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1 Introduction

This research effort uses Deep Learning methods like DenseNet and VGG to categorize
skin cancer as benign or malignant and constructed a web-based application using Py-
thon’s Streamlit-framework. In this configuration manual, all the processes that might be
necessary for replication are listed. An explanation of the project design flow from data
gathering to model evaluation. As needed, Streamlit implementation and code samples
from various sections have also been added.

2 System Configuration:

This research work made advantage of the Kaggle Notebook environment because it was
practical to run two Python notebooks simultaneously on the cloud. The configurations
available consist of 16 Gigabytes of RAM and 13 Gigabytes of GPU. Kaggle Notebooks
offered the GPUP100. For building Streamlit application, Anaconda had to be installed
that comprises of Anaconda Prompt, Python Jupyter Notebook. Microsoft office Word
and Excel have also been used for Table creation. For pictorial description of work flow
of the project and to create image collage draw.io software has been used.

3 Data Selection:

The title of the dataset used in the research was ”Skin Cancer: Malignant vs. Benign.”
After being retrieved from open repositories on Kaggle[]], it was given this name after the
discovery. The data is organized into two unique folders called ” Test” and ”Train,” and
each folder contains 1800 photographs. The names of the folders reflect their contents.
Each folder contains an additional set of two folders, one for each of the categories referred
to as benign and malignant. The initial source of the data that was obtained through
Kaggle was the International Skin Imaging Collaboration. The dataset included 1800
images at a resolution of 224 by 224 pixels each. The figure [1] shows importing data
images into train and test.

4 Exploratory Data Analysis:

Exploratory data analysis was carried out an to determine how the classification was
broken down. Both the training dataset and the testing data have the same ratios as

Thttps:/ /www.kaggle.com/datasets/fanconic/skin-cancer-malignant-vs-benign

1



IMAGE_PATH DISEASE_TYPE

benign = "../input/skin-cancer-malignant-vs-benign/train/benign/" o /input/skin-cancer-malignant-vs-benign/train Benign
malignant = "../input/skin-cancer-malignant-vs-benign/train/malignant/" h -
1 .Jinput/skin-cancer-malignant-vs-benign/train...  Benign
PER-padis = 8IS HA(Par) 2 ./input/skin-cancer-malignant-vs-benign/train...  Benign
malignant_paths = os.listdir(malignant) 3 ./input/skin-cancer-malignant-vs-benign/train... ~ Benign
4 .Jinput/skin-cancer-malignant-vs-benign/train...  Benign
1=1]
for x in benign_paths : 2632 .Jinput/skin-cancer-malignant-vs-benign/train... ~ Malignant
1.append([ ' ../input/skin-cancer-malignant-vs-benign/train/benign/'+x, “Benign"]) 2633 _/input/skin-cancer-malignant-vs-benign/train Malignant
for x in malignant_paths : 2634  .[input/skin-cancer-malignant-vs-benign/train... ~Malignant
1.append(['../input/skin-cancer-malignant-vs-benign/train/malignant/'+x, "Malignant"]) 2635  .Jinput/skin-cancer-malignant-vs-benign/train... ~Malignant
train = pd.DataFrame(1,colums = [*IMAGE_PATH","DISEASE_TYPE"]) 2636 ../input/skin-cancer-malignant-vs-benign/train...  Malignant
train P 5
2637 rows x 2 columns
(a) Code for Train Data (b) Output for Train Data

Figure 1: Fetching Train data from Kaggle

No of Images of Each Disease Type in Training Data Mo of Images of Each Disease Type in Testing Data

Benign _1440 Benign _350
petinent _ patinent _300
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(a) Class Balance for Training data (b) Class Balance for Training data

Figure 2: Class Balance of Dataset

shown in 2] Visual representation of the data was the most efficient way to determine
how the facts were balanced. Bar graph was plotted to depict the distribution of the
categories. According to statistics, 45% of the data for the train set and 55% of the data
for the test set respectively, are photos of malignant skin tumors.

5 Cleaning the Data:

The image dataset was downloaded from the Kaggle repositories using the appropriate
software. The information that is related to the datasets that are made available by the
ISIC is examined in order to determine whether or not any values are absent and whether
or not there are any files present in the directory. The dataset that was retrieved contains
no null or missing values, and this is the case for both the train and test files. This is
because there are no missing or null values in the original dataset.

