~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Abinaya Sundarapandiyan
Student ID: x21135053

School of Computing
National College of Ireland

Supervisor: Cristina Hava Muntean

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Abinaya Sundarapandiyan
Student ID: x21135053
Programme: Data Analytics
Year: 2022-2023
Module: MSc Research Project
Supervisor: Cristina Hava Muntean
Submission Due Date: 01/02/2023
Project Title: Configuration Manual
Word Count: 378
Page Count: [1

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Abinaya Sundarapandiyan

Date: 1st February 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Abinaya Sundarapandiyan
x21135053

1 Introduction

This configuration manual provides information on this research’s software and hard-
ware requirements. All the steps implemented in the research work are explained with
screenshots.

2 System Requirements

Below is the system requirement. The complete project is developed in python in google
colab.

e Google Colab: Intel Xeon CPU @2.20 GHz
e The GPU Instance was 250GB

e The RAM - 13 GB

e The Disk Space - 7T8GB

e System RAM - 16.0 GB

e Processor - Intel(R)i5 11th Gen

e OS - 64-bit Windows 11 Pro

e Software - Python

3 Import Library/Packages
It is essential to import all the necessary libraries which will be required for this project.

~ Packages Import

[1 #Importing the necessary packages
import pandas as pd
import numpy as np
import seaborn as sns

from sklearn.preprocessing import LabelEncoder

Figure 1: Package Import

[1 from sklearn.model selection import train test split,cross val score
from sklearn.preprocessing import MinMaxScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive bayes import GaussianhB
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.feature selection import chi2
from sklearn.feature selection import SelectkBest, f classif
import xgboost as xgb
from sklearn import metrics
from sklearn.model selection import cross val score
from sklearn.metrics import confusion matrix,plot confusion matrix,accuracy score,prec
from sklearn.metrics import log loss
import scikitplot.plotters

Figure 2: Package Import

4 Data Acquisition

The dataset was downloaded from Kaggle and loaded into google drive for use. Then the
dataset was imported into google colab and read.

[] #Mounting google drive
from google.colab import drive
drive.mount('/content/gdrive’,force remount=Trug)

Mounted at /content/gdrive

[] data = pd.read csv("/content/gdrive/MyDrive/data/data.csv")

Figure 3: Loading from Google Drive and reading the data

5 Data Preprocessing

Various preprocessing steps are carried out. The steps involve handling null value, drop-
ping the unnecessary column, and dataset split of depression, stress, and anxiety, label
encoding.

[1 #replacing null values with no degree
data ftnl=data.copy()
data fnl['major’']=data_fnl['major’'].replace(np.Nal, ‘No Degree’)
data _fnl['major’]

Figure 4: Checking for Null Values

[1 #since majority of them are without degree it will not have much impact
data_fnl=data_fnl.drop('major’',axis=1)

[1] # QF and QI indicates the time and postion recorded while answering the qu
time = [i for i in data fnl.iloc[:,@:126] if 'E" in i]
position = [1i for 1 in data_fnl.iloc[:,@:126] if 'I' in 1]
data fnl=data fnl.drop(position,axis=1)
data_fnl=data fnl.drop(time,axis=1)
data fnl=data fnl.drop(data fnl.iloc[:,43:47],axis=1)
datal=data_fnl.copy()
datal=datal.drop(data_fnl.iloc[:,53:69],axis=1)
datal=datal.replace(to replace=0,value=3)

Figure 5: Dropping Unnecessary Columns

[1 def sub{(data2):
return dataz2.subtract(l,axis=1)
dataz=sub(dataz2)

DASS_keys = {'Depression’': [3, 5, 1@, 13, 16, 17, 21, 24, 26, 21, 34, 37, 38, a42],
‘Anxiety': [2, 4, 7, 9, 15, 19, 28, 23, 25, 28, 38, 36, 48, 41],
‘stress’: [1, 6, 8, 11, 12, 14, 18, 22, 27, 29, 32, 33, 35, 39]}

