

Configuration Manual

MSc Research Project Data Analytics

Jatin Rajkumar Singh Student ID:x20227965

School of Computing National College of Ireland

Supervisor: Dr Christian Horn

National College of Ireland Project Submission Sheet School of Computing

Student Name:	Jatin Rajkumar Singh
Student ID:	X20227965
Programme:	Data Analytics
Year:	2022-23
Module:	MSc Research Project
Supervisor:	Dr. Christian Horn
Submission Due Date:	15/12/2022
Project Title:	Configuration Manual
Word Count:	454
Page Count:	18

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	Jatin Rajkumar Singh
Date:	31st January 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).						
Attach a Moodle submission receipt of the online project submission, to						
each project (including multiple copies).						
You must ensure that you retain a HARD COPY of the project, both for						
your own reference and in case a project is lost or mislaid. It is not sufficient to keep						
a copy on computer.						

Assignments that are submitted to the Programme Coordinator office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Jatin Rajkumar Singh X20227965

1 Introduction

This document provides all the hardware and software requirements to run the reproducible code for predicting the total power consumption of electric vehicles. Also, it includes descriptions of the columns used in the study.

2 System Configuration

System configuration requirements are divided into 2 subsections for a better understanding of the overall demand of the project.

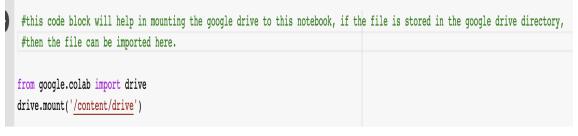
2.1 Hardware Configuration

The given code and given dataset can be run on Intel's i5 or later or Apple's M1 or later processor. This code will also run on AMD R5 or better versions as well. A minimum of 8 GB of RAM is necessary for the smooth functioning of the code. Code and the dataset require 128 GB or more storage for storing and retrieving the dataset. This code can be run on cloud platforms such as Google colab and kaggle etc.

2.2 Software Requirements

This code can be run on Windows as well as Mac operating systems. For implementing this code on the local machine, Anaconda's Jupyter notebook can be used. In order to run the code on cloud platforms, Google Colab and kaggle etc. Also, this study has used CSV dataset, hence CSV file reader can be used to study the file. This study has used Python programming language along with Pandas, Numpy, Matplotlib, Seaborn, Tensorflow and Keras libraries etc to implement the code, perform the visualisation and train the model.

3 Implementation


This section covers the implementation of the code from data acquisition to results evaluations.

3.1 Data Source

Dataset used in this study '0_VED_Orig_data.csv' has been taken from the public source Github by Mr Linas P. He is an associate professor Vilnius University, Lithuania. This data source is available on the following link.Google Drive Link: https://drive.google.com/drive/folders/1NxGQzGXARK7qCSMHlsuL-Ovrl-OitisL

3.2 Importing Dataset

Figure 1 represents the code block for importing the dataset for the study. This dataset can be imported locally as well using the pandas library. In the case of google colab, google drive can be mounted in the notebook and then the dataset can be imported from the directories of the drive.

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

```
] df = pd.read csv('/content/drive/MyDrive/Thesis Dataset/0_VED_orig_data.csv')
```

#If the file is stored in a local directory, then use the following code. #df = pd.read_csv('0_VED_orig_data.csv').

Figure 1: Importing Dataset

- 3.3 Data Preprocessing
- **3.4** Data Transformation
- 3.5 Data Mining
- 3.6 Result Evaluation

References

] # Setting the seed value to get the reproducible results.

```
from numpy.random import seed
seed(100)
```

] #Removing unnamed column from the dataframe

df = df.loc[:, ~df.columns.str.contains('^Unnamed')]

] #Checking all the columns of the dataset

df.columns

Index(['date', 'datetime', 'daynum', 'vehid', 'trip', 'timestamp_ms', 'lat', 'lon', 'speed_kmh', 'maf_gsec', 'engine_rpm', 'absoluteload', 'oat_degc', 'fuelrate_lhr', 'airconditioning_kw', 'airconditioning_w', 'heaterpower_w', 'hvbattery_a', 'hvbattery_soc_per', 'hvbattery_v', 'shorttermfueltrimbankl_pct', 'shorttermfueltrimbank2_pct', 'longtermfueltrimbankl_pct', 'longtermfueltrimbank2_pct', 'sub_trip_gid', 'sub_trip', 'mm_edge_id', 'mm_direction', 'mm_edge_source_h', 'mm_edge_target_h', 'mm_edge_km', 'mm_edge_kmh', 'mm_edge_clazzs', 'mm_edge_frcalong', 'mm_score', 'tl', 't2', 'heavyfog', 'hourlydewpointtemperature', 'hourlydrybulbtemperature', 'hourlyprecipitation', 'hourlypresentweathertype', 'hourlyrelativehumidity', 'hourlyskyconditions', 'hourlywindspeed', 'tstorms'],

