ﬁ

\\
National

College of
Ireland

Analysis of Suicide Ideation Documents
Posted on Twitter Using an NLP Classifier

MSc Research Project

Data Analytics-Group B

Rachana Swamy

ID: Student X21111413

School of Computing

National College of Ireland

Supervisor: Dr.Christian Horn

"ﬂ
\ National

National College of Ireland Collegef
Ireland

Configuration manual

Student Name: Rachana Devnur Swamy

Student ID: X21111413

Programme: Data Analytics Year: 2022
Module: Research project

Supervisor: Dr. Christian Horn

Submission

Due Date: 15 December 2022

Project Title: Analysis of suicide ideation documents posted on Twitter using an NLP
classifier

Word Count: 551

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Rachana Devnur Swamy
Date: 15-12-2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project u]
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration manual
Analysis of suicide ideation documents posted

on Twitter using an NLP classifier

Rachana Swamy

X21111413

1 Introduction

The following document will be covering instructions to reproduce the analysis of suicide
ideation documents posted on Twitter using the Natural Language Processing Classifier and

identify individuals with suicide ideation through their tweets.

2 System configuration

2.1 Hardware configuration

As for the hardware configuration, MacBook Air (M1 2020) has Mac OS Monterey, Version
12.4, with apple M1 chip and 8GB RAM, shown in figure 1.

Overview Displays Storage Support Resources

macOS Monterey

Version 12.4

MacBook Air (M1, 2020)

Chip Apple M1

Memory 8 GB

Serial Number C17GG8DTQ6L4

System Report... Software Update...

Figure 1 Hardware configuration

2.2 Software Configuration

For the software configuration, majorly Jupiter notebook has been used. MS Excel has also
been used to store the data. Figure two depicts a snapshot of Jupiter notebook which runs
with help of Anaconda Navigator.

—_—
jupyter
S’
Notebook

A 6.4.5

Web-based, interactive computing notebook
environment. Edit and run human-readable
docs while describing the data analysis.

Figure 2 Software Configuration

3 Implementation

In order to increase the effectiveness of a classifier, raw data must be transformed into a more
useful format. Since most tweets had high noise, the dataset was appropriately cleaned in this
study before the job of detecting suicidal thoughts was carried out. The process of data pre-

processing for textual analysis is shown in the below flow diagram

3.1 Data Source

1. Twitter Dataset: www.kaggle.com

2. The data now has to be pre-processed and cleaned as shown in snapshot 3

In [2]): def preprocess_tweet(text):
text = re.sub('<[">]*>', '', text)
emoticons = re.findall('(?::|;|=)(2:=-)2(2:\)|\(|D|P)"', text)
text = re.sub('[\W]+', ' ', text.lower())
text = text+' '.join(emoticons).replace('-', '')
return text

In [2]: tgdm.pandas()
df = pd.read_csv('/Users/rachanaaradhya/Downloads/suicidal_data (1).csv')
#df['tweet '] = df['tweet'].progress _apply(preprocess_tweet)

In [3]: df

Out[3]: label tweet
0 1 my life is meaningless i just want to end my ...
1 1 muttering i wanna die to myself daily for a fe...
2 1 work slave i really feel like my only purpose ...

Figure 3 Code for Data cllé'éning'énd pfé-f)rdce's'sing
3. Since the tweets are long, to classify the text better, the below screenshot shows the

tokenization of words

In [6]: from nltk.tokenize import RegexpTokenizer
regexp = RegexpTokenizer('\w+')

df['text token']=df['tweet'].apply(regexp.tokenize)

df.head(3)
Out[6]: label tweet text_token
0 1 my life is meaningless i just want to end my I... [my, life, is, meaningless, i, just, want, to,...
1 1 muttering i wanna die to myself daily for a fe... [muttering, i, wanna, die, to, myself, daily, ...
2 1 work slave i really feel like my only purpose ... [work, slave, i, really, feel, like, my, only,...

