~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Programme Name

Amit Vajpeyee
Student ID: x19218397

School of Computing
National College of Ireland

Supervisor: Dr. Abid Yaqoob

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Amit Vajpeyee
Student ID: x19218397
Programme: Data Analytics
Year: 2022
Module: MSc Research Project
Supervisor: Dr. Abid Yaqoob
Submission Due Date: 15/12/2022
Project Title: Configuration Manual
Word Count: 577
Page Count: 2

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 15th December 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Amit Vajpeyee
19218397

1 Introduction

This report, step by step instructions and code have been presented so that the authorized
people can reproduce the same code and similar results on their systems. These have been
elaborated in cogent and concise manner below.

2 System Specifications and Configurations

Specifications for the hardware as well as the setup of software have been elucidated
below with corresponding images or diagrams wherever necessary.

2.1 Hardware Specifications

e Brand: Asus

Model: G533QS-HQ236TS

e Processor: AMD Ryzen 9 5900HX
e GPU: Nvidia RTX 3080 (16 GB)
e RAM: 64 GB

A screenshot of the same can be seen in Figure in Figure.

System > About

Amit-PC
ROG Strix G533QS_G533QS

® Device specifications

Device name Amit-PC
Processor AMD Ryzen 9 5900HX with Radeon Graphics 3.30 GHz
Installed RAM 64.0 GB (63.4 GB usable)

Figure 1: System configuration

2.2 Software Configuration

For software configuration, Windows 11 Pro, Python 3.10, Jupyter notebook, Pycharm
Figure. 2l and Notepad has been used.

<

-
jupyter
4
Notebook

A 6412

Web-based, interactive computing notebook
environment. Edit and run human-readable
docs while describing the data analysis.

Figure 2: Jupyter notebook

Windows 11 Pro - The entire research was conducted on Windows 11 Pro.

Notepad - The raw dataset for captions is in the format of text file.

Jupyter Notebook — It was used as the primary GUI for model development pur-
poses.

Python 3.10 — Python was used as the main programming language.

PyCharm Community Edition - It is the IDE which was used for Robotic Process
Automation and manipulation of the raw dataset.

3 Implementation

3.1 Data Source

Flickr 8k dataset can be downloaded from the link provided by the University of Ilinois
M Refer figure

@ forms.illinois.edu/sec/1713398

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

I ‘ The Grainger College of Engineering
Computer Science

Flickr 8k Data

We do not own the copyright of the images. We solely provide the Flickr 8k dataset for researchers and educators who wish to use the images for non-commercial
research and/or educational purposes.

Figure 3: Flickr 8K Dataset Download Page 1

In this work, the dataset was downloaded from the GitHub link El in order for the
automation to download the file without having to wait for the link to be sent via email
from the University of Ilinois. Refer figure

<« C @ github.com/goodwillyoga/Flickrsk_dataset

o Product v Solutions v Open Source ¥ Pricing

& goodwillyoga / Flickr8k_dataset public

<> Code @ Issues 1% Pullrequests @ Actions [Projects @ Security |22 Insights

e B b ©0uss coune (D)

‘W’ goodwillyoga Update READMEmd a207a2e on May 14,2019) 2 commits
[READMEmd Update README.md 4 years ago
README.md

Flickr8k_dataset

The Flickr8k_dataset is available for free from lllinois.edu website. Please complete a request form and the links to the
dataset will be emailed to you. Please use the link below to request the dataset: "https://illinois.edu/fb/sec/1713398"

The official edu site is not hos(ing the dataset at the current time.
Please refer to Jason Brownlee's GITHUB link to Download Flickr_8k dataset
1. Flickr8k_Dataset.zip https://github.com/jbrownlee/Datasets/releases/download/Flickr8k/Flickr8k_Dataset.zip

2. Flickr8k_text.zip https://github.com/jorownlee/Datasets/releases/download/Flickr8k/Flickr8k_text.zip

Figure 4: Flickr 8K Dataset Download Page 2

3.2 Downloading and Manipulating the Dataset
e Open the Pycharm Community Edition

e Import the requisite libraries Figure.

