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Abstract 

The process of manufacturing and creating silicon wafers for the development of chip 

sets is a particularly meticulous task. Full automation is used in many semiconductor 

manufacturing facilities. This results in minimal human intervention as batches of wafers 

move from processing tool to processing tool using robotic systems such as overhead 

vehicles (OHVs). This ensures the wafers have a low contamination possibility and 

ensures a high level of efficiency with tool-to-tool time (T2T). As is the case with many 

processes that are fully automated, issues can occur where certain parts of the robotic 

systems can become misaligned. This then has the potential to cause damage to the 

wafers in various ways. When a wafer undergoes an analytical process where the wafer 

is scanned for particles, the analytical tool will publish a wafer map that contains the 

location of the particles. Technicians manually review these wafer maps to check for 

possible issues but due to the sheer amount that is generated, many issues go unnoticed 

until it is too late. The aim of this research is to create a system and model using 

machine learning that can automatically detect and classify issues as soon as the wafer 

maps are generated. Due to the nature of the system, many machine learning 

classification models were researched and reviewed for the needed functionality and the 

speed. Support Vector Machine (SVM) and neural network sequential classification 

models are used due to “One vs One” approach being a good option and the high 

accuracy rate of the sequential model. A graphical user interface then alerts any 

stakeholders of excursions related to the equipment from the data generated on the 

analysed wafer maps. 

 

 

Keywords: Defects, Wafer Maps, machine learning, semiconductor industry, classification, 

SVM, CNN, Sequential Neural Networks 
 
 

1 Introduction 
 

Wafer defects are a constant problem in the semiconductor industry. Many different types of 

defects can occur on a wafer. This can range from a sectional build-up of particles to wafer 

scratches and impacts. The cause of these defects is the result of many different factors. Early 

notification to engineers and technicians of the problem as soon as the issue occurs has the 

potential of saving hundreds of thousands of euros from a possible wafer scrap event. The 

quality of a wafer and eventual quality of the processors that comes from them depends 

entirely on the amount and types of defects that are on it. The quality of the wafer die can be 

affected by any type of defect. Die is what ultimately becomes the processors. Dependant on 

the size of the die, wafers can contain hundreds to thousands of die. A tool or robot excursion 
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can cause defects on the wafers making the die defective. This then affects the wafer yield. 

The number of usable die when the wafer reaches the end of the line is known as the yield. 

The wafer will not contain enough die to be profitable if too many die is defective. The result 

of this is wafer scrappage. As the wafers are processed in batches, all the wafers in that batch 

would be defective from processing on the same processing tool. The cost of the scrappage 

would be added to the cost of the end of line yield, increasing the price per wafer which in 

turn, increases the price per die then waterfalling to the final processor units. 

1.1 Motivation 

Semiconductor processing and manufacturing is a completely automated process. Firstly, the 

vendor brings the wafers into the fabrication facility. From here they enter the production 

environment and process flow. The process flow contains hundreds of production tools that 

will process the wafers from start to finish. Before the wafers can enter the production 

environment, they are inserted into a Front Opening Unified Pod (FOUP)1 . The capacity of a 

FOUP is 25 wafers maximum with an approximate weight of 10kg. To transport the FOUPs 

around the fabrication facility, a system named Automated Material Handling System 

(AMHS)2  is used to transport FOUPs to and from each processing tool. A Wafer Handling 

Robot (WHR)3 then removes the wafers in single file from the FOUP and places them within 

the processing tool. The WHR contains a robotic arm called an end-effector.4 End-effectors 

can have many shapes. In the handling of semiconductor wafers, contact between robotic 

equipment and wafers should be at a minimum. For this reason, the end effector is small but 

positioned in a manner that ensures minimum contact. Some end-effectors can look like small 

robotic pinchers. It can pick up a wafer by applying a small amount of force that is enough to 

prevent any pressure damage.  

 

The wafer is then inserted into the processing tool for processing. The same process is 

followed in reverse order for the removal of wafers from the processing equipment back to 

the FOUP. As there are a high amount of components involved in the transportation and 

movement of the wafers, a many number of problems can arise that could damage the wafer 

and result in defective die. A common occurring defect is the edge location defect. The usual 

root cause for this defect is a WHR misalignment with the tool entry point. The WHR can 

push the wafer at an oblique angle which can result in the wafer partially colliding with the 

processing chamber doors. A consequence of this is that particles would spread around the 

impacted locations of the wafer which would be the edge locations. The die in these locations 

would be defective and unusable.  

 

The main problem with this is that this issue like many others can affect hundreds of wafers 

on many lots before it becomes noticed through a manual wafer map5 inspection. Another 

wafer excursion that is less common is wafer scratches. These types of issues can occur for 

many reasons but due to its rarity it can go unnoticed for thousands of wafers causing ripple 

effects within the production line. Resulting in a large number of semiconductor wafer 

scrappages and bad defective yield. 