Dep = []

for i in DAsSS_keys["Depression™]:
Dep.append(Q' +str{i)+"A")

Stress = []

for i in DAsSS_keys["stress™]:
Stress.append("Q '+str(i)+ 'A")

Aanx = []

for i in DAss_ keys["anxiety™]:
Anx.append("Q +str(i)+"A")

depression= data2.filter (Dep)

stress = dataz.filter(Stress)

anxiety = data2.filter(Anx)

Figure 6: Dataset Split

#lable encoding the column condition

Condition= LabelEncoder()

Condition.fit(Depression.Condition)

Depression[‘Condition’] = Condition.transform (Depression.Condition)
Stress['Condition'] = Condition.transform (Stress.Condition)
Anxiety['Condition’] = Condition.transform (Anxiety.Condition)

Figure 7: Lable Encoding

6 Exploratory Data Analysis

Exploratory data analysis is done to understand the data. The distribution of the severity
level for different illnesses was analyzed. The distribution age and many features were
analyzed. A couple of Exploratory data analysis snippets are provided below.

[] #sns.set(font scale=))
plt. figure(figsize=(12,8))
sns. countplot (Depression.sort values("Condition').Condition)
plt. title("People Condition of Depression Level’,fontsize=15)

Figure 8: Distribution of Condition

[] #tale
#)=Female
#3=0ther

plt.figure(figsize=(10,6))
sns. countplot (Anxietyl.sort values("gender').gender, hue=Anxiety[‘Condition' |,palette="Butn r')
plt.title("Anxiety Condition of Different Gender',fontsize=15)

Figure 9: Severity Level Distribution for Gender

7 Feature Selection

Using Chi-Square the features were selected. 20 required features were selected from 38
features for all the three depression, stress and anxiety.

[1 #voting classifier
from sklearn.ensemble import votingClassifier
clf1 = KneighborsClassifier()
clf2 = xgb.XGBClassifier()
clf3 = GaussianhB()
eclfl = votingClassifier(estimators=[('dtc', clf1), ('xgb', clf2), ('GNB', clf3)], voting='soft')
eclf1l.fit(X_train_scaled,y train)
Acc_eclfl=round(accuracy score(y test,eclfl.predict(X test scaled)),3)
f1_eclfi=round(fl_score(y_test, eclfl.predict(X_test_scaled),average="weighted'),3)
recall_eclfi=round(recall_score(y_test,eclfl.predict(X_test_scaled),average="weighted'),3)
precision_eclfi=round(precision_score(y_test,eclfl.predict(X_test_scaled),average="weighted'),3)
scikitplot.metrics.plot_confusion_matrix(y_test,eclfi.predict(X_test_scaled))
print('Accuracy Depression:',Acc_eclfl)
print('F1 Score Depression:’,f1 eclf1)
print('Recall_Score Depression:',recall_eclf1)
print('Precision_Score Depression:',precision_eclf1)

Figure 10: Chi Square Feature Selection

8

Train and Test Split

Train and test data is split into 80/20 ratios. Scalar transformation is done before model
building.

[]

#train test split 8e/20
X train,X test,y train,y test=train test split(X,y,test size=0.20,random state=0)

[] X train_scaled = scaler.fit_transform(X_train)

9

X test scaled = scaler.transform(X test)

Figure 11: Train and Test Split

Model Building

Different traditional machine-learning models were implemented along with the ensemble
model voting classifier and feed-forward neural network for model comparison and valid-
ation.

[1]

[]

#voting classifier

from sklearn.ensemble import VotingClassifier

clfl = KNeighborsClassifier()

clf2 = xgb.XGBClassifier()

clf3 = Gaussianng()

eclfl = votingClassifier(estimators=[('dtc’, clf1), ('xgb', clf2), ('GNB', clf3)], voting='soft"')
eclfl.fit(X_train_scaled,y train)
Acc_eclfl=round(accuracy_score(y_test,eclfl.predict(X_test_scaled)),3)
f1_eclfi=round(f1_score(y_test, eclfl.predict(X_test scaled),average='weighted"),3)
recall_eclfl=round(recall_score(y_test,eclfl.predict(X_test_scaled),average="weighted'),3)
precision_eclfl=round(precision_score(y test,eclfi.predict(X_test scaled),average='weighted'),3)
scikitplot.metrics.plot confusion matrix(y test,eclfi.predict(X_test scaled))

print(‘Accuracy Depression:',Acc_eclf1)

print('F1_Score Depression:',fl_eclf1)

print('Recall Score Depression:',recall eclf1)

print(‘Precisicn_Score Depression:',precision_eclf1)