Figure 4 Tokenization of words

http://www.kaggle.com/

4. After tokenization, a list of English stop words has been removed

In [7]: import nltk

nltk.download('stopwords')
from nltk.corpus import stopwords

Make a list of english stopwords

stopwords = nltk.corpus.stopwords.words("english")

df['text_token'] = df['text token'].apply(lambda x: [item for item in x if item not in stopwords])
df.head(3)

[nltk_data] Downloading package stopwords to
[nltk_data] /Users/rachanaaradhya/nltk _data...
[nltk_data] Package stopwords is already up-to-date!

Out[7]: label tweet text_token
[} 1 my life is meaningless i just want to end my I... [life, meaningless, want, end, life, badly, li...
1 1 muttering i wanna die to myself daily for a fe... [muttering, wanna, die, daily, months, feel, w...
2 1 work slave i really feel like my only purpose ... [work, slave, really, feel, like, purpose, lif...

Figure 5 Removal of stop words

5. To still understand and detected the words better, words which have less than 2

alphabets have been taken off

In [8]: df['text_string'] = df['text_token'].apply(lambda x: ' '.join([item for item in x if len(item)>2]))

In [9]: df[['tweet', 'text token', 'text_string']].head()

Out[9]: tweet text_token text_string

0 my life is meaningless i just want to end my |... [life, meaningless, want, end, life, badly, li... life meaningless want end life badly life comp...
1 muttering i wanna die to myself daily for a fe... [muttering, wanna, die, daily, months, feel, w... muttering wanna die daily months feel worthles...
2 work slave i really feel like my only purpose ... [work, slave, really, feel, like, purpose, if... work slave really feel like purpose life make ...
3 i did something on the 2 of october i overdose... [something, 2, october, overdosed, felt, alone... something october overdosed felt alone horribl...
4

i feel like no one cares i just want to die ma... [feel, like, one, cares, want, die, maybe, fee... feel like one cares want die maybe feel less |...

Figure 6 Removal of stop words

6. Using frequency distribution, the words that have been repeated numerous times can
be calculated.

In [11]: from nltk.probability import FreqDist

fdist = FregDist(tokenized words)
fdist

Out[1l1l]: FreqDist({'want': 5010, 'dont': 4592, 'like': 3798, 'feel': 3476,
47, 'ive': 2242, 'die': 2144, ...})

Figure 7 Frequently repeated words

7. Using the above dictionary, we can drop the words that are repeated less than 3-4

9.

times

In [12]:

In [13]:

Out[13]:

df['text_string fdist'] =

dE[['tweet',

'text token',

tweet

'text_string',

df['text_token'].apply(lambda x: '

text_token

'.join([item for item in x if fdist[item]

'text_string fdist']].head()

text_string

== 1 1))

text_string_fdist

1]

my life is meaningless i just want to end
my l...

muttering i wanna die to myself daily for a
fe...

work slave i really feel like my only
purpose ..

i did something on the 2 of october i
overdose...

i feel like no one cares i just want to die
ma...

[life, meaningless, want, end, life, badly,
li...

[muttering, wanna, die, daily, months,
feel, w...

[work, slave, really, feel, like, purpose,
Iif...

[something, 2, october, overdosed, felt,
alone...

[feel, like, one, cares, want, die, maybe,
fee...

life meaningless want end life badly life
comp...

muttering wanna die daily months feel
worthles...

work slave really feel like purpose life make
something october overdosed felt alone
horribl...

feel like one cares want die maybe feel less
L.

Figure 8 Dropped words which are repeated less than 2-4 times

With this, the words that could be repeated are sorted by lemmatization

In [15]:

In [16]:

Out[16]:

from nltk.stem import WordNetLemmatizer

wordnet_lem =

WordNetLemmatizer()

life meaningless want end life badly life
comp...

muttering die daily months feel worthless
shes...

work slave really feel like purpose life make
something october overdosed felt alone
horribl...

feel like one cares want die maybe feel less
ko

df['text _string lem'] = df['text string fdist'].apply(wordnet_ lem.lemmatize)

check if the columns are equal
df['is_equal']= (df['text string fdist']==df['text _string lem'])
df.is_equal.value_counts()