 
 
1 https://www.entegris.com/shop/en/USD/Products/Wafer-Handling/Wafer-Processing/300-mm-Front-
Opening-Unified-Pods-(FOUPs)/c/300mmfrontopeningunifiedpodsfoups 
2 https://www.daifuku.com/solution/cleanroom/ 
3 https://yaskawa.co.il/en/product/wafer-handling-robots/ 
4 https://www.automate.org/news/what-is-an-end-effector-and-how-do-you-use-one 
5 https://www.confovis.com/en/solutions/semiconductors/aoi-automated-optical-inspection 

https://www.entegris.com/shop/en/USD/Products/Wafer-Handling/Wafer-Processing/300-mm-Front-Opening-Unified-Pods-(FOUPs)/c/300mmfrontopeningunifiedpodsfoups
https://www.entegris.com/shop/en/USD/Products/Wafer-Handling/Wafer-Processing/300-mm-Front-Opening-Unified-Pods-(FOUPs)/c/300mmfrontopeningunifiedpodsfoups
https://www.daifuku.com/solution/cleanroom/
https://yaskawa.co.il/en/product/wafer-handling-robots/
https://www.automate.org/news/what-is-an-end-effector-and-how-do-you-use-one
https://www.confovis.com/en/solutions/semiconductors/aoi-automated-optical-inspection
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1.2 Research Question 

“Can semi-conductor wafer map defects be automatically detected using machine learning 

classification techniques?” 

This research aims to build a system with the ability to detect defects when the wafer map 

data becomes available. This will be accomplished using machine learning image 

classifications models. A system like this will alert stakeholders to possible process 

equipment excursions and reduce the needed human workload. This is also a work content 

reduction tool that can free much needed user time and resources to work on other objectives. 

 

2 Related Work 
This section covers previous work researched and implemented using image classification 

techniques. It also covers prior work done defect classification on wafer maps. Work from 

many different authors and researchers are examined and compared to develop an 

understanding to support how the research achieved its goals. Machine learning models are 

evaluated to understand its performance and efficiency. 

2.1 The Study of Image Classification 

The classification of images can be a challenging job. Numerous models and methods have 

been created to a varying degree of success which have many application types. An example 

model of this is the Bag of Features (BOF) paradigm used by (Huang & Chung, 2016). 

Inspiration for this came from the Bag of Words (BOW) model in which the frequency of 

vocabulary words in a document is represented by document classification fields. BOW is 

used in computer vision systems for the purpose of classifying images. This is essentially 

representing image features as words. BOF is an enhanced version developed by (RongAn 

Chen & Qu, 2014). The research conducted by the developers emphasised that the inverse 

document frequency6 and the term frequency7 fails to contain image class information. An 

adaption of a model known as Chi Square that does hold class information of images is 

integrated into the tf-idf model. the total enhancement of the model becomes known as the tf-

idf-chi-exp model. Scale Invariant Feature transformation (SIFT) is utilized for feature 

extraction from the images. Feature experimentation shows the tf-idf model performs 

significantly better than BOW. A large amount of image classification is done using deep 

learning techniques. (Loussaief & Abdelkrim, 2018) completed research which sought to 

evaluate how BOW in machine learning compares to a deep learning classification model. As 

both models are compared, it is highlighted that image encoding and feature extraction are 

the biggest issues with image classification and computer vision. Convolutional Neural 

Networks (CNN) is the deep learning method is used. An AlexNet CNN model on the 

imageNet dataset to a high accuracy. The conclusion of the evaluation of mode models shows 

that the CN model had a significantly higher performance than that of the BOF model. The 

results of the performance are evident from the number of experiments undertaken. The 

classification accuracy of the nearest neighbour was investigated. The tests conducted for the 

experiments looked at the cosine, medium, coarse, cubic and weighted K Nearest Neighbour 

accuracy. BOF had on average 39% accuracy when compared to the CNN model with an 

accuracy result of 92%. The delta between both models is massive and shows how deep 

learning networks are far superior to BOF in image classification and feature extractions. 

 
 
6 https://nlp.stanford.edu/IR-book/html/htmledition/inverse-document-frequency-1.html 
7 https://www.opinosis-analytics.com/knowledge-base/term-frequency-explained/ 

https://nlp.stanford.edu/IR-book/html/htmledition/inverse-document-frequency-1.html
https://www.opinosis-analytics.com/knowledge-base/term-frequency-explained/
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These results are also validated by work conducted by (Panigrahi, et al., 2018). A CNN 

model was recreated that could continuously optimise with many different parameters. Over 

8000 pictures of cats and dogs which were labelled was classified by the utilized parameters. 

The purpose of the model was to train and learn dog and cat features. Once this was done an 

Artificial Neural Network (ANN) classifier was used for the classification. The obtained 

results were 88%. Deep Learning Networks for image classification purposes popular 

amongst developers and analysts alike. A small form of CNN was used by (Shyava Tripathi, 

2019) for feature and object identification within an image. The authors propose in the paper 

that a small CNN has the capability to classify images to a high accuracy. It is also suggested 

that the small CNN would be less complex for any tested dataset. The starting results for the 

training accuracy was very low. This was due to a large number of classes from the tested 

dataset. Overtime, the model trains itself on previous data and eventually reaches 99% 

training accuracy with a 0.12% validation loss. Research by (Winoto, et al., 2020) shows that 

a small, trained CNN has many different applications. The Researchers showed how Deep 

Convolutional Neural Networks (DCNN) can be slimmed and compressed for use with 

mobile devices. These so called Small DCNNs can run on mobile hardware or embedded 

micro controllers. Small DCNNs were achieved by reducing the computational complexity, 

this in turn enables the processing time to be faster. Floating point Operation per Second 

(FLOP) is threshold limited to a minimum and maximum. This is done to ensure the harder it 

runs, it is not overwhelmed with activity. A high average of 86% accuracy is achieved 

through this model. The researchers mention that the accuracy isn’t as high as state-of-the-art 

models. The overall accuracy and design is still very impressive given that the model is 

meant to be run on low powered computer devices. CNN is widely used in many 

classification tasks, (Adly, et al., 2014) proposed how CNN can be used for the classification 

of semi-conductor defects. 