thttps://illinois.edu/fb/sec/1713398
Zhttps://github.com/goodwillyoga/Flickr8k_dataset

time

selenium webdriver

0S
glob
zipfile

_shutil

Figure 5: Importing libraries

e Type the code for custom function to extract the dataset in to the correct working
directory. Figure. [0]

zipExtract(dataset_name):
working_directory =

.format(username)

list_of_files = glob.glob(downloads_folder)
latest file = (list_of_files =0s.path.getmtime)

zipfile.ZipFile(latest_file) zip_ref
zip_ref.extractall(working_directory)
(.format(dataset_name))

os.remove(.format(username, dataset_name +))

()

Figure 6: Code to Extract the raw data in working directory

e Type the code for manipulating the extracted data and to delete the unnecessary
files Figure.

e Open Jupyter Notebook.

e Type the code to import requisite libraries. Figure.

e Create a Pandas DataFrame to contain the image ID’s, image paths and captions.
Figure. [9]

e Create a vocabulary without punctuation marks. Figure.

e Type the code for Caption Pre-processing. Figure.

e Invoke Keras to define the InceptionV3 model. Figure.

e Process the output of the input_pipeline in the InceptionV3. Figure.

e Type the code for the custom function that maps the image path to their respective
features. Figure.

e Type the code to generate the train and test dataset. Figure.

4

create_file():
file = (
counter_file =
(
words file.readlines():
counter

counter_file +=

line = split(

line[1]

line[1] = line[1].rep
linel = .join(line)
f.write(linel)

os.remove (

killfile():

del_files:
.format(file))
)

Figure 7: Code to Manipulate and Delete Data

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns

import keras

import glob

import random as rn

from PIL import Image

import tensorflow as tf

rn.seed(42)

tf.random.set seed(42)

from tensorflow.keras.models import Model

from tensorflow.keras import layers

from tensorflow.keras.layers import GRU, Embedding, TimeDistributed, Dense, RepeatVector, Activation, Flatten, Reshape, \
concatenate, Dropout, BatchNormalization, Conv2D

from sklearn.model_selection import train_test_split

import warnings
warnings.filterwarnings('ignore")

pd.set option('display.max colwidth', None)

from collections impert Counter

import string

import imageio

import json

from tqdm import tgdm

import time

from gtts import gTTS

import os

from IPython.display import display, Audio

Figure 8: Importing Requisite Libraries in Jupyter

all img_id = text_df['image'].values #store all the image id here
all_img_vector = (images + '/' + text_df['image']).values #store all the image path here
annotations = text_df['caption'].values #store all the captions here

df = pd.DataFrame(list(zip(all_img_id, all_img_vector, annotations)),columns =['ID", 'Path’,

df.head(11)

ID

Path

"Captions'])

Captions

10

Removing all punctuation marks/ signs from the
df['Captions'] = df[‘Captions’].apply(lambda x

1000268201_693b08cb0e jpg
1000268201_693b08cb0e jpg
1000268201_693b08cb0e jpg
1000268201_693b08cb0e jpg
1000268201_693b08cb0e jpg
1001773457_577c3a7d70 jpg
1001773457_577c3a7d70 jpg

1001773457_577c3a7d70 jpg

1001773457_577c3a7d70 jpg
1001773457_577c3a7d70 jpg

1002674143_1b742ab4b8 jpg

Research_project/Flicker8k_Dataset/1000268201_693b08cb0e jpg
Research_project/Flicker8k_Dataset/1000268201_693b08cb0e jpg
Research_project//Flicker8k_Dataset/1000268201_693b08ch0e jpg
Research_project/Flicker8k_Dataset/1000268201_693b08cb0e jpg
Research_project//Flicker8k_Dataset/1000268201_693b08ch0e jpg
Research_project/Flicker8k_Dataset/1001773457_577¢c3a7d70.jpg
Research_project//Flicker8k_Dataset/1001773457_577¢c3a7d70 jpg

Research_project//Flicker8k_Dataset/1001773457_577c3a7d70 jpg

Research_project//Flicker8k_Dataset/1001773457_577c3a7d70 jpg
Research_project//Flicker8k_Dataset/1001773457_577c3a7d70 jpg

Research_project/Flicker8k_Dataset/1002674143_1b742ab4b8 jpg

Achild in a pink dress is climbing up a set of stairs in an entry way
A girl going into a wooden building

A little girl climbing into a wooden playhouse .