6 Importing Libraries.

The necessary python libraries required have been download using ‘pip’ and ‘pip3’ com-
mands. For example, streamlit framework had to be installed in the system. The Anacon-
dra Prompt tool had to be launched and command “pip install streamlit” and been used.
Similarly to run Streamlit on local machine, OpenCV, Matlpotlib and TensorFLow had
to be installed with same command such as ‘pip install package name’.



# importing the required libraries and modules
import pandas as pd

import numpy as np

from matplotlib import pyplot as plt

import os

# importing required layers from tensoforlow library
from tensorflow.keras.layers import Input, Conv2D, BatchNormalization, Activation,

MaxPool2D, UpSampling2D, Concatenate,MaxPooling2D,Dropout,Flatten,Dense,GlobalAveragePooling2D

import tensorflow as tf
from tensorflow.keras.models import Model

from tensorflow.keras.preprocessing.image import ImageDataGenerator

# data generators are python concept to pass data to model and defining
Adata augmentation techniques as well to increase the training data set

from tensorflow.keras.callbacks import ModelCheckpoint, ReducelLROnPlateau
ReduceLROnPlateau(monitor="val_accuracy', factor=8.5, patience=5, verbose=1, min_lr=71e-3)

red =

checkpoint = ModelCheckpoint('best_epoch_model.h5', verbose=1, save_best_only=True)
from math import * > import Shestn s oiee
from sklearn import metrics 3 |ipors: pondes = b

from math import sqrt

from sklearn.metrics import roc_auc_score S

from sklearn.metrics import accuracy_score 10 inport matplotlib.pyplot as plt
. s 11 inport PIL

from sklearn.metrics import precision_score

from sklearn.metrics import recall_score = dnport tensorflou as f

from sklearn.metrics import confusion_matrix | oo el kerae HaxPool2D, BatchNormalization, AversgePooling2D,

from mlxtend.plotting import plot_confusion_matrix 7 from tensortlow.keras.optinizers inport Adsm

: h
from sklearn.metrics import f1_score 15
16 fron tensorflow.kerss . layers inport Dense, Dropout, Flatten, ComaD,
o
1
. s 15 fron tensorflow.kerss preprocessing. nage inport InsgeDataGenerator
from sklearn.metrics import classification_report - gt e e RonP1s

import numpy as np

import cv2
from tqdm import tqdm fron tensorflow.keras.applications iaport VGG1S
from skimage.transform import resize 2

26 | fron tensorflow.keras.applLications inport Denselietiz)

(a) Class Balance for Training data (b) Class Balance for Training data

Figure 3: Importing Libraries



from tensorflow.keras.preprocessing.image import ImageDataGenerator

# data generators are python concept to pass data to model and defining
#data augmentation techniques as well to increase the training data set

test_generator = ImageDataGenerator(rescale=1/255).flow_from_dataframe(
test,
x_col="TMAGE_PATH ,
y_col='DISEASE_TYPE',
target_size=(224,224),
color_mode="rgb’,
class_mode="binary’,

train_generator= ImageDataGenerator (
rotation_range=10,
rescale=1./255,
shear_range=6.2,
zoom_range=8.2,
horizontal_flip=True,
width_shift_range=0.2, S
(vl -2 class_labels = ["Malignant”,"Benign"]

). flow_from_dataframe( J

Found 66 validated image filenames belonging to 2 classes.

train,
x_col="IMAGE_PATH',
y_col='DISEASE_TYPE', o
target_size=(224,224), " train_generator.class_indices
color_mode="rgb",
e i LA {'Benign': @, 'Malignant': 1}
batch_size=128,
class_labels = ["Malignant”, "Benign”]

)

test_generator.class_indices

Found 2637 validated image filenames belonging to 2 classes. {*Benign’: o, ‘Malignant': 1}

Figure 4: Data Augmentation

For building Deep Learning models, Kaggle notebook was used. Kaggle notebooks
already have packages installed and only importing code is required. See figure

7 Data Augmentation:

The Keras data generator is implemented for data augmentation in the code snippet
Figure [d Data augmentation was accomplished by using the ImageDataGenerator mod-
ule. The idea of an ImageDataGenerator in Python is useful for both explaining data
augmentation techniques and providing input to a model.



