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Abstract
Purpose This paper analyses the feasibility of tracking data originality for pharmaceutical manufacturing in a tamper-proof 
manner using a geographically distributed system. The main research question is whether it is possible to ensure the trace-
ability of drug manufacturing through the use of smart contracts and a private blockchain network.
Methods This work employs a private Ethereum network with a proof-of-authority consensus algorithm to allow participat-
ing nodes to commit the medicament manufacturing originality as transactions in blocks. We use smart contracts to assess 
the “Original” principle of the ALCOA+ data integrity principles for full sensor-enabled production lines within pharma-
ceutical manufacturing plants. We have evaluated our data originality assessment approach employing a temporal series of 
1300 reports generated based on real datasets from pharma production lines. Out of these reports, 300 reports have been 
randomly tampered with to make them “unoriginal” (i.e., falsified).
Results Evaluation consistently shows that the proposed approach systematically detects all the manufacturing records 
whether original or not, together with any source of falsification. By randomly injecting four common data falsification 
types, their approach effectively detects tampering and ensures the authenticity of the data originality acquired by sensors 
within manufacturing lines.
Conclusion The approach of using a private blockchain network with a proof-of-authority consensus algorithm and smart 
contracts is a feasible method to track data originality for pharmaceutical manufacturing in a tamper-proof manner. In addi-
tion, this approach effectively detects tampering and ensures the authenticity of the data originality acquired by sensors 
within manufacturing lines.
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Introduction

The EU Falsified Medicines Directive [1] “introduces har-
monised European measures to fight medicine falsifica-
tions and ensure that medicines are safe and that the trade in 
medicines is rigorously controlled”. Such obligatory safety 
features, legal framework, and record-keeping requirements 
have arguably imposed stricter controls for the manufactur-
ing of medicines.1 While the pharmaceutical2 industry has 
consistently improved its manufacturing processes in com-
pliance with good manufacturing practices, and it is well 
documented that falsification of medicines continues [2] 
and has led to disastrous consequences worldwide  [3]. 
Consequently, different organisations including the World 
Health Organization have long called for distinct remedia-
tion strategies [4].

There have been a number of technology-centric 
approaches to hinder the proliferation of fake medicines [5] 
including mobile apps for drug authentication and tracking, 
packaging enhancements such as digital tagging, radio-fre-
quency identification, and web portals to verify pharmacies. 
However, such approaches have mostly concentrated on the 
distribution and packaging of medicines rather than on the 
quality and reliability of their production. That is to say, 
scant research has been conducted on organically ensuring 
the traceability and originality of medicines from the per-
spective of their manufacturing data.

From an industrial perspective, the current gold stand-
ard for data management is comprised in the FDA’s “Data 
Integrity and Compliance with current Good Manufacturing 
Practices” [6], where the term “ALCOA+” is defined. As 
a set of principles that should be followed throughout the 
data life cycle for achieving data integrity, ALCOA+ states 
that data should be Attributable, Legible, Contemporane-
ous, Original, and Accurate, along with complete, consist-
ent, enduring, and available, the “(+)” side.

This paper advocates the use of blockchain networks to 
better ascribe and ensure the manufacturing originality of 
drugs as comprised in the O of ALCOA+, which establishes 
the Original principle, as the assurance of data origin as the 
primary source. While blockchains are well-established in 
the cryptocurrency domain, their systematic application in 
the pharma industry remains an open problem, particularly 
from a regulatory perspective.

The main contributions of this paper are: �) demon-
strate the feasibility of using blockchain technolo-
gies to univocally assess originality—as defined by 
ALCOA+—via raw data from pharma manufacturing 
batch records; and, ��) systematically ensure traceabil-
ity and end-to-end verification in a scalable manner 
within the drug manufacturing process.

The proposed method includes a private Ethereum network 
with proof-of-authority (PoA) consensus and smart con-
tracts, privacy-preserving verifiable programme stored on a 
blockchain that automatically enforce its components without 
the assistance of a trusted authority. Specifically, our smart 
contracts programmatically allocate the hash and the identi-
fier of pharma records in a blockchain. They also enforce the 
originality principle by comparing the data committed to our 
blockchain network, e.g., a report that has the same identifier 
holding a different hash ought to be detected as unoriginal. 
That is to say, since the logged data and the business logic 
are tamper-proof and blockchain-embedded, they detect the 
originality infringement and identify the corresponding type 
of falsification. Running our ALCOA+ front-end in Valencia 
and the Ethereum network in Dublin, we have evaluated our 
approach employing a temporal data series of 1300 reports 
generated based on real pharma production lines. Out of 
these reports, 300 were randomly tampered with, i.e., made 
unoriginal (i.e., falsified) with four common data falsification 
types being randomly applied to each falsified report.

The results of the ALCOA+ evaluation show that our 
approach accurately detects all the manufacturing records 
whether original or not and, for those unoriginal, it also 
explains their source of falsification. It is also noted that 
this empirical evaluation has also studied the latency and 
performance implications of the geographically distributed 
system, as the assessment tool front-end has been executed 
in Valencia and the blockchain backend in Dublin.

