2, DeSigN & ArChitECIUIEt e anrnaeees 10
D20 T 14 0 o] (= o =T | = o o [P RS 11

2.4. Graphical User Interface (GUI).....cccoveeeecrieeeenneenn.
2.5, TeStiNgeuieeeeeeeeee,
2.6, EValuationccceeieciiee e
3.0 CONCIUSIONS ..ottt
4.0 Further Development or Researchcccceeevevieennns
5.0 REfEreNnCeSoovieiieieeeeeee e
6.0 APPENICES...eiiiieieeciiieeee et e e e e e nenes
6.1. Project Proposal......ccccccecuiieerciieeinciieeerieee e

6.2. Reflective Journalscccceeviiiiiiiiiiiieieeeeceeee,

Executive Summary

This documentations purpose is to give a deep understanding of the inner workings, motives, users

needs, and functionality of the application as a whole.

The user should have Google Chrome installed. Then you can simply follow this link >Salt N Pepper<
This is a link directly to the Chrome store, from here the user only has to click add to Chrome to

install the application.

The purpose of Salt N Pepper is to provide the user with an easy-to-use application where they
have the power to control their own encryption. The idea is to offer a high-level encryption

standard to users without much technical knowledge.

Salt N Pepper allows users to generate RSA Public and
Private key pairs. Using an online decoder we can verify
the integrity of the key pairs as shown here on the right.
Any user can verify the integrity of their keys and be
assured they are using the proper standards.

Key Decoder Link: Click here (Paste details of public key)

The rest of the document will go further into some more
technical aspects of the application, including snapshots
of encryption code. There will be a follow-up link in that
section to GitHub instead of cluttering the document.

1.1. Background

Here are the details for your Public Key
Public Key Data

Key Algorithm: RSA
Key Size: 2048 bits

Raw Data

Array
(

[bits] => 2048

[key] => ----- BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9weBAQEFAAOCAQS8AMIIBCgKCAQEApGZclkdsd5vueDalmoa/
NcsS76wlk4Ai0cV+WCAZBdtDAGrR7QX/ZWUX12S07Bd16yX0Gp6SZ1HLD+eNa+h2
zcNsxjo@mQIZra®l70v6IIsfIc9eMEWALgWWPMCXxP447Uz3ScNoAaBok6+gMot/n
£83Zn0zp9g50RcFQGI96S1xIHRKXANPGFMbMjy/F++AaFaTef2CMrRYFZLYOtd13
8w9pBLg5CAhZ5F FUQ7nPIWLIW1CIMDXEKyyMtd TONOmKqGFrSF67 FHE+WWxc7plik9
ocywF6dgLMCAEAY6aPeoZ7Pxdg+ZmPAvA2r9jir3kDzoX1KTSwiobgFP2VfPozqV
XQIDAQAB

[rsa] => Array

The idea for Salt N Pepper came because of the fact that many people use services that are
encrypted, but are not necessarily in control of that encryption themselves. This was to
give users more control over their own data which they would like to encrypt privately.
This will allow users to generate their own keys and control the encryption they use, and
they can be assured that it Is safe as they have the key for decryption.

https://chrome.google.com/webstore/detail/salt-n-pepper/hgchhflninohbelkldhhedgblfabdcog?hl=en&authuser=0
https://report-uri.com/home/pem_decoder/

1.2. Aims
The project aims to achieve a high level of encryption.

AES Advanced Encryption Standard 256 Bt is one of the highest forms of encryption
standard available. This is a symmetric type of encryption that will offer ease of use for
the user. It acts like a password but on a binary level, the file is protected.

RSA Public Key Encryption, the application aims to use a hybrid version of AES and RSA.
This is because of the constraints of RSA to encrypt large data. It is more efficient to
encrypt large data with AES and then encrypt the AES encryption key with RSA Public
key encryption. This also gives 2 levels of encryption increasing the security to an even
higher standard.

1.3. Technology

The project will be integrated into Google Chrome as an e ' ™
(Tools |

extension the tools that will be available for the job are ‘

HTML, JavaScript, and CSS. Very much the same tools that

are available for Web Design. g :EE
CrytoJS will be the encryption framework that | will use to
implement the encryption standards.