True 9114
False 5

Name: is_equal, dtype: int64

Figure 9 Lemmatization

A Word cloud is formed with the most repeated words

all words_lem = '

$matplotlib inline
import matplotlib.pyplot as plt
from wordcloud import WordCloud

wordcloud = WordCloud(width=600,

plt.figure(figsize=(10,

height=400,
random_state=2,

'.join([word for word in df[‘'text_string lem']])

max_font_size=100).generate(all_words_lem)

7))

plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off');

111
dont

want

Figure 10 Word cloud formation

10. A plot is made to represent most repeated words
top_10 = fd.most_common(10)

Create pandas series to make plotting easier
fdist = pd.Series(dict(top_10))

import seaborn as sns
sns.set_theme(style="ticks")

sns.barplot(y=fdist.index, x=fdist.values, color='blue');

want

ke
feel
ife
now

T T T
0 1000 2000 3000 4000 5000

Figure 11 Graphical representation of the most repeated word

11. Sentiment analysis is done and is classified into Neutral, positive and negative tweets

variables.

In [29]: from nltk.sentiment import SentimentIntensityAnalyzer

analyzer = SentimentIntensityAnalyzer()

In [30): df['polarity'] = df[text_string_lem'].apply(lambda x: analyzer.polarity scores(x))
df.tail(3)
Qut[30]: Iabel tweat text_token text_string text string fdist text_string_lem is_equal polarity
oo (’"’f ”“”E‘ i e '!:‘I‘"’p‘ a’;f'"q'\x‘f" stop asking trust still stop asking trust still stop asking trust still
i Wu;‘m:um stil. coughing. Walef. o, ghing water Last ti. coughing water last fi... coughing water last i...
inever know how o [never, know, handle, never know handle never know handle never know handle {'neg’: 0.467, 'neu’:
a7 1 handie sadness sadness, crying, sadness crying makes sadness crying makes feel sadness crying makes fesl Tie 036, 'pos': 0173,
crying make... makes, .. feel st... st st
when cancer takes a [cancer, takes, life, cancer takes life blame {'neg’: 0.891, ‘n
cancer takes life blame cancer takes kfe blame . .
oi1e 1 lfewe blamudnmcﬂ max;g;ﬁen cancer dcpreds;\eon B e True 0.109, ‘pos’:

In [33): df = pd.concat(
[df.drop{['polarity'], axis=1),
df['polarity'].apply(pd.Series)], axis=1)

df.head(3)
Out[33]: label tweet text_token text_string text_string_fdist text_string_lem is_equal neg neu pos compound
my life is fe, i gless want life ife want
0 1 meaningless i just want, end, life, badly, ‘and life badly life end lifs badly life end life badly life True 0357 0467 0177 -0.9154
want ta end my L... liewe comp... comp... comp...

Figure 12 Sentiment analysis

12. Tweets with the highest positive and highest negative statements are retrieved

In [37): # Number of tweets
sns.countplot(y='sentiment',
data=df,
palette=['#b2d8d8"',"#008080", '#db3d13']
)i

negative

positive

sentiment

neutral

I T T T T
0 1000 2000 3000 4000 5000
count

Figure 13 Negative, positive & neutral tweets

13. Word clouds for neutral positive and negative words are made

rry VEen

.-someone. - slege thats eVerythlng

? N O u stlffi KNOWeces
i 2o el g H‘d ays

‘on enou h
1tll & nany BS g
draW sgeps monsters-Jz T

- lVe habe >

b)hesoon

everything="
Figure 14 Example word cloud for neutral words (similarly made for negative & positive words)

14. Calculating the tweet’s word length

: #Calculating tweet's lenght and word count
df['text_len'] = df['text string lem'].astype(str).apply(len)
df['text_word count'] = df['text string lem'].apply(lambda x: len(str(x).split()))
round(pd.DataFrame(df.groupby("sentiment").text len.mean()),2)

text_len

sentiment
negative 298.46
neutral 32.40

positive 220.66

Figure 15 Tweet word count with respect to positive, negative & neutral words

15. N-grams, Bi-grams & Tri-grams are built to classify them better

\ evuss Y waane g avvgy
'years old', 148),
'feel likei', 145),
‘dont care', 143),
‘hate want', 143),
'year old', 141),
'years ago', 139),
‘'want end', 138)]