This paper is organised as follows. In “Related Work” sec-
tion, we describe the relevant related work for data integrity 
applications within the pharma industry. Then, in “Original-
ity Assessment Approach” section, we introduce the proposed 
approach for assessing the originality of drug manufacturing 
records through blockchain technologies. In “Evaluation and 
Results” section, we present our evaluation methodology and 
the empirical evaluation results of our originality assessment 
approach and corresponding tool. Finally, in “Conclusions” 
section, we provide the concluding remarks of this work.

Related Work

The World Economic Forum (WEF) has recently coined 
the term TradeTech to denote the technologies and innova-
tions that enable trade to be more efficient, inclusive and 

1 We have used the terms “medicines” and “drugs” interchangeably 
throughout this paper to refer to fully approved potions for the treat-
ment of a clinical condition.
2 Following industry conventions, the Instituto Universitario de Tec-
nologías de Información y Comunicacionese terms “pharma” and 
“pharmaceutical” are also used interchangeably.



Journal of Pharmaceutical Innovation 

1 3

equitable, and ultimately harness the innovations of the 
Industry 4.0 technologies to support the public good [7]. 
More specifically, the WEF suggests the continual improve-
ment and optimisation of manufacturing processes by rely-
ing on digital sensing, machine learning, and blockchain, 
among other technologies. While sensors have been widely 
employed in manufacturing for well over 2 decades [8], 
their enhanced computing capabilities and connectivity and 
their full integration with other technologies continue to be 
an active area of research and innovation.

The use of blockchain for data integrity assurance is still 
in its infancy; however, its potential is widely accepted to 
augment the capabilities of dynamic distributed network 
environments. Blockchain technologies can securely enable 
storage, sharing, and data analytics in data-driven computer 
networks while preserving user privacy, trustworthy network 
control, and decentralised resource management [9]. Such 
a network-oriented approach can be useful for fraud pre-
vention and for real-time analytics with significant impact 
on data integrity. Relevant examples of blockchain for data 
security in distributed networks have also been provided in 
Kumar et al. [10], where blockchain technology is used for 
robustly detecting copyright infringement thanks to its inde-
pendence from any third party arbitration and in Ch et al. 
[11] where privacy is ensured via blockchain-enabled virtual 
circuits for device data.

It is widely accepted that smart connected sensors and 
connected manufacturing components can be linked to a 
central computing system, but security and privacy con-
straints have limited data exchange particularly in pharma-
ceutical companies and, consequently, the adoption of so-
called Pharma 4.0 techniques [12]. That is to say, Pharma 4.0 
techniques ought to integrate smart sensors with advanced 
data science, as has been proposed for smart factories [13].

Given the diverse dynamic nature of the data generated, 
pharma companies have mostly adopted trusted technolog-
ical approaches in compliance with regulatory frameworks 
and safety and sustainability guidelines [14]. Nonetheless, 
the pharmaceutical industry aims to fully digitise manu-
facturing processes by using data-driven technologies. It 
aims to solve well-defined obstacles in their industrial 
data-processing life cycle, such as the analysis and tracing 
of high-dimensional data sets or the assessment of multi-
variable changes in the supply chain [15]. This is a new 
challenge for regulatory frameworks, due to the need to 
ensure data integrity in a traceable and transparent fashion.

Moreover, disclosure risk assessment techniques in 
pharma manufacturing typically rely on background knowl-
edge, the behaviour of intruders, and the specific value of 
the data. Often, only heuristic arguments are used without 
quantitative assessment. However, the pharmaceutical indus-
try has arguably become a large distributed data-intensive 
environment, where large amounts of data are generated 

and accessed regularly by different internal and external 
stakeholders including international and domestic regula-
tory bodies. Such an environment requires confidentiality, 
privacy, and security such that data authenticity and end-
to-end tracking are consistently ensured throughout their 
different industrial processes. Consequently, the Smart 
Pharmaceutical Manufacturing (SPuMoNI) project is devel-
oping a novel approach to establish and assure constant 
proof of the authenticity of pharmaceutical manufacturing 
data to ultimately underpin data quality, compliance, and 
auditability [16].

Regulatory bodies are continually increasing their audit-
ing requirements from traditional manual exercises to auto-
mated ALCOA+ trails, where detailed transactions capture 
complete traces of sensor and production lines to ultimately 
track the fabrication of pharmaceutical drugs at scale. This 
is not a new problem to solve. Rattan [17] discusses the large 
amount of regulations that, since 1963, have been put for-
ward by several regulatory bodies. To assess data integrity, 
their proposed methods have initially been simple checklists, 
self-audits, and self-inspection techniques—mostly focused 
on self-prevention for random audit trails—instead of con-
tinuous monitoring and evaluation of manufacturing data.