HTML will be the format and layout of the pages itself. B

Bootstrap

Bootstrap | will use for styling which consists of CSS.

Node.js Selenium, and Mocha for testing the functionality
of the application. Mocha is a testing frame for Javascript JS J S
//I

to enable to use of testing syntax. We can then also
integrate selenium to run the application in the browser. \‘\\

This project purposely avoids the use of a database. This is to give more security to the
user knowing that there’s no information regarding their files or keys being stored
anywhere by third parties.

1.4. Structure

Functional Requirements: This section will provide the details as to what the user
should benefit from using the application. Use case diagrams to show interactions
between the user and the application. With further use case description providing
information on further details.

User Requirements: This section should demonstrate in terms that the user can
understand the functionality and requirements of the user and what can be expected
of the application.

Design & Architecture: This section will give a brief demonstration of the design and
architecture that is going to be used in the development of the application.

Implementation: This will provide a more detailed view of how the implementation of
the product will be done with code snippets of already completed project code. Using
the tools that are set out in the Design and Architecture

Graphical User Interface: This section illustrates the user interface of the application,
showing the navigation and the different pages of the application. There are many help
options and descriptions available to help the user fully understand the concepts and
how to use the application.

Testing: This section will go into the testing methods that were used in the project to
establish a more robust and professional product.

Evaluation: This section will go into the performance of AES encryption and other
standards that could be used.

Conclusions: This will consider the advantages and disadvantages of the project overall.

2.0 System

2.1. Requirements

Users would not require much more than 30 mins of training to be able to operate the
application. The application takes a lot of the work and abstracts it from the user. The
user should be able to write text in whatever language they use, have entry-level
efficiency in operating a computer and select files and navigate the file system and
have a Google Chrome web browser installed.

2.1.1. Functional Requirements
The list contains the functional requirements that will be implemented for Salt N
Pepper. Each requirement has a priority that is listed in the table below:

Priority Description

Priority 1 Top Priority — Critical Functionality

Priority 2 High Priority — Core Functionality

Priority 3 Med(ium) Priority — Main Functionality

Priority 4 Low Priority — Requested Functionality
2.1.1.1. Use Case Diagram

Encrypt File \

2.1.1.2. Requirement Encrypt File

/
|

User will have to have downloaded the application

:O: L esEeke
\\?/f’*cz\ 2.1.1.3. Descri ptiOn &P riority
1D 1: Select File >

User

Top Priority
P -
[Koy hnd FleNoT Empty (oasmewvat s | This is the main functionality of the application.
\ OR) A - . .
\.__ Flle Aready Encrypted %~ _ extends includes Giving the user the ability to enter their own key and
~___ - R N W R . . .
— g:ggincrfyg/) know that AES encryption standard is being used.

extendf -
i//Alternate Flow: <" -
‘\ File > 5mb

o :ID 5: Download F"fi>

2.1.1.4. Use Case
Use Case ID: UC-1
Use Case Nam Encrypt File AES
Actors, Primary, Secondary: User

Triggers:

The user will select the AES tab from the
application and will select a file and enter a key
then select encrypt.

Pre-Condition:

1: The user will have to navigate to the AES tab
of the application.

Post-Condition:

1: A download for the file will begin

Normal Flow:

1: The user will have to select a file, 2: The user
will have to enter an encryption key in the key
field, 3: The user will have to click Encrypt

Alternate Flows:

1: File Greater than 5 MB download instead of
saving to the vault. (Will have to pay for a
storage solution for greater storage, 5 MB is a
free cap)

Exceptional Flows:

1: File already encrypted, 2: Input Validation 3:
If file greater than 5 mb download instead of
saving to vault

Includes: 1: Save to vault, this will save a reference of the
file and key to the vault tab
Extends: None

2.1.1.5 Use Case Diagram
[Decrypt File\

2.1.1.6 Description & Priority

~_ ErrorCase:
Input validation: ™.