: #n3_trigram
n3_trigrams = get_top_n_gram(df['text_string lem'
n3_trigrams
¢ [('dont want die', 236),
'hate want die', 131),
'want die feel', 130),
‘feel like consuming', 123),
‘like consuming entire', 123),
'‘die feel blood', 121),
‘feel blood boiling', 121),

Figure 16 Bi-grams & Tri-grams
3.2 Evaluation Methods

1. Data is prepared to train the models

In [62]: |X df["tweet"].to_list()
y df['label’]
from sklearn.model selection import train_test split
X_train,X test,y train,y test = train_test_split(X,
Y
test_size=0.20,
random_state=0)

non

X _train = vect.transform(X_train)
X _test = vect.transform(X_test)
classes = np.array([0, 1])

In [65]: X train.shape

Out[65]: (7295, 2097152)

Figure 17 Data preparation

2. For Machine learning classifiers, various performance measures have been

represented
precision recall fl-score support
0 0.91 0.96 0.93 1060
1 0.94 0.87 0.90 764
accuracy 0.92 1824
macro avg 0.92 0.91 0.92 1824
weighted avg 0.92 0.92 0.92 1824

Figure 18 SVM Classification report

3. Logistic regression

precision recall fl-score support

0 0.89 0.95 0.92 1060

1 0.93 0.84 0.88 764

accuracy 0.91 1824
macro avg 0.91 0.90 0.90 1824
weighted avg 0.91 0.91 0.91 1824

Seabom Confusion Matrix with labels for Logistic Rgression

1000
800
8
o £
o
2 - 600
S
3
2
& - 400
g- 126402 646402
" -200

1
False True

Predicted Values

Figure 19 Logistic regression report and confusion matrix

4. SGD classifier

SGD CLASSIFIER

from sklearn.linear model import SGDClassifier
clf = sGDClassifier(loss='log', random state=1)
classes = np.array([0, 1])

clf.partial fit(X_train, y_ train,classes=classes)

SGDClassifier(loss='log', random state=1)

predictions_SGD = clf.predict(X_test)
print(classification_report(y_test, predictions_SGD))

precision recall fl-score support

0 0.89 0.96 0.93 1060

1 0.94 0.84 0.89 764

accuracy 0.91 1824
macro avg 0.92 0.90 0.91 1824
weighted avg 0.91 0.91 0.91 1824

Figure 20 SGD classification report

Testing and making predictions of the sentences on tweets

In [79]): # TESTING AND MAKINF PREDICTION ON THE SENTENCES
label = {0:'negative', 1:'positive'}
example = ["I'll kill myself am tired of living depressed and alone"]
X = vect.transform(example)
print('Prediction: $s\nProbability: %.2f%%'
%(label[clf.predict(X)([0]],np.max(clf.predict_proba(X))*100))

Prediction: positive
Probability: 94.92%

In [80]: label = {0:'negative', 1l:'positive'}
example = ["It's such a hot day, I'd like to have ice cream and visit the park"]
X = vect.transform(example)
print('Prediction: $s\nProbability: %.2£%%'
%(label[clf.predict(X)[0]],np.max(clf.predict_proba(X))*100))

Prediction: negative
Probability: 96.83%

In [81]: = {0:'negative', 1:'positive'}
le = ["I am writing this kind of letter for the first time. My first time of a final
act.transform(example)
('Prediction: $s\nProbability: %.2f%%'

%W]],np.max(clf.predict_proba(x))*100))

Prediction: positive
Probability: 79.95%

Figure 21 Predicting and testing tweets

	1 Introduction
	2 System configuration
	2.1 Hardware configuration
	2.2 Software Configuration

	3 Implementation
	3.1 Data Source
	3.2 Evaluation Methods