from tensorflow.keras.applications import DenseNet201
# DenseNet201 model

pre_trained = DenseNet201(weights='imagenet’, include_top=False)
# calling densenet261 model by removing top layer of 1060 neuron

for layer in pre_trained.layers:
# making all layers of pretrained model non trainable
layer.trainable = False

input_1 = Input(shape=(224, 224, 3))
# defining input layer with shape 224,224,3

pre_trained_output = pre_trained(input_1)
# passing input layer to pretrained layer to extract convolutional filter maps

1 = GlobalAveragePooling2D() (pre_trained_output)
# applying global average pooling layer to the extracted output from pre trained model

1 = Dense(256, activation='relu’)(1)
# dense layer with 256 neurons and activation relu (because to learn non linear patterns)

1 = Dropout(6.25) (1)
# drop out layer with drop out rate 6.25 to avoid overfitting and underfitting

= BatchNormalization()(1)
ding batch normalization layer to speed up the training
s and in less number of epochs to obtain optimized value

1 = Dense(128, activation='relu’)(1)
# dense layer with 128 neurons and activation relu

output_1 = Dense(1,activation = ‘sigmoid')(1)
# dense layer with 1 neurons and activation sigmoid (because of binary classification)

Figure 5: DenseNet-201

from tensorflow.keras.applications import DenseNet12l

from tensorflow.keras.applications import DenseNet169
pre_trained = DenseMet121(weights="imagenet', include_top=False)

pre_trained = DenseMetl6%(weights="imagenet', include_top=False)
for layer in pre_trained.layers:

layer.trainable = False for layer in pre_trained.layers:

layer.trainable = False
input_1 = Input(shape={224, 224, 3))

pre_trained_output = pre_trained(input_l) Rl = METEEinE=ER, 2 Z))

1 = GlobalAveragePooling2D() (pre_trained output) prektpainedicuipitpgpreRtuatned@nputSl)

1 = Dense(512, activation='relu’)(1} 1 = GlobalAveragePooling2D()(pre_trained output)
1 = Dense(256, activation='relu')(1) 1 = Dense(256, activation='relu’)(1)

1 = Dropout(@.25)(1) 1 = Dropout(@.25)(1)

1 = BatchNormalization()(1) 1 = BatchNormalization()(1)

1 = Dense(128, activation='relu’)(1) 1 = Dense(128, activation="relu'}(1)

output_1 = Dense(l,activation = *sigmoid®)(1) output_1 = Dense(l,activation = "sigmoid')(1)
model = Model(input_1,output_1) model = Model(input_l,output 1)

(a) DenseNet-121 (b) DenseNet-169

Figure 6: DenseNet

8 Building Model Architecture:

This section will show code snippet of only top model architecture and layer configuration
from DensetNet121, DenseNet169, DenseNet201, VGG-16 and VGG-19 in figure [77] and
[

8.1 Model Summary

Figure [8] shows model summary of any deep learning architecture.

8.2 Model Configuration

Code snippet in figure [9] shows loss function, optimizer and metrics set for the model.

8.3 Epochs setting
Figure 10| shows the number of Epochs set with the EarlyStopping function
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from tensorflow.keras.applications import VGG16 from tensorflow.keras.applications import VGG19

pre_trained = VGG16(weights="imagenet', include_top=False) pre_trained =VGG19{weights='imagenst’, include_top=False)
for layer in pre_trained.layers: for layer in pre_trained.layers:

layer.trainable = False layer.trainable = False
input_1 = Input(shape=(224, 224, 3)) input_l = Input(shape=(224, 224, 3})
pre_trained_output = pre_trained(input_1) pre_trained output = pre_trained(input_l)
1 = GlobalAveragePooling2D() (pre_trained output) 1 = GlobalAveragePooling2D() (pre_trained_output)
1 = Dense(256, activation='relu')(1l) 1 = Dense(512, activation="relu')(1)
1 = Dense(128, activation='relu’)(1) 1 = Dense(256, activation='relu')(1)
1 = Dropout{®.25)(1) 1 = Dropout(@.25)(1)
1 = BatchNormalization()(1) 1 = BatchNormalization()(1)
1 = Dense(B4, activation="relu')(1) 1 = Dense(128, activation='relu’)(1l)
output_1 = Dense(l,activation = 'sigmoid')(1) output_l = Dense(l,activation = 'sigmoid')(1)
model = Model(input_l,output_l) model = Model(input_l,output_l)

(a) VGG-16 (b) VGG-19

Figure 7: VGG

model.summary ()