{" Key And File NOT Empty N
\ OR /

_extends

. Wrong key, or file not encrypted. -~ = s

("'-IETQ Enter K;yH)

o_———

(1D 4: Download File

> il
mclu:i}es
1

~ >0 3 Decrypt File.)

Top Priority

This functionality is required as a part of the
encryption. Without being able to decrypt
the file the encryption wouldn’t be very
useful. This is to be developed alongside the
encryption functionality.

2.1.1.7 Use Case

Use Case ID: uc-2
Use Case Name: Decrypt File
Actors, Primary, Secondary: User

Triggers:

The user will select AES tab from the
application and will select a file and enter a key
then select decrypt.

Pre-Condition:

1: The user will have to navigate to the AES tab
of the application.

Post-Condition:

1: A download for the file will begin

Normal Flow:

1: The user will have to select a file, 2: The user
will have to enter a decryption key in the key
field, 3: The user will have to click decrypt

Alternate Flows:

None

Exceptional Flows:

1: File Not encrypted, 2: Wrong decryption key
3: Input Validation

Includes:

1: Download File

Extends:

None

2.1.1.8 Use Case Diagram
[Decrypt Text\

ID 2 Decrypt

.7 o
\/,\{ 7ID 3: Enter Key D

L
ingludes

~ Error Case:

. Input validation: N AN C_ID 1: Enter Text >
Key And Text NOT Empty N T -

\ OR / =

\ _ _extends .

< Wrong key /o= SEDENEE - ? I

ID 4 Output Text

2.1.1.9 Description & Priority
Priority: Medium

This functionality is for encrypting a single
text input. The user will input text into a

field, and it will output the encrypted text
message back to the user where they can
then copy that text and send it. This is not

the main part of the application and priority

2.1.1.10 Use Case

is medium—low

Use Case ID: uc-3
Use Case Name: Decrypt Text
Actors, Primary, Secondary: User

Triggers:

User will select decrypt on the AES page when
text input filled, and key filled.

Pre-Condition:

1: The user will have to navigate to the AES tab
of the application.

Post-Condition:

1: A new element will inject into the DOM and
show the decrypted message in a text area

Normal Flow:

1: The user will enter text into the form labeled
text 2: The user will enter a key into the form
row labeled Decryption Key 3: The user will
then select decrypt 4: The deciphered message
will be output into the app

Alternate Flows:

None

Exceptional Flows:

1: Input validation for text fields and key 2:
Wrong Key entered

Includes:

1: Output text

Extends:

None

Encrypt Text\

2.1.1.11 Use Case Diagram

2.1.1.12 Description & Priority
Priority: Medium

)

@ D2 Encwi:lrf_"r‘:

This use case will Output the hashed

e encrypted message to the user which they

Enter Text
FErarbase: Se I can then copy and decrypt or send to
Input validation: ~ . . .
_Key And TextNOT Empty /= _extends _ B another user. This will demonstrate to the
— e . - &

user what is happening with encryption.

2.1.1.13 Use Case

Use Case ID: uc-4
Use Case Name: Encrypt Text
Actors, Primary, Secondary: User

Triggers:

The user will select Encrypt on the AES page
when text input is filled, and the key is filled.

Pre-Condition:

1: The user will have to navigate to the AES tab
of the application.

Post-Condition:

1: A new element will be created in the DOM
that will output the encrypted hashed message

Normal Flow:

1: The user will enter text into the form labeled
text 2: The user will enter a key into the form
row labeled Decryption Key 3: The user will
then select Encrypt 4: Encrypted hashed
message will be output to the app

Alternate Flows:

None

Exceptional Flows:

1: Input validation for text fields and key

Includes:

1: Output text

Extends:

None

2.1.1.14 Use Case Diagram

Encrypt File RSA Public Key\

Error Case:

Input validation:
Key And File NOT Empty
OR

\ Flle Already Encrypted /

T
-

-

f' \
|

- extends

Q/

C ID1 Select File to Encrypt)

ID 4 Generate Key Palr >

ID 5: Download Encrypted File.\>

- - — — includes [
271D 2: Encrypt File i

2.1.1.15 Description & Priority
Priority: High

This use case will demonstrate the flow of the RSA Public key encryption. This assumes that the
user would have already generated a key pair and kept the keys safe and are accessible on their
system.