More recently, regulatory bodies have identified the need 
to ensure data integrity in “The GAMP Guide: Records and 
Data Integrity” [18]. It comprises guidelines for the imple-
mentation and management of good practices (GxP)-regu-
lated records and data, where the GxP are the accepted gold 
standard and framework for all automated manufacturing 
industries. It also provides a framework for regulatory focus, 
data governance, data life cycle, culture and human factors, 
and the application of quality risk management to data integ-
rity. Pharma manufacturing industries are mostly automated, 
which implies full compliance with GxP and a large amount 
of data continuously generated.

Efficiently addressing ALCOA+ requirements arguably 
calls for novel technological solutions to dynamically 
analyse all generated data to assist qualified personnel 
and auditors to trace the originality of medicines.

Emerging domains, such as Pharma 4.0, are facing privacy 
risks and security vulnerabilities. Since manufacturing lines 
involve more connected devices in the information network, 
it becomes a big data reality with a decentralised topology. 
Therefore, such heterogeneity requires quality assurance 
as well as security mechanisms to prevent attacks or data 
threats. In this context, blockchain has been proposed as a 
solution for these scenarios [19, 20].

Widely adumbrated as immutable time-stamped data 
structures, blockchains are built as peer-to-peer networks 
where participant nodes verify interactions concurrently 
using decentralised consensus protocols. Data is stored in 
blocks that are “chained”, i.e., each block knows the hash 
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of the previous block, thus creating a ledger. Because of its 
tamper-proof characteristics, blockchain has emerged as a 
solution to enable secure traceability of information and is 
therefore used to ensure information provenance in multi-
ple domains. Its scalability and resilience have proven to be 
efficient, particularly in conjunction with PoA consensus 
mechanisms for the generation of new blocks [21].

There is scant research concerning the application of 
blockchain technologies in the pharma industry to assess 
data originality in its manufacturing lines. However, general 
big data projects [9, 22] including smart cities [23], smart 
transportation [24, 25], healthcare [26], smart grids [27], 
and WiFi networks [28] have explored blockchain for data 
quality and risk reduction [10, 11]. Such literature presents 
blockchain as an effective technology for data quality [29]. 
In this context, drug manufacturing stands as an ideal sce-
nario in which blockchain can be employed to effectively 
address ALCOA requirements.

Blockchain has been employed as part of the pharma 
supply chain for electronic tagging  [30] as well as to keep 
temperature records in sensor-enabled shipping pallets and 
containers of medical supplies and medicines in order to 
reduce operational costs [31]. Developed by Modum.io and 
the University of Zürich, this ledger-based solution has been 
documented as a pioneering option for the safe transporta-
tion of controlled substances and, potentially, any tempera-
ture-controlled goods.

As a governance mechanism, blockchain has also been 
proposed to keep track of the end-to-end supply chain and 
exchange of medicament using cryptocurrency in Tai-
wan [32]. Such an approach promotes a safe commercial 
exchange for government agencies, manufacturers, pharma-
cies, large wholesalers, hospitals, and potentially patients. 
A similar approach has been proposed for the detection of 
counterfeited medicines [33]. Finally, a distributed ledger 
approach has been put forward to facilitate the return and 
redistribution of unused drugs in multi-level supply chains, 
a highly controversial matter in most countries due to the 
associated health risks [34]. Blockchain technologies have 
also been trialled to trace the serialisation packaging process 

at an Italian pharma manufacturer [35], mostly linking the 
marking of each medicine box and its unique identifier with 
the existing enterprise resource planning system.

Contribution

Table 1 includes a comparison concerning pharma-related 
blockchain applications. To the best of our knowledge, there 
is not a comprehensive technological approach to ensure 
traceability, authenticity, security, and other data quality 
dimensions [36], sine qua non in pharma manufacturing. 
Therefore, this paper proposes the use of blockchain net-
works for reinforcing data integrity, specifically assessing 
data originality.

Originality Assessment Approach

Ensuring the authenticity and traceability of the pharma 
manufacturing processes should arguably be addressed by 
the preservation of original records and comparison of any 
changes. Due to the intrinsic (perceived) simplicity of the 
ALCOA+ originality principle, it has been a challenge to 
ensure the authenticity of an original batch manufacturing 
report, particularly when data sources are fully automated, 
multi-device production lines within large pharma facilities.

The proposed approach is hence to verify the originality 
by assessing the data using a blockchain network. In this 
context, we describe (i) a pharma-related use case where 
we are applying the assessment tool, (ii) the blockchain net-
work, and (iii) the implementation of our approach.

Use Case: Pharma Manufacturing Records

The SPuMoNI consortium includes a leading pharma manu-
facturing partner, Instituto De Angeli (IDA). IDA produces 
more than 2000 drug batches annually in their Italian facili-
ties. Their production lines generate a large number of data-
sets and data streams from real production lines of different 

Table 1  Comparison of 
blockchain applications in 
pharma

Approach Technology Data integrity 
assurance

Smart contracts Domain

Benčić et al. [30] Ethereum – ✓ Supply chain
Bocek et al. [31] Ethereum – ✓ Supply chain
Chiacchio et al. [35] Not specified – ✓ Packaging/ERP
Debe et al. [34] Ethereum – ✓ Supply chain
Tseng et al. [32] Gcoin – ✓ Supply chain
Zhu et al. [33] Ethereum – ✓ Supply chain
Our proposal Ethereum ✓ ✓ Manufacturing 

lines/sensors
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unit operations such as milling, granulation, coating, and 
tablet pressing.