Model: "model”

Layer (type) output Shape Param #
input_2 (Inputlayer) [(None, 224, 224, 3)] °
densenct201 (Functional) (None, None, None, 1920) 18321984
global_average_pooling2d (Gl (None, 1920) °

dense (Dense) (None, 256) 291776
dropout (Dropout) (None, 256) 0
batch_normalization (BatchNo (None, 256) 1024
dense_1 (Dense) (None, 128) 32806
dense_2 (Dense) (None, 1) 129

Total params: 18,847,809
Trainable params: 525,313

Non-trainable params: 18,322,406

Figure 8: Model Summary

# configuring the model to train

# loss function is binary cross entropy because of binary classification
# optimizer is adam
# metrics are accuracy , recall , precision
model.compile(loss='binary_crossentropy', optimizer="adan"
metrics=['accuracy’,tf .keras.metrics.Recall(),tf.keras.metrics.Precision(), tf.keras.metrics.AUC()]

Figure 9: Model Configuration



# model training should be started with fit method

# number of epochs are defined to 1606 useful for cost function optimizing and can be changed to other value
#as well but limiting the computation time kept 1066

#while applying EarlyStopping Function if patience is not increased

red = ReducelROnPlateau(monitor="val_accuracy’, factor=8.5, patience=5, verbose=1, min_lr=le-3)
checkpoint = HodelCheckpoint('best_epoch_model.hS', verbose=1, save_best_only=True)
callback = tf .keras.callbacks.EarlyStopping(monitor='val_loss
epochs=1008
modelhistory = model.fit_generator(

train_generator,

epochs=epochs,

validation_data=test_generator,

callbacks=[red, checkpoint,callback]

)

, patience=5)

Figure 10: Epochs settings

# accuracy
Accuracy = ((TP+TN) / (TP + TN + FP + FN))*168

#FAR represented the probability in which a record is incorrectly classif
FAR =(FP + FN)/(FP + FN + TP + TN)160

## sensitivity
Sensitivity = (TP / (TP + FN))*100

# specificity
Specificity = (TN / (TN + FP))x1@0

# False positive rate (FPR)
FPR = (FP/(FP + TN))#180
def performance_metrics(y_true,y_pred):

# False negative rate (FNR)
cm = metrics.confusion_matrix(y_true, y_pred) FNR = (FN/(TP + FN))¥108
fig, ax = plot_confusion_matrix(conf_mat=cm, figsize=(5, 5)
plt.xlabel(’Predictions’, fontsize=18)
plt.ylabel('Actuals’, fontsize=18)
plt.title('Confusion Matrix', fontsize=18)
plt.show()

. cmap=plt.cm.Greens ,class_names=["Benign”,’ # predict probabilities

Auc = roc_auc_score(y_true, y_pred)+188

# precision tp / (tp + p)
Precision = precision_score(y_true, y_pred)168
cm_df = pd.DataFrame(cm,

columns = ['Predicted Negative',

# recall: tp / (tp + fn)
‘Predicted Positive'],

Recall = recall_score(y_true, y_pred)*109
index = ['Actual Negative', 'Actual Positive'])
#f1:21tp/ (2tp+Tfp+fn)
TP = em[1][1] F1 = fi_score(y-true, y_pred)*108
TN = cm[@][e]
FP = cm[8][1]

return(Accuracy, FAR, FPR, FNR, Sensitivity, Specificity, Auc,Precision,Recall,F1)
FN = cml1170]

Figure 11: Evaltuation Metrics

9 Evaluation Metrics

To evaluate the model performance, a code snippet from Figure [L1] has been created.

9.1 Evaluation Metrics Graph

Model’s train and test evaluation metrics such as Accuracy, Precision, Recall, AUC, and
Loss are shown in figure This configuration Manual document has only mentioned

the Evaluation Metrics Graph of the top-performing model which is DenseNet-121 with
3 layers.