2.1.1.16 Use Case

Use Case ID: uc-5

Use Case Name: Encrypt File RSA Public/Private Key

Actors, Primary, Secondary: User

Triggers: The user will select Encrypt on the RSA page

when a file is selected for encryption and a
public key is selected as a key

Pre-Condition: 1: The user will have to navigate to the RSA tab
of the application.

Post-Condition: 1: A download will begin for the encrypted file

Normal Flow: 1: The user will select their public key 2: The

user will select the file to encrypt 3: The user
will press the encrypt button 4: A download will
begin for the encrypted file

Alternate Flows: None

Exceptional Flows: 1: Input validation for the file to encrypt and
public key

Includes: 1: Download File

Extends: None

2.1.1.17 Use Case Diagram

Decrypt File RSA Private Key\

/ID 1: Select File to Decrypt\)
_

O 1 SsFie o e

_— Error Case: .

Input validation:
f Key And File NOT Empty \
R

(1D 3: Select Private Key

| |
\

O / _— —
\ - tend N
\ Flle Not Encrypted /A SXnE — o ————— includes ID 5: Download Decrypted File >
- > 271D 2: Decrypt File - S
_ - — - -

2.1.1.18 Description & Priority
Priority: High

This use case will demonstrate the flow of the RSA Private key decryption. This assumes that the
user would have already generated a key pair and kept the keys safe and accessible on their
system.

2.1.1.19 Use Case

‘ Use Case ID: UcC-6

Use Case Name: Decrypt File RSA Public/Private Key

Actors, Primary, Secondary: User

Triggers: The user will select Decrypt on the RSA page
when a file is selected for encryption and a
private key is selected as a key

Pre-Condition: 1: The user will have to navigate to the RSA tab
of the application.

Post-Condition: 1: A download will be commenced for the
decrypted file

Normal Flow: 1: The user will select their private key 2: The

user will select the file to decrypt 3: The user
will press the decrypt button 4: A download will
begin for the decrypted file

Alternate Flows: None

Exceptional Flows: 1: Input validation for private key and file to
decrypt

Includes: 1: Download Flle

Extends: None

2.1.2. User Requirements
Users will have to have Google Chrome web browser installed and be able to install extensions.
Using Salt N Pepper the user will be able to Encrypt and Decrypt messages with ease. They simply
enter a message and a key or in other words a password for the file and click encrypt. They can be
reassured by using the latest standards of encryption used by the FBI known as AES that they are in
safe hands. No information is being stored about the files or encryption keys they are using and no
server connection or database is used. Completely isolated to their system.

The user can also encrypt and decrypt any flies of their choosing, the most popular are .txt, .zip,
and image files also.

The interface of SnP will be intuitive and minimalistic. The user will have full control over their own
encryption. There will be an info page with some information about how encryption works to help
the user to learn about the safety of encryption and encourage more users to participate.

2.1.3. Data Requirements
There shouldn’t be any data requirements for this project. One of the aims of Salt N Pepper is to
avoid the storing of information of the user. The application will not have any server or database
connected to it.

2.1.4. Usability Requirements
The idea of Salt N Pepper is to abstract complexity from the user enabling them to use RSA
Public/Private key encryption and also AES (Advanced Encryption Standard) at ease.

RSA Public Key encryption will allow the user to generate a Public and Private key pair they can use
for their own needs.

Salt N Pepper will use a dynamic Ul and keep only the required information on the screen at any
given time. If the user requires more information it will be displayed for only the time it is required
and updated accordingly hence dynamic.

The application solves the problem of encrypting large files or data with RSA. RSA is known to be
inefficient at encrypting large pieces of data. The workaround for this problem is to randomly
generate a key and then encrypt it with AES. The encryption key used will then be encrypted with
RSA public and private keys. This allows for efficient encryption and a higher level of security.

The system will provide directions and clear instructions to the user regarding inputs, errors, and
general help. There will be help buttons to further explain what encryption is, how to use the
application, what the application does, and how the user is protected.