2.2 Defect Detection on Wafer Maps 

When wafer maps are reviewed and defects are noticed, it could be a sign that a processing 

tool has an underlying issue. This can range from simple mechanical part replacements to 

robot recalibrations that could be needed. A great amount of research has been undertaken in 

this area. The reason for this is that subtle changes in the alignment of some mechanical 

systems within the processing tool can result in damage to hundreds of wafers which could 

cost hundreds of thousands of euros. This is something that was studied and researched by 

(Muhammad Saqlain 2020). The research details how unreliable over time manual defect 

identification techniques are. The researchers propose a deep learning based convolutional 

neural network for the purpose of identifying defects. The proposed method to accomplish 

this was to use convolutional layers for feature extraction. The model that was developed 

gained an accuracy of 96.2%. this was obtained from 9 different classes with real world 

examples used. Similar research has also been completed by (Naigong Yu 2019) where an 8-

layer CNN model was developed for defect classification. The had an average accuracy of 

93.13%. This is a good classification performance and just a little under the previous model. 

An interesting research paper published by (Shu-Min Li 2020) aimed to predict potential 

wafer scratches with the use of a CNN model. It was observed by the researcher the difficulty 

of predicting certain types of wafer map patters as there is no true patterns and wafer maps 

tend to be full of noise as random particles can spread anywhere on the wafer. It was noted 

that this is a problem for many test engineers in that defective die can cause leakage to 

surrounding die. This can inhibit potential die performance or even destroy it altogether. 

Their solution was to locate and mark potential scratch patterns using machine learning. As a 

result a CNN model was created that could accomplish this with 89% accuracy. The 

researcher explains that this eventually leads to better quality products at end of line. The 
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quality of the generated wafer maps plays a huge role in the classifying of defects on wafers. 

The higher the quality the easier a defect can be seen. This is also true in terms of machine 

learning algorithms and is highlighted by (Yanh li 2021). The researchers developed a 

method to target small features on the wafer map. The accuracy for this is 87% with the 

researchers mentioning that the quality of the wafer plays a very important role. Work 

completed by (Xiaoke Cao 2021) used the YOLOv3 (You Only Look Once)8 method for 

defect detection. This model is used for object detection in real time. Features are trained 

from a CNN. The average detection accuracy is 85.1%. The resembles the work completed 

by (Jaegyeong Cha 2020) which used Xception9 CNN that contains 72 layers to classify 

wafer that contain many defect types. The classification accuracy for this model was 93.7%.  

(Batool, et al., 2021) gives an overview of many different applications for machine learning 

with semi-conductor wafers. These range from particle selection to positional density defects. 

2.3 Machine Learning in the Semi-Conductor Industry 

The semi-conductor industry generates a massive amount of data daily. All of this data is 

stored for use internally. The data is warehoused so it can be accessed by engineers and 

technicians for both reactive and proactive data pulling. This also opens the opportunity of 

allowing machine learning to perform some of its own experiments. Research completed by 

(Chen He 2017) discusses the possibility of enhancing yield with the implementation of 

automations that constantly monitor for failures. The discussion highlights how a machine 

learning algorithm could map the failure patterns of yield. This would be able to help support 

those in decision making roles. The same authors mention an enhanced version of this (Chen 

He 2021). The authors discuss how the semi-conductor industry is effectively a big data 

environment with an immense amount of machine learning possibilities. The term, “Smart 

manufacturing” is mentioned in this paper which happens to be the route most semi-

conductors take to adapt the methodology of decision automation. Various types of machine 

learning methods can be used for decision making. (Moriya 2021) shows how manufacturing 

processes can be improved with the use of machine learning. Regression algorithms are used 

on PEALD (Plasma Enhanced Atomic Layer Deposition) film thickness processes. An 

experiment was conducted on decision making between the machine learning algorithm and a 

process engineer. The experiment conducted had wafers that had the same conditioning and 

non-uniformity. Five trials were taken to measure the performance of the engineer and the 

machine learning model to settle wafer variation on non-uniformity. The engineer was 

unsuccessful where the machine learning model was successful. The results showed that the 

machine approach could settle the variable quickly and with optimal measured conditions.   

2.4 Non-Classification Use Cases in the Semi-Conductor Industry 

Machine learning is used in this industry for use cases other than that of classification.  

(Daewoong An, 2009) shows how yield is predicted using a machine learning model. But 

instead of using a neural network an SVM method was used. The reason for this as per the 

authors is the issue with overfitting. SVM was mathematically easier to understand and 

integrate. Another interesting feature used is Out of Control (OOC) detection. A paper by 

(Ilham Rabhi, 2021) how SVM is used for the prediction of values going below or over set 

control points. This is used in conjunction with processing tool sensors that continuously 

measure values. The data is fed to the SVM model which retuns a quick decision. Other uses 

 
 
8 https://viso.ai/deep-learning/yolov3-overview/ 
9 https://keras.io/api/applications/xception/ 

https://viso.ai/deep-learning/yolov3-overview/
https://keras.io/api/applications/xception/
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cases such as manufacting flow simplification.  (Felix Pistorius, 2020) proposes the use of a 

smart evaluation matrix that can help choose the best models and eliminate unneeded tasks.  

 

This literature reviews covered the study of many papers that apply to the classification of 

wafer maps. It also highlights the work done in the field of classification for many purposes. 

Other use cases for machine learning in the semi-conductor industry is also studied. The 

application of various machine learning models is covered to conclude how the machine 

learning models are applied. The majority of work covered is in the neural network scope, but 

some SVM models were also covered. The industry now includes many of these methods. 
 