During the manufacturing of a specific product, the pro-
duction lines execute a set of steps based on a Recipe. A 
Recipe is the protocol that describes in detail the fabrica-
tion process of a certain product. It is composed of a set of 
Phases, and each Phase is formed from a set of Instructions. 
An Instruction is a single action implemented within the 
manufacturing process. There are various types of Instruc-
tions, such as setting a mixing machine, verifying the quan-
tities of raw materials, transferring the product to the next 
step, checking the cleaning stage of a particular robot, etc. 
Complementing the action to be executed, each Instruction 
serves as a checkpoint within the manufacturing process. A 
Recipe may have some variations and/or updates; therefore, 
each Recipe also has an associated Recipe Version.

A Recipe describes the tasks that must be accomplished, 
including the optimal value and the range of acceptable 
values for each of the parameters. However, the production 
line routine may have deviations that must be controlled. 
Hence, all production lines are monitored by a network 
of sensors to not only automate the production but also to 
control the quality of the process. When an Instruction is 
executed, depending on its nature, some parameters must 
be checked, such as the temperature of some fusion, the 
mixing speed, the number of cycles, the amount of product 
processed, or to check that the Instruction has been com-
pleted according to the expectations. The sensors record 
data directly from the production lines including the start 
and finish date and time of each Instruction. These data 

must be collected, as well as the information about the per-
son in charge of the Instruction. We explore the feasibility 
of tracking and ensuring the originality in pharmaceutical 
manufacturing by applying the proposed approach to the 
data recorded by these networks.

These production raw data are structured and organised 
as Reports. A Report contains all data related to the produc-
tion of a single batch of a particular drug, and therefore, it 
includes all information that would be reviewed in an audit 
trail. At the main level of a Report, the attributes are related 
to the batch information, such as the batch code, the Recipe 
code, its version, and the Qualified Person. The Qualified 
Person is responsible for assuring the quality of medicines 
available on the market [37]; hence, this person reviews not 
only the overall batch production which is recorded in the 
Report but also the compliance of ALCOA+ principles. 
Moreover, a Report contains a list of used materials as well 
as the data recorded by sensors. It follows the Recipe struc-
ture: (i) a list of Phases that contains a set of Instructions; 
(ii) each Instruction item includes a list of parameters to be 
controlled (as indicated in the Recipe) and the data recorded 
during the process. Figure 1 is a representation of the pro-
cess from the Recipe protocol to getting the Report object.

From the regulatory point of view, an audit trail evaluates 
random batch manufacturing records. These audits review 
all data generated during the process, whereby the sensor 
data are needed not only for quality control, but also for 
regulatory compliance. In this context, ensuring the origi-
nality of batch records may provide significant support for 
pharma manufacturing industries.

Fig. 1  Graphical representation of the workflow of manufacturing 
data. A Recipe includes Phases and Instructions. Each Instruction 
integrates the parameters to be controlled and monitored. The pro-
duction line employs the required materials to execute the multiple 
phases. Finally, the Report is generated incorporating data related to 
the production. While orange boxes represent data from the manufac-

turing process, blue boxes illustrate the Recipe structure. The Report 
includes (i) Batch information (i.e., Batch code, Recipe code and its 
versions, and the Qualified Person responsible for the batch produc-
tion), (ii) Used Materials, and (iii) the sensors data, i.e., date and time 
and the staff in charge



 Journal of Pharmaceutical Innovation

1 3

Blockchain Network in SPuMoNI

Blockchain has bee henticity, immutability, and trans-
parency using decentralised environments. Decentrali-
sation prevents single authorities from controlling the 
data. In this context, blockchain employs a distributed 
architecture eliminating centralised authorities and using 
immutability to prevent the alteration of past records. 
Moreover, by using Ethereum private networks and gas 
amounts, we have been able to empirically establish 
the feasibility to quantitatively marshal service levels 

and their associated quality of service for blockchain 
networks [38].

It is therefore possible to have an end-to-end verifica-
tion of any process and, consequently, consistent verifica-
tion of the corresponding data. In this scenario, we have 
adopted blockchain technologies to confidently ensure the 
originality of ALCOA+ principles taking advantage of such 
intrinsic properties. Specifically, our blockchain module 
involves (i) a private Ethereum network, (ii) PoA as consen-
sus algorithm, and (iii) smart contracts. Figure 2 illustrates 
the behaviour of the network as transactions are received.