Alittle girl climbing the stairs to her playhouse

Alittle girl in a pink dress going into @ wooden cabin .

Ablack dog and a spotted dog are fighting

A black dog and a tri-colored dog playing with each other on the road -

Ablack dog and a white dog with brown spots are staring at each other in

the street .
Two dogs of different breeds looking at each other on the road .

Two dogs on pavement moving toward each other .

A little girl covered in paint sits in front of a painted rainbow with her hands

in a bowl

Figure 9: Create Pandas DataFrame to Contain ID’s, Paths and captions

"Captions”™ column in the data frame
''.join(a for a in x if a not in string.punctuation))

df

Creating the 'vocabulary' & the 'counter’ again for the captions
vocabulary= [y.lower() for x in df['Captions'].values for y in x.split()]

val count = Counter(vocabulary)
val count

Counter({'a': 62986,
1545,

‘child":

'in': 18974,
"pink’: 735,

'dress’: 348,
'is': 9345,
'climbing': 502,
'up': 1260,
'set’: 108,
'of': 6713,
'stairs’: 189,
‘an': 2432,
‘entry': 1,

Figure 10: Code for Vocab without Punctuation Marks

create the tokenizer

tokenizer = tf.keras.preprocessing.text.Tokenizer(
num_words = 5000,
filters="1"#$%&()*+,-./3=2@[\\]*_ {|}~\t\n",

lower = True, split = ,» char_level = False, oov_token = "<unk>"

)
Creating the internal vocabulary based on the captions that are there in the data
set 'FLickr8K':
tokenizer.fit on_ texts(annotations)

Transforming each text in the caption sequence to the sequence of integers, based
on the internal vocab created just above:
tokenized caption_seqgs = tokenizer.texts_to_sequences(annotations)

Figure 11: Code for caption pre-processing

image model = tf.keras.applications.InceptionV3(include top=False, weights="imagenet")

new_input = image_model.input
hidden layer = image model.layers[-1].output

image_ features_extract_model = keras.Model(new_input, hidden_layer)

Figure 12: Code for InceptionV3 model

Creating an empty dictionary 'feature_and caption dict':
feature_and_caption_dict = {}
Using the Llibrary 'tqdm’ to see the progress bar:

for img, path in tgdm(image_data_set):
write the code to apply the feature extraction model to your earlier created dataset which contained images & their
respective paths.
batch_features = image features extract model(img)
Once the features are created, you need to reshape them such that feature shape is in order of (batch_size, 8*8, 2048)
batch_features = tf.reshape(batch_features, (batch features.shape[0], -1, batch features.shape[3]))

for bf, p in zip(batch_features, path):
path_of_feature = p.numpy().decode("utf-8")
np.save(path_of feature, bf.numpy())
feature_and_caption_dict[path_of_feature] = bf.numpy()

100% | INNEIEIENE| 127/127 [ee0:31<00:00, 4.@8it/s]

Figure 13: Code for processing the data in the base model

Using the similar logic, I would be creating a function which maps
the image path to their feature.

This function will take the image path & caption and return it's

feature & respective caption.

def map func(image path, caption):
img tensor = feature and caption dict[image path.decode('utf-8")]

return img tensor, caption

Figure 14: Custom Function for Mapping image path to their features

create a builder function to create dataset which takes in the image path & captions as input
This function should transform the created dataset(img_path,cap) to (features,cap) using the map_func created earlier

batch_size = 256

The dataset fills a buffer with buffer size elements, then randomly samples elements from this buffer, replacing the selected
elements with new elements. For perfect shuffling, a buffer size greater than or equal to the full size of the dataset is
required.