2.2.Design & Architecture

JavaScript and CryptolS Encryption Framework are the main design
implementations in this project. CryptolS provides a large framework
to use all types of encryption standards.

Byte Sub

Shift Row

Mix Golumn

CrytolS is a renowned framework that is continuously growing and
follows best practices in implementing its encryption tools.

Add
Round
Key

Bootstrap is used for the styling and CSS of the application to help with
responsiveness and enhance the overall quality of the product.

HTML Hyper Text Markup Language is the base for the application. The pages you see
will be written in HTML and are also prone to the same vulnerability as other web
applications.

JavaScript will be used to create logic and control elements of the application. This will
allow me to code like Java. Google also has the ability to use the Google Web Toolkit to
convert Java code into JavaScript

Selenium is a popular open-source framework used for automated web testing. The
main purpose of selenium is to test web applications to ensure that they work as
expected and is a key tool in test-driven or behavior-driver development.

Mocha, is a feature-rich JS test framework that is running on node.js and in the
browser. it provides a flexible user-friendly platform for setting up tests in Java. Mocha

provides “hooks” such as “describe()”, “context”, “before()”, “beforeEach” and many
more hooks that are used to provide structure to tests.

10

2.3. Implementation

(Project Code)
Encrypt File AES:

encryptFile() {
r file = .getElementById(
(file. .includes(
altert(

key = .getElementById(
reader FileReader();

reader. = (e
fileData = e.

encrypted = : .encrypt(fileData, key)

.setItem(file. encrypted)
(QuotaExceededError) {
alert(
* link = .getElementById(
link.setAttribute(+ encrypted)
link.setAttribute(
link.click()

alert(

1
i

reader.readAsDataURL(file)

The above is an example of the code used for encrypting the file using AES. A very similar
function is being used for the message encryption whereas this part is more complex and
thought | would add this instead of clutter

11

RSA Public Key Encrypting a file:

encryptFiles(file, publicKeyFile) {

fileBuffer = file.arrayBuffer()

.generateKey (

= : .getRandomValues((
encryptedFileData = . - .encrypt(
{

fileBuffer

aesKeyJwk = - = .exportKey(
aesKey
)

publicKeyString publicKeyFile.text()

publicKeyData = publicKeyString.match(\n([
publicKeyBuffer = c _=> c.charCodeAt(0))
publicKey = : . .importKey(

publicKeyBuffer
{

encryptedAesKey = . . -encrypt(

1{

Iy
publicKey

() .encode(.stringify(aesKe

encryptedFileDataWithHeader = (encryptedAesKey.

ler.set(‘ay (encryptedAesKey))
~.set(iv, encryptedAesKey.)
(encryptedFileData), encryptedA

t encryptedFile =
ryptedFileUrl = .create0bjectURL(:
ryptedFileLink = .createElement(
encryptedFileLink.setAttribute(encryptedFileUrl)
: yptedFileLink.setAttribute(file.
encryptedFileLink.click()
.revokeObjectURL (encryptedFileUrl)

=) [

alert(

This function is using a hybrid of AES and RSA. As mentioned before RSA is inefficient at
encrypting large amounts of data. A workaround for this is to use a hybrid encryption
encrypting the file with AES and randomly generating a key based on the key pair. Then
that key that is generated is then encrypted with the RSA encryption and key pair, allowing
the user to have 2 levels of protection and also making the encryption process efficient.

A quick overview of the structure of the
vendor functionality of the application. Each
aesEnarypt,js functionality of the application is abstracted
indexPage js into its own file and class. This makes it

o main,js easier to manage and easier to test.
modal,js

3 vaultjs

All of the main functions for the application can be viewed here,
https://github.com/nathoandrews1/ComputingProject/tree/development/js

13

https://github.com/nathoandrews1/ComputingProject/tree/development/js

2.4. Graphical User Interface (GUI)

CRSA | AES | Quick Info:

RSA: Public and Private key encryption. Share the public
key and use that to aesEncrypt files. Decrypt with private
key file.

AES: Symmetric encryption, easier to use. Can be used like
a password in this case. But file will be fully protected from
tampering.