Fig. 2  Private Ethereum network configured with proof-of-authority 
consensus algorithm. The transactions are committed into blocks and 
mined by validator nodes. Once approved, the block is added to the 

chain. Currently, our private Ethereum network is composed of two 
validator nodes. The Originality Smart Contracts structure the data 
and evaluate the data originality
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Private Ethereum Network Ethereum is one of the most 
popular blockchain technologies allowing us to implement 
decentralised and transaction-based systems. In addition, 
an Ethereum network supports smart contracts which are 
immutable pieces of code that enable to make intelligent 
decisions. Each Ethereum action requires an amount of 
gas, i.e., a computational fee required to perform specific 
Ethereum transactions. Our network is composed of two 
nodes working as miners which will receive and validate 
the transactions to be added into the blocks using the PoA 
consensus algorithm. The PoA consensus algorithm requires 
at least two nodes as miners to start chaining blocks in the 
network. Ethereum provides a JavaScript Object Notation 
(JSON) with Remote Procedure Call (RPC), i.e., JSON-
RPC, which allows a front-end or an application to commu-
nicate with the Ethereum network. While JSON allows us to 
exchange data between a browser and a server, RPC allows 
us to perform requests in a network. Therefore, JSON-RPC 
defines the data structure, methods, and rules to communi-
cate with the network.

Consensus Algorithm It is used to achieve agreement on 
data transactions in a distributed network ensuring that the 
next block to be added in a blockchain is unique and reliable. 
Our private Ethereum network relies on PoA, where miner 
nodes that work as validators are aware of all identities using 
a reputation-based approach. A node is able to validate trans-
actions if at least N

2
+1 network nodes have previously iden-

tified it as an honest node (where N represents the number 
of trusted nodes). Specifically, PoA works in our private 
Ethereum network as follows:

– Each validator holds a fixed time slot to validate blocks. 
During that time slot, the corresponding node is the net-
work leader.

– Each node is enabled to validate transactions every N
2
+1 

blocks (with a mining frequency of 1

N

2
+1

).

– A maximum of N−(N
2
+1) nodes are allowed to propose 

blocks in the same time slot. When N = 2 , there are no 
simultaneous nodes validating blocks, just the leader. 
When N is greater than 2, multiple nodes can propose 
blocks within the same time slot as the leader, e.g., with 
N = 16 , 7 nodes are allowed to validate blocks at the 
same time. If one node is down, the remaining network 
participants, which are able to mine transactions, will 
validate all transactions submitted to the network.

– The GHOST protocol [39] is applied if multiple nodes 
are validating the same transactions, simultaneously. This 
protocol privileges the leader.

– The nodes that constantly propose invalid transac-
tions reduce their reputation and, consequently, can be 
excluded from the list of reliable validators.

Our PoA configuration requires a “master” miner respon-
sible for adding new miners keeping the blockchain network 
fully private. Therefore, being hosted and managed by a pri-
vate entity, it prevents dishonest nodes from participating 
in the network and, consequently, avoids potential security 
related attacks.

Smart Contracts The implemented private Ethereum net-
work enables the deployment of smart contracts incorporat-
ing a dedicated data structure to manipulate transactions in 
the distributed network. When data is centrally stored, it can 
be easily manipulated to meet hidden interests. Given their 
tamper-proof nature, smart contracts aim to ensure complete 
data authenticity, i.e., avoid the manipulation from unethi-
cal stakeholders as well as user and data provenance. The 
proposed solution uses smart contracts to structure the data 
in the blockchain network and store the hash and Identifier 
values of pharmaceutical reports. Specifically, the smart 
contracts support a collection of transactions to access the 
stored information and assess the originality of the reports. 
Therefore, this work relies on smart contracts to evaluate 
the Original principle of ALCOA+ and, consequently, the 
integrity of data produced by pharmaceutical manufactur-
ing lines. This originality is assessed by the smart contracts 
comparing the data stored in the blockchain network in the 
form of hashes and Identifiers. Thus, if a report with the 
same identifier is submitted into the network holding a dif-
ferent hash, the smart contract detects that report as being 
not original.

Implementation

The originality assessment tool aims to ensure the authentic-
ity of data acquired and generated in pharma manufactur-
ing lines. Towards this purpose, the tool is supported by 
blockchain infrastructure and provides a dashboard as the 
user interface.

Blockchain Infrastructure

Blockchain infrastructure is composed of a private Ethereum 
network that uses Go-ethereum3 (Geth) as the Ethereum cli-
ent and Solidity4 as a smart contract language. The private 
Ethereum network was configured with a block period of 
2 s to improve the network performance [40]. This network 
provides cost-free processing, i.e., the transactions are sub-
mitted using 0 as the gas price. Each OpenStack instance has 
16 GiB RAM, 8 CPU, and 160 GiB of HDD. The originality 

3 https:// geth. ether eum. org/
4 https:// solid ity. readt hedocs. io

https://geth.ethereum.org/
https://solidity.readthedocs.io
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assessment tool uses 6.5 MB of storage and 1000 reports use 
35 MB of JSON files and 139 MB of database information.

The assessment is based on uploading a new batch record 
to the Ethereum network as a smart contract and verifying 
the uniqueness of all its information. The originality assess-
ment is achieved by the verification of data authenticity, 
evaluating if the batch record has been corrupted. This soft-
ware is designed for a direct interaction with the produc-
tion line database. However, it is also possible to manually 
upload new batch reports. The workflow of the originality 
assessment tool is described in Fig. 3.