 

3 Research Methodology 
 

The problem that this project is trying to solve involves a great amount of data that is 

continuously being generated. A method that can stem informative results should be used. In 

the case of this research, it was achieved using the Cross Industry Standard Process for Data 

Mining (CRISP-DM) method as seen in Figure 1 below. To accomplish this the following 

tasks were taken to answer the research question as accurately as possible. 

 

• Analysed the research question. 

• Sourced data that is relevant that helped answer the question. 

• Decided on an algorithm. 

• Prepared data to suit the algorithm.  

• Split the data into training and test datasets to build models around the training data. 

• Validated and evaluated the models on the test data. 

 

 

Figure 1: Crisp-DM methodology used 

3.1 Dataset Selection 

The dataset used for this research was obtained from MIR Corpora. The name of the dataset 

is MIR-WM8-WM811K.10  The data was released and collected from various semiconductor 

fabrication facilities. The data was release publicly for the purpose of research. Exploratory 

 
 
10 http://mirlab.org/dataset/public/ 

http://mirlab.org/dataset/public/
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analysis on the dataset returns 811457 wafer map records. As the dataset is so large each 

record is stored in an array of 26x26 comprising of 0s,1s and 2s. The 0 represents the wafer 

map background. The 1 represents the wafer. The 2 represents the defect on the wafer. 

Visualizing a random sample of the records displays the many different types of wafer map 

defect excursion ranges that can occur, this can be seen in Figure 2 below. 

 

 

Figure 2: Wafer map excursions 

 

Much like how the array values represents each part of the wafer map, The different colours 

represent those same values of the array but visualized. Background is purple, wafer is green 

while the defects are yellow. The random defect type is the most common occurring wafer 

defect. Surface scans that the wafer undergoes when removed from a processing tool shows 

the position of the defects on the wafer (Chiang, 2006). Defects that are random usually show 

as spread across the wafer. The labelled random defect in Figure 2 would be an extreme case 

of excursion for that type of defect. The possible causes for this would most likely be from 

processing injector burst. The excursion even though labelled Random, would be more 

inclusive to a Near-Full failure. Many of the other label defects are less common and has the 

potential to go unnoticed for numerous days which results in many wafers in many lots being 

affected by the defect excursion. These failures then contaminate further flowing processing 

tools in the production line with the high particle count from the defect excursions. A 

frequency chart is generated to see how much of each failure type is contained within the 

dataset. The chart shows that the dataset has a high distribution imbalance as can be seen 

from Figure 3. The Edge-Ring defect has the highest occurrence of defect in the dataset. 

These types of defects are mostly caused by defective robotics and transfer modules (Huang 

& Chung, 2021). It’s worth noting that the defects with the higher distribution in this dataset 

are not as common in the real-world semiconductor manufacturing industry. Research into 

these less common occurring defects would have a greater business impact and benefit. It's 

for this reason that the dataset has a greater distribution of these defect records than the other 

defects. 
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Figure 3: failure type frequency 

3.1.1 Data Pre-Processing 

Before fitting any models, the dataset needs to be investigated and cleaned for the purpose of 

removing any unnecessary attributes and features.11 This will ensure they will fit correctly to 

the created model. Investigating the data, it can be seen that there are 811,457 wafer maps. It 

also shows that the data is taken from 47,543 lots. Each lot has a maximum capacity of 25 

wafers and each lot should be maximized. If each lot had 25 wafers, then the total amount of 

wafer maps should be equal to 1,188,575. This shows a discrepancy in how many presumed 

wafer maps should be in the data set by 377,118 wafers. To investigate this further, a bar 

chart is created to display the frequency of the lots and how many wafers are in them. As can 

be seen from Figure 4, not all of the lots have 25 wafers contained in them. A paper by (Wu, 

et al., 2002) highlights why a semiconductor lot might have less than 25 wafers. It’s because 

wafers are sometimes scrapped due to yield problems or defect problems affecting a wafer. A 

lot with less than 25 wafers is known as a small lot whereas a lot with 25 wafers is known as 

a full lot. 
 

 

Figure 4: Number of wafers 

 

 
 
11 https://data.gov.ie/edpelearning/en/module11/#/id/co-01 

https://data.gov.ie/edpelearning/en/module11/%23/id/co-01
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Now that it is known that there is no issue with the dataset, the variable named “waferIndex” 

is dropped from the data frame as it won’t be needed going forward and has no bearing on the 

training of the model. Most of the data that is needed for the training of the model will be 

taken from the “waferMap” column. Something that might prove to become an issue is the 

size of the wafer maps. Looking at available columns, a column named “dieSize” exists.  This 

column shows that the size of each die is different for each wafer map. The different sizes of 

the wafer map images could cause issues with the training of the model and the extraction of 

features. To understand this better, the dimensions of the wafer maps are calculated and 

added to the data frame as “wmDim”. A max and min calculation is done on the “wmDim” 

column which shows that the max dimensions of the wafer maps in the dataset to be 

(300,202) and a minimum dimension of (6,21). Next, a calculation is done to see how many 

unique values exists in the column which returns a value of 632. This highlights that there are 

632 different dimension sizes for the wafer maps in the dataset. Next, the dataset is 

investigated for missing values. In this case, the only interesting data available is the wafer 

maps that contain failure patterns. Therefore, it is beneficial to remove wafer map data that 

does not contain any failure labels. To accomplish the removal of unnecessary data, the wafer 

maps are first counted and then separated based on the type of label and whether it contains 

any defect label. The results of the separation are shown in table 1 below. 