— Edward Snowden We need to think of encryption
not as sort of arcane, block art. It's basic protection

‘E‘ ‘E‘ RSA Encryption

Public/Private key encryption. This is Asymmetric. Meaning
that unlocking and locking the files are done using
separate keys. This is a high level of security. This type of
encryption is slow but strong and usually inefficient at
encrypting files. In this application we use a hybrid solution
in the end making the encryption even more secure. A file
will be encrypted first using AES, then we will aesEncrypt
that randomly generated AES key with the RSA public key.
This way the file is encrypted with AES and the AES key is
encrypted with RSA. This is a very secure way of encrypting
files. The RSA key is generated on the fly and is never
stored on a server. The RSA key is only stored in the
browser memory. Once you close your browser it will be
gone from the memory never to be seen again.

RSA AES

RSA AES

Front page Ul, the whole application is
dynamic and tries to keep as little information as needed on the screen at a time. Here we can
see by clicking the buttons about RSA and AES will give a brief description of the encryption
functions for the users to help understand.

Public Key:

Choose File No file chosen

RSA Tab as seen here is for the public and
private key encryption. On this page, you will
have to generate a key pair which will be
downloaded for the user. It is up to the user
to keep their private key safe.

File to Encrypt:

Choose File No file chosen

‘ Encrypt H Decrypt H Generate Key Pair

Info AES

AES Encrypt tab, this tab is
where the user can use AEs
encryption and enter a
password to encrypt a file. If
the file is less than 5mb it will
be saved to the vault where
the user can then download
the file and view there key
associated with that file
anytime. There is also another
help button to guide the user
on how to use it.

File to encrypt or decrypt:

Choose File No file chosen

Decryption Key:

Personal Key

‘ Encrypt H Decrypt H Single Msg H Vault ‘

Info RSA

14

Key ‘ Back ‘ ‘ Clear All ‘

SomeFile.zip

Copied!

SomeFile.zip

AnyKey

SomeFile.zip

Ikjandsfasdf

SomeFile.zip

sfkingaskljgnlaksdjnfkla

SomeFile.zip

ak;sldfkalsjndflkasjdfnald

SomeFile.zip

Ikjasndfkljasndflkasjdfas

8

Info RSA

File Encryption:

g Click choose file and select the file from your system you
want to aesEncrypt. Next enter a key and click aesEncrypt.

If the file is less than 5mb it will be stored in the vault and
available for download. If the file is greater than 5mb it
will be downloaded to your system.

Your encrypted file will have a .encrypted file type

File Decryption:

Vault tab, this is accessed
from the AES tab. This is
where the files will be saved if
less than 5 MB. When clicking
a key it will copy the key to
the user's clipboard ready for
pasting. Clicking the file name
box will trigger a download
for the file. Thereis also a
page navigator at the bottom
of the page and each page
displays a total of 6 results per

page.

This is a quick example of the Help button for the

Choose an encrypted file from your system, enter the key -

2.5.Testing
For testing of the application | have gone with

AES page, this is a popup where the user will
scroll to view instructions on how to use it.

Selenium and Mocha. Selenium will run a
browser with the extension loaded simulating a
user interacting with the application. This way

we can write tests for the functionality of the
program to make sure everything is working as it is expected.

The testing development of the application was separated into its own branch and any
functionality that is missing tests can be allocated in there with a TODO annotation. For every
function that is written, there should be tests written for its functionality. Below are some pictures
to better elaborate on how testing has been carried out in the application.

15

test
mockFiles

aesDecryptFile.test,js

aeskEncryptFile.test s

aesMessageDecrypt.test,js
aesMessageEncrypt.tests
rsaDecryptFile.test js
rsaEncryptFile test js

vault.testjs

We then set up a beforeEach function to setup up some prerequisites.

(
1is.timeout(

driver

(
driver = Builder()
.forBrowser()
.setChromeOptions(ch

.build()

ions)

driver.manage() .window() .setRect({

er.get(

nsionId =
river.get(${extensionId}
clearDownloads ()

driver.quit()

This is an example of the
test folder structure. Here
we name the test file with
the .test in the file name.
Any files needed should
be added to the mockFiles
folder, for example, if we
are encrypting and
decrypting a file we
upload a file here and
reference it.