When a new batch is manufactured, its data is uploaded 
using the JSON format, and then it is parsed into a Report. 
After that, the Report hash is calculated by converting the 
Report into a map (or Python dictionary in this case), which 
will be converted into a String. Then, this string which 
contains the Report information is transformed into a bytes 
array when using the SHA256 algorithm and converted 

into a hash. In addition, the Report Identifier is also cal-
culated, which is composed using a combination of batch 
code, order code, recipe code, recipe version code, and 
product code. The Identifier and the hash are uploaded 
into the Originality Smart Contract instance allocated in 
the Ethereum network. In this function, the Report revision 
number is also computed, which is calculated by checking 
if another report with the same identification data is already 
in the Ethereum network.

To obtain the Originality results, the following phases 
are verified: (i) if the Identifier is unique, the Report is con-
sidered Original; (ii) if the Identifier is not unique, but the 
hash is equal to the hash of a previously uploaded Report 
(i.e. with the very same Identifier), the current Report will 
be considered an Original Report—this case occurs when 
the very same Report is uploaded twice; and (iii) when the 
Identifier is not unique and the hash is distinct from the 
hash of a previously uploaded Report (i.e. with the very 

Fig. 3  Originality Assessment Workflow. The process starts by 
the input of a new report, likewise production line upload, or manu-
ally uploaded report by a user (here is depicted a generic user, which 
can be, for example, an auditor or any authorised person). The new 
batch is assessed by the Originality Smart Contract in the Ethereum 
network. The originality assessment is performed based on the pre-
viously uploaded reports on the Ethereum network, evaluating the 

uniqueness of the new data by comparing it with the existing stored 
information. The results of the assessment are visualised on the orig-
inality assessment tool, where the user can explore the reports, see 
whether they are original or not, and each report that is not original 
is provided a trace that includes the source of data falsification. This 
workflow schema is proposed for a distributed system; hence, the dif-
ferent components are labelled in red, as general locations
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same Identifier), then the current Report is considered Non-
original, and differences between these two versions are 
calculated and provided. The complete Identifier combines 
the Identifier with the actual Revision number. The Revision 
number is 0 when the Report is original; otherwise, it is a 
different version. Figure 4 summarises our approach for the 
originality assessment process.

Dashboard

For an easy interaction and comprehension of the results, the 
Originality Assessment tool has a user interface built using 
the Django framework and Python 3, in addition to the Boot-
strap 4 web front-end framework. The main dashboard screen 

contains a summary table of the assessed reports including 
the batch code, the Recipe executed, the version of the Recipe, 
the Revision number and the originality assessment results. 
The tool also provides in-depth detailed information at report 
level, namely a user can explore the interactive view for a sin-
gle Originality assessment result. Each batch information is 
represented in a table that includes (i) the batch code, (ii) the 
Recipe executed, (iii) the version of the Recipe, (iv) the Revi-
sion number, (v) the qualified person, and (vi) a breakdown of 
the assessment results. Additionally, the Report identifier, the 
Report version number, and the data trace (which identifies 
data disagreements between the current Report and its previ-
ous version) are included. Some examples of this interface 
are included in the “Results” section.

Fig. 4  Proposed Original-
ity Assessment Process. The 
orange box represents the origi-
nality assessment tool, where 
Identifier &hash are calculated 
and the originality-related 
results (i.e., whether the report 
is original or not) are computed. 
The green box represents the 
Originality Smart Contract, 
where Identifier &hash are 
uploaded to the Ethereum 
network and the originality 
assessment is performed. The 
blue workflow illustrates the 
Report uploading, and the 
grey workflow represents the 
originality assessment. Also, 
the Revision number update is 
represented in a blue box, when 
the result of the assessment is 
“Non-original”
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Evaluation and Results

The originality assessment tool provides support for assessing 
and ensuring data originality in pharmaceutical manufactur-
ing. A critical measure of the effectiveness of the approach 
is whether the originality assessment tool is capable of accu-
rately detecting manufacturing records that are not original. In 
addition, another assessment of the usefulness of the approach 
is whether it correctly identifies the root cause (i.e., source 
of falsification) of the non-original records. To empirically 

evaluate our approach, we have designed an evaluation meth-
odology which allows us to measure the originality assess-
ment accuracy as well as the system performance.