Since the length of the train data set for images (path_train) as well as captions (cap_train) is equal to 32,364 and
the length of the test data set for images (path_test) and captions (cap_test) is 8,091, I would be keeping the
buffer size to be 32365:

buffer_size = 32365

def gen_dataset(image_data, caption_data):

Creating the TensorSliceDataset from the numpy arrays:
dataset = tf.data.Dataset.from_tensor_slices((image_data, caption_data))

Making sure that the random seed that will be used to create the distribution is equal to 42:

'shuffle' randomly shuffles the elements of this dataset.

reshuffle_each_iteration controls whether the shuffle order should be different for each epoch.

reshuffle each iteration is a boolean, which if true indicates that the dataset should be pseudorandomly reshuffled each

time it is iterated over. (Defaults to True.)
dataset = dataset.shuffle(buffer_size, seed = 42, reshuffle each_iteration = True)

dataset = dataset.map(lambda item 1, item 2: tf.numpy_ function(
map_func, [item_1, item_2], [tf.float32, tf.int32]),
num_parallel calls = tf.data.experimental.AUTOTUNE).batch(batch_size, drop_remainder = False)

'prefetch’ creates a Dataset that prefetches elements from this dataset.

Most dataset input pipelines should end with a call to prefetch. This allows Llater elements to be prepared while the
current element is being processed. This often improves Latency and throughput, at the cost of using additional memory
to store prefetched elements.

dataset = dataset.prefetch(buffer_size = tf.data.experimental.AUTOTUNE)

return dataset

Figure 15: Function to generate test and train datasets

3.3 Model Training and Testing

e Type the code to train and test the model and calculate the train and test losses
over 50 epochs. Figure.

3.4 Model Evaluation
e Code to plot the graph for train and test losses. Figure.

e Plot the train and tess loss graph Figure.
e Type the code for predicting the captions (Greedy Search). Figure.
e Type the code for predicting the captions (Beam Search). Figure. [20] and

e Type the code to predict using greedy search and evaluate using the BLEU score.
22

e Type the code to predict using beam search.

e Type the code for transforming the caption in to speech.

Code to train and test the model based on the processed data set:

loss_plot = []
test_loss_plot = []
epochs = 50

best test loss = 100

for epoch in tqdm(range(@, epochs)):
start = time.time()
total_loss = @

for (batch, (img_tensor, target)) in enumerate(train_dataset):
batch_loss, t_loss = train_step(img_tensor, target)
total loss += t_loss
avg_train_loss=total loss / train_num_steps

loss_plot.append(avg_train_loss)
test loss = test loss cal(test dataset)
test_loss_plot.append(test_loss)

print ('For epoch: {}, the train loss is {:.3f}, & test loss is {:.3f} .format(epoch+l,avg train loss,test loss))
print ('Time taken for 1 epoch {} sec\n'.format(time.time() - start))

if test loss < best test loss:
print('Test loss has been reduced from %.3f to %.3f' % (best_test_loss, test_loss))
best test loss = test loss
ckpt manager.save()

Figure 16: Training and Testing the Model and calculating Losses

plt.figure(figsize=(12, 6))
plt.plot(loss_plot)
plt.plot(test loss plot)
plt.xlabel(Epochs")
plt.ylabel('Loss")
plt.title('Loss Plot")

plt.legend(loc="best")
plt.show()

Figure 17: Code to Plot the train and test losses

Loss Plot

3.5

3.0 4

2.51

2.04

Loss

1.5

1.0 1

0.5 1

Epochs

Figure 18: Graph of the train and test losses

Greedy Search

def evaluate(image):
max_length=max_len
attention plot = np.zeros((max_length, attention features shape))
hidden = decoder.init state(batch_size=1)
temp_input = tf.expand dims(load image(image)[@], @) #process the input image to desired format before extracting features
img_tensor_val = image features extract model(temp input) # Extract features using our feature extraction model
img_tensor_val = tf.reshape(img_tensor_val, (img_tensor_val.shape[0], -1, img_tensor_val.shape[3]))

features = encoder(img_tensor_val) # extract the features by passing the input to encoder

dec_input = tf.expand_dims([tokenizer.word_index[‘<start>']], @)
result = []

for i in range(max_length):
predictions, hidden, attention weights = decoder(dec_input, features, hidden) # get the output from decoder

attention_plot[i] = tf.reshape(attention weights, (-1,)).numpy()
predicted_id = tf.argmax(predictions[@]).numpy() #extract the predicted id(embedded value) which carries the max value
#map the id to the word from tokenizer and append the value to the result list
result.append(tokenizer.index word[predicted id])
<end> token is required for prompting the RNN (Decoder) to stop the text generation. It is part of the output,
unlike the <start> token, which is not the part of the output:
if tokenizer.index_word[predicted_id] == ‘<end>':
return result, attention_plot,predictions

dec_input = tf.expand dims([predicted id], @)

attention plot = attention plot[:len(result), :]
return result, attention_plot,predictions