For each test, we will use
the describe(“”) syntax
that is given with mocha.

16

downloadDir =

driver.findElement(By. Y] (1
driver.findElement(By.1)) .sendKeys(file)
driver.findElement(By.)) .sendKeys(key)
driver.findElement(By. i s

driver.sleep(1000)
driver.switchTo().alert().accept();
driver.findElement(By.id(
driver.findElement(By.name(

driver.sleep(1

found =
foundAmount = @
tedFoundAmount =

found =
foundAmount =
encryptedFoundAmount =
encryptedFile
filesInDirectory = fs.readdirSync(downloadDir)

(A= i < filesInDirectory. i++)q
(filesInDirectory[i].tolLocaleLowerCase().includes(
encryptedFoundAmount++
encryptedFile = filesInDirectory[i]

driver.findElement (By.name(i)

driver.findElement(By.1id()).clear()

driver.findElement (By.1id()) .sendKeys(key)

driver.findElement (By.id()) .sendKeys(downloadDir + + encryptedFile)
driver.findElement(By.id(HIEE 0

driver.findElement(By. Ve

~.findElement(By.)) .clear()

~.findElement(By.id()) .sendKeys (key)
driver.findElement(By.)) .sendKeys (downloadDir + + encryptedFile);
driver.findElement(By.)). 0

driver.sleep(2

i.= i < filesInDirectory. et

(filesInDirectory[i].toLocaleLowerCase().includes(
found =

foundAmount++

encryptedFile = filesInDirectory[i];

(encryptedFoundAmount > 1){

foundAmount = foundAmount - (encryptedFoundAmount-1)
:
iy

expect(found).to.equall t)
expect(foundAmount) .to.greaterThanOrEqual(

An example of the test being carried out and at the end of the test we can use the expect() or
sometimes known as assert(). We can test the values that are expected of the variables we are
testing for. This will then give back results pass or fail. This is to ensure that no regression of the
application is happening with any newly added features.

DevTools listening on

RSA File Encryption

DevTools listening on

Vault Full Test

DevTools listening on

PS C:____College Year 4\Final_Project> I

Finally, these are the results of running the test framework and we can see in real-time the
application being tested because of selenium.

All of the tests are quite long and can be complex. They all follow the same basic principles we see
here and if you would like to see more of the tests please visit the GitHub test branch
https://github.com/nathoandrews1/ComputingProject/tree/test dev/test

18

https://github.com/nathoandrews1/ComputingProject/tree/test_dev/test

2.6. Evaluation
Functionality:
Salt N Pepper offers robust encryption capabilities enabling users to securely encrypt files
and text using both RSA and AES encryption methods. These methods have been
thoroughly tested and found to perform reliably while ensuring that user data is
consistently and effectively protected.

Performance: The performance in particular for handling large amounts of data is highly
efficient. This is due in large to the innovative use of hybrid encryption. The extension
leverages the speed and efficiency of AES for handling large data, then the resulting AES
encryption key is securely encrypted with RSA. This approach allows Salt N Pepper to
manage and encrypt large data tasks efficiently without compromising security.

Reliability: The reliability of Salt N Pepper is demonstrated in its robust and resilient design.
It consistently performs its intended functions without crashes or errors. All of the areas of
the application are covered in tests, providing a dependable solution to users needing
secure encryption capabilities. This is further enforced by the use of high-level encryption
standards that have been tried and truly tested and are widely known for their reliability
and strength in the industry.

3.0 Conclusions
Advantages:

AES Encryption is the highest level of encryption that we have today. Using 256-bit
encryption is overkill. 128-bit encryption AES has still not ever been cracked until this day.
So, we can guarantee that 256 won’t be cracked soon.

AES encryption can serve the full range of file types | am trying to cover for example
images. | will have to encrypt the actual pixels of that image and the RGB value. Then the
decryption of that image will be reverted back to the original and viewable.

CryptolS using JavaScript has given the advantage of using CryptolS Encryption Framework
which has been tried and tested in the community.