Figure 2: Data Preprocessing

#Checking the null values in the dataframe.

df.isna().sum()

date	0	
datetime	0	
daynum	0	
vehid	0	
trip	0	
timestamp_ms	0	
lat	0	
lon	0	
speed_kmh	0	
maf_gsec	408058	
engine_rpm	408058	
absoluteload	408058	
oat_degc	0	
fuelrate_lhr	408058	
airconditioning_kw	408058	
airconditioning_w	0	
heaterpower_w	0	
hvbattery_a	0	
hvbattery_soc_per	0	
hvbattery_v	0	
shorttermfueltrimbank1_pct	408058	
shorttermfueltrimbank2_pct	408058	
longtermfueltrimbank1_pct	408058	
longtermfueltrimbank2_pct	408058	
<pre>sub_trip_gid</pre>	0	
sub_trip	0	
mm_edge_id	0	
mm_direction	1915	
mm_edge_source_h	0	
mm_edge_target_h	0	
mm_edge_km	0	
mm_edge_kmh	0	
mm edge clazzs	0	

Figure 3: Null Values

#counting the total unique values of mm_edge_id
<pre>mm = np.unique(df['mm_edge_id']) len(mm)</pre>
2131
#counting the total unique values of trip so that we can know how many trips have been captured.
<pre>n_trip = np.unique(df['trip']) len(n_trip)</pre>
482
#counting the total unique values of sub_trip
df.sub_trip.nunique()
56
#grouping only with trip and mm_edge_id to create a new dataframe which has all the trips with their mm_edeg_id. #This will help in calculating the average speed, travel time and energy cosnumed in a single trip.
<pre>grouped_df = df.groupby(["trip", "mm_edge_id"]) vals = grouped_df.first() vals = vals.reset_index() vals.shape</pre>

(19348, 49)

#Cł	neckin	g the new da	tafram	le										
va]	ls.hea	d()												
	trip	mm_edge_id	date	datetime	daynum	vehid	timestamp_ms	lat	lon	speed_kmh	 hourlydrybulbtemperature	hourlyprecipitation	hourlypresentweathertype	hour
0	554	161632	2017- 11-05	2017-11- 05 16:45:00	4.698313	455	92900	42.244299	-83.732130	63.349998	 59.0	0.01	None	
1	554	161633	2017- 11-05	2017-11- 05 16:45:00	4.698313	455	87900	42.244276	-83.733168	64.809998	 59.0	0.01	None	
2	554	161636	2017- 11-05	2017-11- 05 16:45:00	4.698313	455	57900	42.243874	-83.739069	50.369999	 59.0	0.01	None	
3	554	552278	2017- 11-05	2017-11- 05 16:45:00	4.698313	455	107900	42.244407	-83.729035	61.669998	 59.0	0.01	None	
4	554	552279	2017- 11-05	2017-11- 05 16:45:00	4.698313	455	112900	42.244633	-83.728136	54.059998	 59.0	0.01	None	
5 ro	ws x 49	columns												

	there are timestamp values in the column of the dataset, a function is cra n the trips. This can help in calculating the readings after each trips.	eated in order to get the calculate the time (in seconds)
def find	d_time(df):	
t_m:	<pre>ax = np.max(pd.to_datetime(df['timestamp_ms']).astype('int64')) in = np.min(pd.to_datetime(df['timestamp_ms']).astype('int64')) = (t_max - t_min) / le3</pre>	
retu	urn(dif)	
#D - 1 1		
	y reading after every timestamp. attery_soc_per']	
df[' <mark>hvb</mark> a	attery_soc_per']	
df['hvba 0 1 2	attery_soc_per'] 96.341469 96.341469 96.341469	
df['hvba 0 1 2 3	attery_soc_per'] 96.341469 96.341469 96.341469 96.341469 96.341469	
df['hvba 0 1 2	attery_soc_per'] 96.341469 96.341469 96.341469	
df['hvba 0 1 2 3 4	attery_soc_per'] 96.341469 96.341469 96.341469 96.341469 96.341469 	
df['hvba 0 1 2 3 4 408053	attery_soc_per'] 96.341469 96.341469 96.341469 96.341469 96.341469 96.341469 95.31469 96.341469 96.341469	
df['hvba 0 1 2 3 4 408053 408053	attery_soc_per'] 96.341469 96.341469 96.341469 96.341469 96.341469 96.341469 95.341469 95.341469 96.34169 96.3616 9	
df['hvba 0 1 2 3 4 408053 408053 408054 408055	attery_soc_per'] 96.341469 96.341469 96.341469 96.341469 96.341469 96.341469 95.024395 59.024395 59.024395 59.024395	
df['hvba 0 1 2 3 4 408053 408053	attery_soc_per'] 96.341469 96.341469 96.341469 96.341469 96.341469 96.341469 95.341469 95.341469 96.34169 96.3616 9	