Figure 19: Code for Prediction - Greedy Search

10

aet peam_evaluatel(image, bDeam_lndex = 35): Fyour vaiue jor beam 1haex)

#write your code to evaluate the result using beam search
max_length = max_len
start = [tokenizer.word_index['<start>']]

The output of the argmax is saved in a list called ‘'result’. It would start with the <start> token and keep iterating
till it reaches the <end> token. Its initial value is zero:
result = [[start, 0.0]]

attention_plot = np.zeros((max_length, attention_features_shape))
hidden = decoder.init_state(batch_size=1)

temp_input = tf.expand_dims(load_image(image)[0], 0)
img_tensor_val image features extract model(temp input)
img_tensor_val = tf.reshape(img_tensor_val, (img_tensor_val.shape[@], -1, img_tensor_val.shape[3]))

features = encoder(img_tensor_val)
dec_input = tf.expand_dims([tokenizer.word_index['<start>"]], @)

while len(result[@][6]) < max_length:

i=0

temp = []

for s in result:
predictions, hidden, attention weights = decoder(dec_input, features, hidden)
attention_plot[i] = tf.reshape(attention_weights, (-1,)).numpy()
i=is+l
word_preds = np.argsort(predictions[@])[-beam_index:]

for w in word_preds:
next_cap, prob = s[@][:], s[1]
next_cap.append(w)

prob += np.log(predictions[@][w])

temp.append([next_cap, prob])
result = temp
result = sorted(result, reverse=False, key=lambda 1: 1[1])
result = result[-beam_index:]

predicted id = result[-1]
pred_list = predicted_id[@]

prd_id = pred_list[-1]

if(prd_id!=3):
dec input = tf.expand dims(lTord id1. @)

Figure 20: Code for Prediction - Beam Search - Part 1

else:
break
result2 = result[-1][9]
intermediate_caption = [tokenizer.index word[i] for i in result2]
final_caption = []
for i in intermediate caption:
if i != '<end>":

final caption.append(i)

else:
break

attention plot = attention plot[:len(result), :]
final caption = ' '.join(final caption[1:])

return final caption

Figure 21: Code for Prediction - Beam Search - Part 2

11

rid = np.random.randint(@, len(path_test))

test_image = path_test[rid]

test image = 'Images/3446586125 cafa@bfd67.jpg’

real_caption = '<start> black dog is digging in the snow <end>’

real caption = ' '.join([tokenizer.index word[i] for i in cap_test[rid] if i not in [@]])
result, attention plot,pred test = evaluate(test image)

real caption=filt_text(real caption)

pred_caption=" '.join(result).rsplit(’' *, 1)[0]
real_appn = []
real_appn.append(real_caption.split())

reference = real appn
candidate = pred_caption.split()

score = sentence_bleu(reference, candidate, weights= (©.25, ©.25, ©.25, 0.25)) #set your weights # The sum of these weights
must be 1 (one)
print(f"BLEU score: {score*100}")

print('Real Caption:', real caption)
print('Prediction Caption:', pred_caption)
plot_attmap(result, attention_plot, test_image)

Image.open(test image)

Figure 22: Code for execution of prediction - Greedy Search - And Evaluate - BLEU

captions=beam evaluate(test image)
print(captions)

a racer displaying his trophy and waving

Figure 23: Code for the execution of Prediction - Beam Search

Converting Text to Speech

Import the required module for text to speech conversion
Language in which you want to convert. en is for English:
language = 'en’

Passing the text and language to the engine:
obj = gTTS(text = pred_caption, lang = language, slow = False)

Saving the converted audio in a mp3 file named
obj.save("Predicted text.mp3™)

Playing the converted file
os.system("./Predicted text.mp3™)

audio file = 'Predicted text.mp3’

Audio(audio_file, rate='Slow', autoplay=True)

Figure 24: Code for text to speech generation

12

	Introduction
	System Specifications and Configurations
	Hardware Specifications
	Software Configuration

	Implementation
	Data Source
	Downloading and Manipulating the Dataset
	Model Training and Testing
	Model Evaluation