Evaluation Setup and Methodology

To evaluate our approach, we will upload a set of batch 
reports where a subset of these are randomly falsified. We 
have defined five types of data falsification based on typical 
situations that should be detected in a real-world scenario: 

Table 2  Confusion matrix for the originality assessment results of 1300 Reports evaluated

Detected situation

# Original 
reports

# Falsified reports

(1) Falsification of 
aualified person

(2) Falsification 
of staff

(3) Falsification 
of date and time

(4) Falsification 
of sensor data

(5) Multiple types 
of data falsification

Real 
situation

Original 1000 0 0 0 0 0

Falsification of quali-
fied person

0 12 0 0 0 0

Falsification of staff 0 0 18 0 0 0
Falsification of date 

and time
0 0 0 19 0 0

Falsification of sensor 
data

0 0 0 0 12 0

Multiple types of data 
falsification

0 0 0 0 0 239

Fig. 5  Dashboard of the Originality Assessment tool. The dashboard 
provides a list of assessed reports. The reports identified as having 
originality-related issues are highlighted in orange. The columns rep-

resent the batch code, the Recipe executed, the version of the Recipe, 
the Qualified Person responsible for the batch data, the Revision num-
ber, and the original assessment result
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(i) adulteration of the qualified person, (ii) adulteration of 
staff in charge of an instruction, (iii) adulteration of date and 
time of recording data, (iv) adulteration of the value of some 
sensor data, and (v) a combination of the former.

Due to privacy requirements of the Fareva-IDA facilities, 
we have employed data fabrication techniques to generate 
realistic temporal series for 1.000 Reports based on real raw 
data from their production lines, which account for some 
six months of their manufacturing operations. In addition, 
300 reports were randomly selected to be generated as 

non-original, i.e., falsified. This set of non-original Reports 
may have one (scenarios i–iv) or multiple types (scenario v) 
of the data falsification scenarios defined above. The num-
ber and types of individual data falsifications applied in the 
fifth scenario to each non-original Report were randomly 
selected. The purpose of generating this random dataset of 
Reports was to simulate a real-world situation where data 
falsification occurs, i.e., without knowing which data has 
been falsified by design. It will allow us to evaluate our 
tool’s capability to detect the source of such falsifications.

(a) (b)

Fig. 6  Multiple data modifications: Batch 0031. This figure shows 
a comparison between the originality assessment results of Batch 
0031 Revision Number 0 (a) and Batch 0031 Revision Number 1 (b), 
where result a is “Original” and result b is “Non-original”. There are 
five types of data adulteration: (1) the qualified person has changed 
from Data Responsible 1 (DR1) to Data Responsible 4 (DR4); (2) 
in the Instruction 0 of Phase 0, the staff has been changed from 

Mr. Smith to Mrs. Elisabeth; (3) in the Instruction 0 of Phase 0, the 
recording date and time has been increased by 5 s; (4) in the Instruc-
tion 1 of Phase 0, the staff has been changed from Mr. Lopez to Mrs. 
Elisabeth; and, finally, (5) in the Instruction 1 of Phase 0, the original 
Speed data has been increased by 5 rpm. These data adulterations are 
summarised in the Revision 1 trace (b)
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Furthermore, the uploading and assessing time for each 
Report also has been measured, in order to characterise the 
overall distributed system performance as the Ethereum 
network is located at the NCI Cloud Competency Cen-
tre in Dublin and the Originality Assessment tool runs at 
the UPV facilities in Valencia. This distributed environ-
ment has allowed us to study the latency in the originality 
assessment process. Since the running time is recorded for 
each Report, we have also compared the times of evaluat-
ing the original and non-original Reports, distinguishing 
between the five (i–v) types of falsification, with the pur-
pose of detecting potential performance variability due to 
the data falsification.

Results

Table 2 summarises these results and shows that the origi-
nality assessment tool has accurately detected as falsified 

reports all the Reports that were randomly altered, i.e., 
falsified (as compared to their originals). Therefore, our 
approach shows 100% accuracy in detecting non-original 
data. Furthermore, the tool has successfully identified, for 
each report, the source of data falsification.

Dashboard Results Visualisation

This subsection shows some examples of result visualisa-
tion on the developed dashboard. Figure 5 shows the main 
menu, which presents a sample list of the assessed reports 
together with a results summary. The non-original reports 
are highlighted in orange.

Once the user clicks in one of the assessed reports of 
Fig. 5, the dashboard shows the detailed results of its 
assessment. We present an example of this interface for 
assessment visualisation for Scenario 5: Multiple sources 
of data falsification in Fig. 6. For other examples of sce-
narios 1 to 4, please see the supplementary material.

Fig. 7  System performance pertaining to the experiments included in Table 2: original reports, scenario 1, scenario 2, scenario 3, scenario 4, 
and scenario 5
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Performance Characterisation

The mean time for uploading and assessing 1300 Reports 
was 8.00 s with a standard deviation of 0.221 (normal dis-
tribution, Shapiro-Wilk normality test, � = 0.05).

To analyse potential discrepancies in the performance 
results between all five falsification scenarios and the original 
Reports, we have applied a one-way ANOVA test followed by 
a Tukey Honest Significant Differences post hoc test.

Statistically, there was no significant difference among 
the analysed scenarios ( � = 0.05 ). As such, there is no 
evidence of any effect of data falsification on the perfor-
mance of the proposed original assessment tool. Figure 7 
illustrates the six box plots for each group of Reports.