9.2 Confusion Matrix

The confusion matrix created for Training and Testing data is shown in figure
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Figure 12: Evaluation Metrics Graphs




In [23]: def predictions(df,d):
pred - [

y_true = []
prob = []

for T in tqdm(range(len(df))) :
img = cv2.imread(df["IMAGE_PATH™][f], cv2.IMREAD_COLOR)
img - cv2.cvtColor(img, cv2.COLOR_BGR2RGE)
norm_img - img/255
norm_img = norm_img.astype(np.float32)
final_img - norm_img.reshape((1,224,224,3))
prob.append (model . predict(finsl_img)[@])
pred.append(1ist((model.predict(final_img) > @.5).astype(int32"))[a][e])
y_true.append(d[df[ "DISEASE_TYPE"][f]])

return prob,pred,y_true

Training Results

Training Results

[24]
ty, huc, precisi 11,F1 = perf ty, Auc, Precision,Recall, F1 - performance_netrics (y_true,pred)
ta*  Accuracy, FAR, FPR, (‘0ata part Accuracy, FAR, FPR, e = 11,7111, columns=(‘Data Part
, »
2o0% NN 267/2537 [05:11c00:00, 5.47t/5] 2o0% | INNINNNN | 2537/2637 [05:11¢00:00, 5.47it/5]
Confusion Matrix Confusion Matrix
sen senion
2 a
] ]
2 2
o o
< @# & &
L L
Predictions Predictions
24] Data Partiton Accuracy (%)  FAR(%) FPR(%) FNR(%) Sensitivity (%) Specifcity (%) AUC (%) Precision Recall F1 Score it[24] Data Partiton Accuracy (%)  FAR(%) FPR(%) FNR(%) Sensitivity (%) Specifcity (%) AUC (%) Precision Recall F1 Score.
0 TanDaa  Geciios 1S3 Toseeesr 7S5 992sere | T3 85788474 TIMSTS S02esers 8531072 0 TanDaa  seciiois 1sue Toseessr 175085 | 992Msere | 733N 8578847 TIMSTs S82eEer 8531072

Figure 13: Confusion Matrix for Training and Testing Data

10 Streamlit-Framework Architecture

This streamlit app has 2 pages: one to describe the project, disease, and why the app
is used, and another to make predictions by uploading skin cancer photographs to a
pre-trained model that predicts the class and probability as shown in Figure

The snapshot of page 1 and page 2 are shown in figure

Following are the steps to launch Streamlit application:

e Open CMD

e Change the directory to folder where Python and H5 file is present.

e Run command ’streamlit run app.py’



st.sidebar.header("skin Classification")
page = st.sidebar.selectbox(
"select Activity", ["Disease Information™, "Skin Cancer Pr

n"1)

if page == "Disease Information™:

st.header("Benign vs Melignant Skin Classific
stowrite("")
st.write("")
st.subheader("C

to result in
reasingly common
reamlit is a web-
along with

~ of the skin 1 s of : i one of the most likely
This f. 1 i becoming

ns for s
either

ng skin 1
given image

probabili ccore "
stowrite(™")
if page == "Skin Cancer Prediction™:

uploaded file = st.file uploader{"Upload Skin image file™)
if wploaded file is not None:

image = Image.open({uploaded file)

¢ = image.copy()

st.subheader("skin Image")
st.image (PIL.Image. fromarray(
ints( V)Y.resize((224, 224)
np.uint8(np.asarray(c))).resize({224, 224)))
image = np.asarray(image)
norm_img = image/255
norm_img = norm_img.astype(np.float32)

final_img = norm_img.reshape({1, 224,

[
X1
4
-
]
S
fr

prob = model.predict(final_img)[e]

if prob »= @.5:

p = "Malignant™

r = model.predict{final_img)[@]
else:

p = "Benign”

r =1 - model.predict{final_img)[@]

st.subheader(f"Predicted Disease : {p}")

st.subheader("Predicted " + p+" Probability : "+str(r))

Figure 14: Streamlit-Framework Architecture

> C O localhost
@ Google - @ Googe © Whotrp . - Yo @ Googe © wnatsagy

x
Skin Classification Benign vs Melignant Skin Classification Skin Classification

Cancer of the skin is among the most dangerous forms of
the disease, as it is one of the most likely to resultin i
mortality due to DNA damage. This faulty DNA causes cells Skin Image

to proliferate uncontrollably, a phenomenon that is
becoming increasingly common in modern times. There
has been some study done on computerized methods for
analyzing skin lesions for signs of cancer. Streamlit is a
web-based interface that employs the weights of Deep
Learning Models to categorize a given image as either
benign or malignant along with a probability score.

Predicted Disease : Malignant

Predicted Malignant Probability : [0.8809535]

Figure 15: Streamlit Web-application for Skin Cancer Classification
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