RSA Encryption: As mentioned before an innovative technique was used in creating the
RSA encryption to take advantage of the efficiency of AES for encrypting large pieces of
data. This allows a high level of encryption that is unmatched. The application also gives
the user the power to store the public and private keys wherever they like. They could
even rent their own server and have a pool of friends with access that they can share
amongst. It might even be viable in smaller-scale companies with less technical
backgrounds.

Disadvantages:

19

Proposing the application as a Chrome extension may have come as a bit of a
disadvantage. Chrome has a problem with persistent data and it is hard to work with
rather than being able to store a local JSON file and call values from it, that is not possible.
There are many security standards in place when building a Chrome extension for example
you can see google has released full documentation on the policy. Content Security Policy:
https://developer.chrome.com/docs/apps/contentSecurityPolicy/ This will pose a
challenge when implementing the store keys section.

Chrome extension again does not give access to the user’s local files or directory. Making
the vault a hard functionality to implement. This means having to use the chrome storage
API. This is not exactly ideal and would be better to go against what | had thought initially
and host a server with a database for this purpose only. Which would allow users to have
greater and also more secure options. This could possibly be implemented as a paid service
of the app.

Chrome Extension building also requires that you cannot outsource your stylesheets or
scripts. All files must be packaged with the extension. This comes as a disadvantage to
production time and requires a bit more manual implementation.

4.0 Further Development or Research

With further development | would like to add for the users to be able to store data items
to a vault larger than 5 MB. This would require having a server and hosting a database. If
the app gained any traction it could possibly be implemented as a paid service. This would
really help with the running costs.

Research into encrypting and decrypting with QR-type passwords where we can generate a
QR code that can be used to encrypt data. This would allow for a mobile type of digital key
possibly allowing for new types of digital locks.

5.0 References

6.0 swampsjohnswampsjohn 6 et al. (1957) How to test chrome extensions?, Stack
Overflow. Available at: https://stackoverflow.com/questions/2869827/how-to-test-
chrome-extensions (Accessed: December 17, 2022).

6.0 Appendices
6.1. Project Proposal

o=

_X19135394_Project
Proposal_NathanA (1)

20

https://developer.chrome.com/docs/apps/contentSecurityPolicy/

6.2. Reflective Journals

AN

-
x19135394_Month1_
ReflectiveJournal.doc

N

-
x19135394_Month5_
Feb_Reflect)ournal.do

AN

-
x19135394_Month2_
ReflectiveJrounal.doc

N

-
x19135394_Month6_
Marc_ReflectJournal.c

AN

-
x19135394_Month3_
ReflectiveJrounal.doc

AN

-
x19135394_Month8_
April_Reflectlournal.d

AN

-
x19135394_Month4_
Jan_ReflectJournal.do

21

	Executive Summary
	1.1. Background
	1.2. Aims
	1.3. Technology
	1.4. Structure

	2.0 System
	2.1. Requirements
	2.1.1. Functional Requirements
	2.1.1.1. Use Case Diagram
	2.1.1.2. Requirement Encrypt File
	2.1.1.3. Description & Priority
	2.1.1.4. Use Case
	2.1.1.5 Use Case Diagram
	2.1.1.6 Description & Priority
	2.1.1.7 Use Case
	2.1.1.8 Use Case Diagram
	2.1.1.9 Description & Priority
	2.1.1.10 Use Case
	2.1.1.11 Use Case Diagram
	2.1.1.12 Description & Priority
	2.1.1.13 Use Case
	2.1.1.14 Use Case Diagram
	2.1.1.15 Description & Priority
	2.1.1.16 Use Case
	2.1.1.17 Use Case Diagram
	2.1.1.18 Description & Priority
	2.1.1.19 Use Case
	2.1.2. User Requirements
	2.1.3. Data Requirements
	2.1.4. Usability Requirements
	2.2. Design & Architecture
	2.3. Implementation
	2.4. Graphical User Interface (GUI)
	2.5. Testing
	2.6. Evaluation

	3.0 Conclusions
	4.0 Further Development or Research
	5.0 References
	6.0 Appendices
	6.1. Project Proposal
	6.2. Reflective Journals