Conclusions

The pharmaceutical industry is a data-intensive domain. Its 
manufacturing lines continuously generate large amounts 
of data that must be collected and have to be ALCOA+ 
compliant. However, the risk of negligent or non-inten-
tional falsification is high in pharma environments. In 
this context, the pharmaceutical industry requires effec-
tive solutions to improve its manufacturing process in 
terms of ALCOA+ compliance. Blockchain, together with 
smart contracts, has shown to be a promising technology 
concerning data authenticity. Towards this scenario, we 
propose a novel blockchain-based approach for assessing 
originality (i.e., the “O” in the ALCOA+). The proposed 
method is composed of a private Ethereum network incor-
porating smart contracts to detect data falsifications.

The proposed method has been evaluated using pharma 
batch records where multiple types of data falsifications 
were randomly applied using a geographically distributed 
system. The results show the feasibility of our approach 
to support the compliance of ALCOA+ principles, in par-
ticular, the originality principle, as our tool has accurately 
detected all records as to whether they are original or not. 
Furthermore, for the records that are not original, our 
approach provides a trace with the source of data falsifica-
tions. It is important to note that all experiments have been 
performed under a controlled scenario and with standard 
data; however, performance characterisation results sug-
gest that the proposed method should be scalable for large 
datasets in distributed environments. To achieve a higher 
readiness level, an evaluation of the proposed tool in the 
pharma shop-floor environment is needed. Therefore, as 
future work, we aim to validate our originality tool in a real 
pharma manufacturing environment and integrate it within 
the SPuMoNI system.

Appendix

These appendices contain supplementary materials for the 
Blockchain for Data Originality in Pharma Manufactur-
ing manuscript. In particular, Appendix A provides the 
pseudo-code pertaining to the algorithm to assess original-
ity and Appendix B presents examples of Scenarios 1 to 4 
described within the manuscript.

Appendix A. Algorithm: Originality 
Assessment

Algorithm 1 describes the Originality assessment process 
illustrated in Fig. 3. Specifically, it includes the steps to assess 
the originality of an updated manufacturing report. The com-
parison of Identifiers ID is executed within the Smart Contract 
sc. The result represents the evaluation to be displayed to the 
user in the Originality Assessment Tool dashboard. 

Appendix B. Scenario Examples

The “Evaluation and Results” section describes five 
types of data falsification scenarios. Since the manuscript 
includes an example of Scenario 5 with multiple data fal-
sification sources, this supplementary material furnishes 
four examples pertaining to Scenarios 1 to 4. Each result 
is shown in connection with its original batch report result.
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Scenario 1: Adulteration of the Qualified Person

The Originality Assessment tool successfully detected all 
the reports with this data adulteration. The tool flagged 
as “Non-original” those reports in which the Qualified 
Person was modified. It also correctly identified the 
falsification, i.e., the relevant piece of data changed, as 
shown in Fig. 8.

Scenario 2: Adulteration of Staff in Charge 
of an Instruction

The Originality Assessment tool successfully detected all 
reports where there was data adulteration. The tool flagged as 
“Non-original” those reports where any value of the staff in 
charge of an instruction was modified identifying the falsified 
data in question. Figure 9 shows an example of this scenario.

(a) (b)

Fig. 8  Modification of the Qualified Person: Batch 0002. This figure 
shows a comparison between the Originality Assessment results of 
Batch 0002 Revision Number 0 (a) and Batch 0002 Revision Number 
1 (b), where result a is “Original” and result b is “Non-original”. The 

data adulteration is the Qualified Person field, which is DR3 in ver-
sion 0 and DR4. The modification is also visualised on the trace of 
version 1 (b)
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Scenario 3: Adulteration of Date & Time 
of Recording Data

In this case, the data adulteration has also been successfully 
detected. The tool flagged as “Non-original” those reports 
where any date &time value of the recorded data was modi-
fied, identifying the falsified data as shown in Fig. 10.

Scenario 4: Adulteration of Sensor Data

Similarly, in this case, the data adulteration has been suc-
cessfully detected. The tool flagged as “Non-original” all 
reports where any data from sensors was modified. It also 
identified correctly the actual falsified data. Figure 11 
shows an example of such detection.

(a) (b)

Fig. 9  Modification of one of the Staff in charge of an instruction: 
Batch 0029. This figure shows a comparison between the Originality 
assessment results of Batch 0029 Revision Number 0 (a) and Batch 
0029 Revision Number 1 (b), where result a is “Original” and result 

b is “Non-original”. The data adulteration is in the Instruction 0, 
where the original data has been changed for “Mrs Elisabeth”, which 
is visualised on the trace of version 1 (b)
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(a) (b)

Fig. 10  Modification of one of the recordings of date & time of an 
instruction: Batch 0016. This figure shows a comparison between the 
Originality Assessment results of Batch 0016 Revision Number 0 (a) 
and Batch 0016 Revision Number 1 (b), where result a is “Original” 

and result b is “Non Original”. The data adulteration is in the Instruc-
tion 0, where the original date& time data has been increased by 5 s, 
which is visualised on the trace of version 1 (b)
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