 

Type Count 

Contains no label 638507 

Contains a label 172950 

Contains a label but no defect 147431 

Contains label and defect 25519 

Table 1: Separated label counts 

 

As can be seen from Table 1, 638507 wafer maps contain no labels. Of the 172950 wafer 

maps that do contain labels, 147431 of them contain no defect. This leaves the dataset with 

25519 wafer maps that do contain both the label and the defect.  This is the total amount of 

wafer maps that contains the real-world failure samples that will be used for classification 

purposes. The table above shows a very high imbalance distribution of the wafer maps. A 

possible reason for the imbalance is that the dataset is intended for more than just defect 

classification purposes, such as wafer analytics or trend data analysis. 

3.2 Feature Engineering 

Before the model can be built and data set up for performance evaluation, some feature 

engineering tasks must be completed on the pre-processed data. The model will be trained on 

the wafer map data that’s already available in the dataset. In order the get the best possible 

accuracy, many methods of feature extraction need to be undertaken. For this model, 3 

methods will be used for feature extraction. 

3.2.1 Feature Engineering Radon Transform 

This can create two dimensional representations of the wafer maps. Radon Transform12 can 

input several projections which will then return radon-based features. Generating these 

features using a radon transform algorithm generates the plots as seen in figure 5 below. 

 
 
12 https://mathworld.wolfram.com/RadonTransform.html 

https://mathworld.wolfram.com/RadonTransform.html
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Before values from the generated features can be used, they must be set to a fixed dimension 

because the wafer maps have many different sizes. This is accomplished using cubic 

interpolation13. 

 

 

Figure 5: Radon features class extractions 

 

Figure 5 above shows the generated results of 8 random failure types. An example of 

similarities can be seen from both of the scratch radon transform images in that a match could 

be made as the two wafer maps for these radon transforms have very different defect sizes. 

The total number of extracted radon based transformed features is 40. 

3.2.2 Concentrated Sections 

Given the circular nature of a semiconductor wafer, there are a few different zones where 

defects can occur. The outer locations of the wafer can be divided into four semi circles while 

the center of the wafer can be sliced into nine smaller sections. Depending on where the 

defect occurs on the wafer, the failure locations would have a higher concentration of defects. 

An example of this would be the “Edge-Loc” defect failure. The particles in the outer zones 

of the wafer map would have a higher concertation of particles than the center zones. This in 

turn can highlight the failure depending on the failure location and defect density. Enabling 

the extraction of density from these zones results in 13 features that can be used for 

classification purposes. 

3.2.3 Salient Region Detection 

In its purest form, saliency is the standout features of an image. It’s what the eye and brain 

make a connection to that focuses on the most important features. In terms of the wafer maps, 

the most important features are the defect failures. In a sense this feature is a kind of wafer 

 
 
13 https:/docs.scipy.org/doc/scipy/reference/interpolate.html 

https://docs.scipy.org/doc/scipy/reference/interpolate.html
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map failure noise reduction in that it will eliminate all non-failure type defects such as 

particle spread or sporadic patterns and show only the failure such as a wafer scratch, a center 

localized fail or an edge defect fail. Along with all the full failure wafer maps in the dataset, 

the salient regions will also be generated and saved locally for the model training purposes 

thus enabling a high accuracy score as the model will know more of the defect types. For the 

purpose of this research, a region labelling algorithm is used to select the max area region 

which in turn is the salient region. Geometry features such as eccentricity can then be 

extracted. This will return a frame showing the failure defect as opposed to a full wafer map. 

 

 

Figure 6: Salient Regions 

Performing a salient region detection algorithm on a random selection of 8 wafer maps 

returns the salient region maps as can be seen in Figure 6 above. It can be noticeed how just 

the failure defect is shown in the wafer map and how other failure types are somewhat vastly 

different. The total number of extracted features are 6 from the salient region detection 

algorithm. 

3.2.4 Feature Combination 

A total of 59 features are extracted from the dataset. The 3 different types of features are 

added together for the purpose of classifying the wafer maps. This high number of features 

gives the model a higher chance of correctly classifying the wafer maps when they are tested. 

3.3 Evaluation 

The evaluation metrics that are used in this project are accuracy precision, recall, F1 Score 

and confusion matrix. Using these evaluation metrics will ensure an accurate representation 

of performance. This has been accomplished by plotting the algorithms performances using a 

confusion matrix. The rest of the performance identifiers data is generated in the 
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classification report. F1 precision and accuracy scores are calculated in a manner needed to 

measure the model performance. The calculations and formulas for the given evaluations can 

be seen in the descriptions below.14 

 

• Precision – This is the ratio of classes that have been predicted correctly over the 

total number of positive predictions taken by the model. 

Precision = True Positives / (True Positives + False Positives) 

 

• Recall – This is ratio of observations correctly positively predicted over all positive 

class observations. 

Recall = True Positives / (True Positives + False Negatives) 

 

• F1 Score – This is the weighted average between precision and recall 

F1 = (2 * Precision * Recall) / (Precision + Recall) 

 

• Accuracy – This the ratio of correct predictions over the total number of predictions 

Accuracy = (True Negatives + True Positives) / (True Positives + False Positives + 

True Negatives + False Negatives) 

 

4 Design Specification 
 

To implement this project efficiently, a three-tier architecture was designed as can be seen 

from Figure 7 below. It contains a brief overview of all the steps and technology used for the 

development of the model and the creation of the graphical user interface for use by the users. 