Figure 12: Voting Classifier Model

split into traintval and test
X7 _trainval, X7_test, y7 trainval, y7 test = train test split(x4, y4, test size=0.2, random state=69)

Split train into train-val
X7 train, X7 val, y7 train, y7 val = train test split(X7 trainval, y7 trainval, test size=0.1, random state=21)

scaler = MinMaxScaler()

X7_train = scaler.fit_transform(X7_train)

X7_val = scaler.transform(X7 val)

X7 _test = scaler,transform(X7_test)

X7_train, y7 train = np.array(X7_train), np.array(y7 train)
X7 val, y7 val = np.array(X7_val), np.array(y7 val)

X7 test, y7 test = np.array(X7 test), np.array(y7 test)

Figure 13: Train, Validation Split for Feed Forward Neural Network

class MulticlassClassification{nn.mModule):
det init (self, num_ Teature, num class):
super{MulticlassClassification, self). init ()

selft.layer 1 = nn.Linear{num_ fteature, 512)
selft.layer 2 = nn.Linear({(s12, 128)
self.layer 2 = nn.Linear({(l2s, 64)
selft.layer out = nn.Linear{s4, num_class)

selt.relu = nNn.ReLU()

self.dropout = nn.Dropout{p=9.2)
selft.batchnorml1l = nn.BatchMormld{(512)
selft.batchnorm2 = nn.BatchMormld({12s8)
selft.batchnorm=2 = nn.BatchMormld({c4a)

det fTorward{(self, x):
»x = self.laver_ 1(x)

®x = self.batchnorml{x)
®x = selft.relu(x)

x = self.laver 2(x)

®x = self.batchnorm2{x)
®x = selft.relu(x)

®x = self.dropout(x)

®x = self.laver =(x)

®x = self.batchnorm={x)
®x = selft.relu(x)

®x = self.dropout(x)

®x = self.laver out{x)

Figure 14: 3 Layes Neural Network Model

print("Begin training.")
for e in tqdm(range(1, EPOCHS+1)):

TRAINING

train_epoch loss = @

train_epoch_acc = @

model.train()

for X_train_batch, y train batch in train_loader:
X_train_batch, y train batch = X train batch.to(device), y train batch.to(device)
optimizer.zero grad()

y_train pred = model(X train_batch)

train_loss = criterion(y_train pred, y train_batch)
train_acc = multi acc(y train pred, y train_batch)

train_loss.backward()
optimizer.step()

train_epoch_loss += train_loss.item()
train_epoch acc += train_acc.item()

VALIDATION
with torch.no_grad():

val epoch loss = @
val epoch acc = 0

model.eval()
for X_val batch, y val batch in val loader:
X val batch, y val batch = X val batch.to(device), y val batch.to(device)

y_val pred = model(X_val batch)

val loss = criterion(y val pred, y val batch)
val acc = multi acc(y val pred, y val batch)

val _epoch_loss += val loss.item()

val epoch acc += val acc.item()
loss_stats['train'].append(train_epoch loss/len(train loader))
loss_stats['val'].append(val epach loss/len(val loader))
accuracy_stats['train'].append(train_epoch_acc/len(train_loader))
accuracy_stats['val'].append(val epoch acc/len(val loader))

Figure 15: Training and validation of the FNN model

	Introduction
	System Requirements
	Import Library/Packages
	Data Acquisition
	Data Preprocessing
	Exploratory Data Analysis
	Feature Selection
	Train and Test Split
	Model Building