 

• Tier 3 – This tier of the design spec shows that when the data source is selected, it is 

then imported and collated. The usable data is then selected from this using the 

Python programming language within the Spyder integrated development 

environment. The data is then split into training, test, and validation data this is 

efficiently done which then brings the process to the next tier of business logic flow. 

 

• Tier 2 - As part of the previous tier, all the wafer maps get exported to a local 

location on the user’s hard drive. Once they are saved, they are imported with 

directory name acting as the class name. the next step is the data will undergo 

augmentation. Once completed then the images will be resized to a universal size. 

Features are then extracted from the images. The SVM and CNN models are then 

trained on the data and the features to see which model has the better performance. 

 

• Tier 1 – This is the presentation tier. It highlights how the data will be displayed. The 

analytical data is shown within the Integrated Development Environment (IDE) while 

the end user information such as the classification and imported wafer map is shown 

in the graphical user interface. 

 
 
14 https://machinelearningmastery.com/precision-recall-and-f-measure-for-imbalanced-classification/ 

https://machinelearningmastery.com/precision-recall-and-f-measure-for-imbalanced-classification/
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Figure 7: Wafer Map classification design specification 

This design approach was taken to better meet the project requirements and ensure an efficient 

performance of the created models. 8 classes and 25519 defect wafer map images are extracted 

and are processed and used. The train and test data are created and split using those images. 

The implementation of this is covered in the next section of the project report. 
 

5 Implementation 
 

This section discusses the implementation, evaluation, and results from each model. The 

project focuses primarily on two machine learning models. An SVM model and a Sequential 

model. The dataset, data location, training methods and feature extraction types are also 

discussed. The evaluation which plays an important factor in the project uses classification 

reports and confusion matrices to show the performance of the models. The determination of 

the performance of the models will come from the precision, recall. accuracy and F1 scores. 

The two models are compared, then the best performing model is used for the final 

application of the project. An overview of the graphical user interface and how the 

application works is also examined. The use case will also be examined for the business need. 

5.1 Dataset Creation and Manipulation 

The dataset used is the MIR-WM8-WM811K obtained from MIR corpora as discussed in 

section 3.1. For the SVM and sequential model, the dataset contained 8 classes which are 

Scratch, Random, Near_Full, Loc, Edge Ring, Edge_Loc, Donut and Center. For the purpose 

of the SVM model, the images generated with plotting are adequate but for the purpose of the 

sequential model, a more real-world approach is needed for importing data. Therefore, each 

generated wafer map is exported to the local working directly and placed in defect type 

folder. The saliency generated wafer maps are also exported to the working directory. From 

here, they will be imported with directory names being used as classes for training the model.  
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5.2 Support Vector Machine Model Implementation and Evaluation 

Support Vector Machine (SVM)15 is a supervised learning method that is used for problems 

related to regressing and classifications. It is a linear model but can also solve non-linear 

problems. The SVM algorithm creates a line or a hyperplane which can separate data into 

classes. As this project has many different types of defects it needs to classify, a multi class 

approach is needed. To accomplish this One-Vs-One (OVO) method is used. OVO is a 

heuristic method that uses binary classification algorithms for the purpose of multi-class-

classification. OVO solves multiclass classification problems by splitting a dataset into one 

dataset for each class versus every other class.  

5.2.1 SVM Model Implementation 

The model was split into a train and test dataset. A one vs one classifier was implemented and 

fit to the model with the split data using the scikit learn python package. All of the extracted 

features mentioned in section 3.2 of this report are used to be validated against the dataset 

failures with labels as “X”. This is done by first concatenating all of the extracted features 

into one array variable. Then that array can then be fit to the model alongside the labels as 

“y”.  

5.2.2 SVM Model Evaluation 

20415 wafer maps were used to train the model while 5103 were used for validation. Upon 

training the model, a sample of 100 predictions were taken and compared to the train dataset.  

 

y_train_pred[:100]: 

[4 0 2 2 0 3 2 0 2 2 6 0 4 0 3 2 3 2 2 4 2 2 0 4 3 0 3 3 3 

3 2 3 0 3 2 3 2 4 3 2 2 2 3 3 0 6 3 5 2 3 0 3 2 2 2 0 3 3 4 

0 4 2 3 3 3 3 4 3 0 3 2 2 0 2 2 3 3 0 2 0 2 4 3 3 3 3 0 0 2 

0 0 3 4 3 0 3 3 2 4 2] 

y_train[:100]: 

[5 0 4 2 0 3 2 0 2 2 6 0 4 0 3 0 6 2 2 5 2 4 0 5 3 0 3 3 3 

3 2 3 4 3 4 3 3 4 3 2 2 3 3 3 0 6 3 5 2 3 0 3 2 2 2 0 3 3 1 

0 4 2 3 3 3 3 4 3 0 3 2 4 0 4 2 3 3 0 2 0 2 4 3 3 4 3 0 0 6 

0 0 3 4 3 0 3 3 2 4 2] 

Table 2: comparisons of train and predictions values 

The second column in Table 2 above shows the numbers associated with each class. 0 = 

Center, 1 = Donut , 2 = Edge-Loc , 3 = Edge-Ring , 4 = Loc, 5 = Random, 6 = Scratch , 7 = 

Near-full. It can be manually observed that a number of predictions are wrong while quite a 

few are correct predictions. For more detail on performance, a classification report is needed. 

 

Upon completion of training the SVM model. A classification report was generated to show 

how the model performed at classifying the wafer maps. As can be seen from Table 3, the 

results vary among each class. The report shows that the classes with the more training 

support generally had a higher f1-score compared to the classes with the lower training 

support. A probable exception for this would be the “Loc” class. It has a relatively high 

training support but an F1 score of 50%. This is also in line with its recall and precision 

score. A possible reason for this is that it resembles some of the other classes. “Loc” is a 

shortened term for localized. They are usually large spots of defects which can occur on 
 

 
15 https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-
934a444fca47 

https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
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mostly centralized positions of the wafer. Sometimes “Edge-Loc” defects can resemble “Loc” 

but just a little further outside the centralized perimeter resulting in an incorrect classification.  

 

 Precision recall f1-score support 

Center 0.88 0.95 0.91 3238 

Donut 0.94 0.04 0.08 404 

Edge-Loc 0.59 0.74 0.66 3860 

Edge-Ring 0.9 0.92 0.91 7299 

Loc 0.58 0.5 0.5 2677 

Random 0.82 0.64 0.72 640 

Scratch 0.77 0.34 0.47 905 

Near-full 0.9 0.72 0.8 116 

     
accuracy   0.77 19139 

macro avg 0.8 0.61 0.64 19139 

weighted avg 0.78 0.77 0.76 19139 

Table 3: Classification report of SVM accuracy results 

 

 

         Figure 8(a): SVM Confusion Matrix                Figure 8(b): Confusion Matrix Normalized  

Next, to also examine the performance of the model, a confusion matrix is generated. First, a 

basic confusion matrix is generated which shows the total amount of correct and incorrent 

predictions  as seen in figure 8(a). The best performing class is the Edge Ring class as 

represented by the number 3. This can be attributed to the higher number of training wafer 

maps available for this defect. To better visualize and understand the confusion matrix, it is 

better to normalize the data and re generate the plot. A normalized confusion matrix is 

created as can be seen from figure 8(b). The normalized plot shows that the best overall 

performing class is the center class as represented by the number 0. The poorest performing 

class is the donut class represented by the number 1. The class was only predicted correctly 

4% of the time, while also incorrectly being predicted to be the Loc class 86% of the time. In 
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total, the classification accuracy of the model is 77% which is good but possibly below the 

standard needed for the classification of wafer maps in a high risk semiconductor fab facility. 

5.3 Sequential Model Implementation and Evaluation 

Sequential models16 are linear stacks of layers where the previous layer inputs to the next. 

This type of approach can be used for both classifier and declassifier models. The Keras 

sequential model is made up of three convolutional blocks. Each block contains a max 

pooling layer and a fully connected layer. The connected layer has 128 units on top of it and 

is activated by the Relu function. This is a convolutional neural network method for creating 

this type of system.  

5.3.1 Sequential Model Implementation 

The model was compiled using the Adam optimizer and the Sparse Categorical Cross entropy 

loss function. The metrics argument was passed to the compilation of the model to enable 

viewing of the metrics. Useful for plotting accuracy and loss for training and validation sets. 

5.3.2 Sequential Model Evaluation 

The model was first trained for 10 epochs on the wafer map data that was generated earlier. 

Next, the accuracy and loss are plotted on the training and validation sets. The plots as shown 

in Figure 9 highlight how the accuracy of the training and validation sets are off by a high 

margin. It also shows that the validation set has an accuracy of approximately 88%. The plot 

shows that the training accuracy increases at a linear rate over time. Since the validation set 

peaks at around 88%, it shows a high gap between the training and validation accuracy. This 

is a signal of over fitting. Although 88% is a high accuracy percentage, the overfitting signal 

means there is a possibility of increasing the accuracy. Data augmentation is used to generate 

more training data from the existing data. This will expose the model to random 

transformations to create more wafer map data. This in turn should enable the model to 

generalize the data to a higher extent, increasing the performance and accuracy of the model. 

 

 

       Figure 9(a) Accuracy                    Figure 9(b) Accuracy  

 

 

 
 
16 https://machinelearningmastery.com/three-ways-to-build-machine-learning-models-in-keras/ 

https://machinelearningmastery.com/three-ways-to-build-machine-learning-models-in-keras/
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As can be seen from Figure 10 plotting a sample of the augmented data shows the artificially 

generated wafer maps. These maps look much like the wafer maps obtained from the dataset. 

This augmented data is then added to the model by creating a new neural network before 

training the model again. After this, a dropout layer is applied. This randomly drops a number 

of output units from the layer when the model undergoes training. The dropout is 

approximately 20% to 40% of the output units selected randomly from the applied layer. 

 

 

Figure 10: Augmented Wafer maps 

The model is then trained with 15 epochs with the data augmentation and the dropout applied. 

The accuracy and validation sets are then plotted again which as per Figure 11 shows a 

significant decrease in overfitting. It can also be observed that validation and training sets are 

more closely aligned with a peak validation accuracy of approximately 92%. This is a 4% 

increase previous iteration of the model without data augmentation or use of a dropout layer. 

 

 

Figure 11: Accuracy and loss post augmentation 
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5.4 Discussion and Final Model Selection 

Both the SVM and sequential model performed to a somewhat high accuracy but due to the 

use case of such a project, a high accuracy percentage is needed. When comparing the SVM 

model to the sequential neural network model its easy to see the drawbacks of SVM for the 

purpose of classification. SVM scored a respectable 77% percent accuracy. This would be 

acceptable for a non-business critical classification use case. But in the semiconductor 

industry, each second counts. An implantation of the SVM model would undoubtedly result 

in quite a few excursion misses which could result in production tool down time and potential 

wafer scraps. On the other hand, as seen from Table 4 the sequential model performed 15% 

better than the SVM model at 92%. This is a massive increase and is viable to be used in a 

semiconductor industry. With the constant feed of wafer maps within a facility, the accuracy 

of the model would increase over time. A business implementation of such a system could 

result in more wafers reaching end of line with a higher number of viable die for processors.  

 

Model Accuracy 

SVM 77% 

Sequential  92% 

Delta 15% 

Table 4: Model Comparisons 

5.4.1 Final Model Selection 

Due to the better performance of the sequential model, it was chosen as the final model for 

the project. Next step is to see how the model performs when it is faced with new data. As the 

wafer maps are 2 dimensional, it is easy to create new wafer maps in an image editing 

application for testing purposes. GIMP was used to create a new wafer map with a defect.  

 

 

Figure 12 Manually created wafer map 

As can be seen from Figure 12 above, a wafer map was created and edited to contain a 

scratch defect. The defect is located across the lower center of the map reaching to the right 

side of the wafer. As seen below, upon loading the image into the model for prediction. The 

model takes only 51 milliseconds to correctly classify the wafer map as a scratch with 96.58 

percent accuracy as seen in Figure 13. This is a good accuracy and a good prediction speed. 

 



19 
 

 

 

Figure 13: Scratch classification 

 
 

5.5 Comparison of Existing Models 
 
 

Author Classificaiton Type Method Accuracy 

(Muhammad Saqlain 2020) Multiclass CNN 96.20% 

 (Naigong Yu 2019) Multiclass CNN 93.13%. 

(Loussaief & Abdelkrim, 

2018)  
Binary BoF 39% 

(Panigrahi, et al., 2018) Multiclass CNN 88% 

(Shu-Min Li 2020)  Binary CNN 89% 

y (Yanh li 2021) Multiclass Mask R-CNN 87% 

(Xiaoke Cao 2021) Multiclass YOLOv3 D-CNN 85.10% 

(Jaegyeong Cha 2020) Multiclass Xception CNN 93.70% 

Table 5: Existing model comparison 

AS can be seen from Table 5, the machine learning methods are dominated by CNNs. The 

best performing model is by (Muhammad Saqlain 2020) at 96.20 with a CNN method. 

Followed by (Jaegyeong Cha 2020) at 93.70%. The worst performing model is the BOF 

method used for binary classification purposes by (Loussaief & Abdelkrim, 2018). 
 

6 Proof of Concept UI Development 
 

To properly test the use case of the model, it was decided to create a desktop app. As the 

model was already created and trained, it was then saved as a h5 file17. This would allow an 

external python file to access the model without having to go through the training process 

again. To make it a usable desktop application, a graphical user interface had to be created.  

6.1 UI Design 

Before creating the graphical user interface, a wireframe is created. The wireframe is a 

predesign step where all the needed elements are laid out and roughly put together. This gives 

an overview of how the UI will be used and what it will eventually contain as can be seen 

from Figure 14 below. The main screen contains 6 elements. 2 elements at the top of the 

window are labels. The first label prints the class prediction and the accuracy of the loaded 

wafer map. The second is label that comes visible when auto watch is enabled. At the center 

 
 
17 https://github.com/christianversloot/machine-learning-articles/blob/main/how-to-use-h5py-and-keras-to-
train-with-data-from-hdf5-files.md 

https://github.com/christianversloot/machine-learning-articles/blob/main/how-to-use-h5py-and-keras-to-train-with-data-from-hdf5-files.md
https://github.com/christianversloot/machine-learning-articles/blob/main/how-to-use-h5py-and-keras-to-train-with-data-from-hdf5-files.md
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of the window are 2 elements. These are frames that will show the loaded wafer map and the 

salient version of that wafer map. At the bottom of the window are two buttons. The first 

button on the left allows the user to select a wafer map manually. The app will then do a 

prediction on this and classify. The button on the bottom right enables automated monitoring.   
 

 

Figure 14: Wireframe 

6.2 Wafer Map Detection App 

Figure 15 below shows the graphical user interface of the wafer map detection app. The 

image on the left shows a scratched defect was detection with 99.13% accuracy through the 

manual inspection mode. The image on the right shows a scratch that was detected with 

92.56% accuracy. When a user clicks the Automated wafer map inspection button, it will 

trigger the app to scan the new wafer map directly. The app will scan every few seconds 

looking for a new wafer map to classify. Once a defect is classified, the app will alert the user 

and show the defect on the screen. Which is a quick method of visualization for the end user. 

 

 

Figure 15: GUI for wafer detection app 
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7 Conclusion and Future Work 
 

The automated detection of wafer map defects is something that has a real business need. As 

with what was seen in the previous section, the application could easily run on a command 

station or server. It has many benefits. Firstly, if implemented into a semiconductor facility, it 

would aid in the detection of down time causing defects. Resulting in a cost saving of 

potentially millions in reduced wafer scrappages and tool down events over time. Next, the 

app would be a huge work content reduction win for both engineers and technicians alike as 

it would free up time from the mundane and time centred reviewing of wafer map tasks. With 

more time, the app could be made into a suite of analytical tools directed towards the 

semiconductor environment. An SMTP function would prove useful where users could set up 

a condition to allow them to receive emails of when a defect occurs. At its base form, this 

project shows how analytics of a real-world problem for computer chip manufactures would 

solve it with the use of machine learning technology and integration. A follow up project 

could research the viability of other machine learning models. It could research the 

plausibility of deep learning neural networks for instant classification.  
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