Figure 6: Data Preprocessing Find_time()

] #This function will find the difference between each readings of hvbattery_soc_per so that energy consumed between/in the trip can be calculated. #hvbattery_soc_per is showing the readings, this function can let us know the energy consumed after certain time.

def find energy(df):

```
t_max = np.max(df['hvbattery_soc_per'])
t_min = np.min(df['hvbattery_soc_per'])
dif = (t_max - t_min)
return(dif)
```

] #this code cell helps in determining the time consumed in a single trip and in a mm_edge_id using teh find_time() created in the above cell.

time = df[["trip", "mm_edge_id", 'timestamp_ms']].groupby(["trip", "mm_edge_id"]).apply(find_time)

Figure 7: Data Preprocessing-find_energy()

#this code cell helps in determining the average speed of the vehicle in a single trip and in a mm_edge_id.

speed = df[["speed_kmh", "trip", "mm_edge_id"]].groupby(["trip", "mm_edge_id"]).apply(np.mean)

#this code cell helps in determining the energy cnsumed in by the vehicle in a single trip and in a mm_edge by subtracting the maximum value to minumum value #in a single trip and mm_edge_id.

df[["trip", "mm_edge_id", 'hvbattery_soc_per']].groupby(["trip", "mm_edge_id"])
energy = df[["trip", "mm_edge_id", 'hvbattery_soc_per']].groupby(["trip", "mm_edge_id"]).apply(find_energy)

Figure 8: Data Preprocessing-Energy Calculation

] #vals dataset is created because we want to have only the average speed, time and energy consumed in a single trip. hence there is reduction in a shape #of the original dataset.	
<pre>vals['speed'] = speed['speed_kmh'].to_numpy() vals['time'] = time.to_numpy() vals['ev_kwh'] = energy.to_numpy()</pre>	
] #printing the 'speed' column vals['speed']	
0 63.838749 1 63.888748 2 51.914284 3 59.355712 4 25.929166 19343 35.572857 19344 17.258799 19345 63.937999 19345 63.937999 19346 37.288749 19347 58.289522 Name: speed, Length: 19348, dtype: float64	

Figure 9: Data Preprocessing

```
| #importing the library to plot the histograms and other visualisation
 import matplotlib.pyplot as plt
 #plotting the histogram for the time column.
 plt.hist(vals['time'])
 <a list of 10 Patch objects>)
  17500
  15000
  12500
  10000
   7500
   5000
   2500
     0
            500
                 1000
                       1500
                                  2500
                             2000
```

Figure 10: Distribution of Time

Figure 11: Data Preprocessing- Vals2

#Transforming the 'mm_edge_clazzs' to provide only the type of the class. Strings after 'highway.' represents the type of route or path on which vehicle is moving

```
vals3['mm edge clazzs'] = vals3['mm edge clazzs'].str.replace('highway.','')
```

<ipython-input-46-9945de8clca3>:3: FutureWarning: The default value of regex will change from True to False in a future version.

vals3['mm edge clazzs'] = vals3['mm edge clazzs'].str.replace('highway.','')

<ipython-input-46-9945de8c1ca3>:3: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy vals3['mm_edge_clazzs'] = vals3['mm_edge_clazzs'].str.replace('highway.','')

Figure 12: Data Preprocessing-'mm_edge_clazzs'

#calculating distance and ev_kwh for a single trip for the EDA purpose.

```
vals_grp = vals3.groupby(["trip"])['distance','ev_kwh'].sum()
print(vals_grp)
```

	distance	ev_kwh
trip		
554	3.745929	0.975605
565	2.966467	0.731720
568	35.261814	3.048790
575	155.432368	12.073158
588	97.200116	9.878036
•••		
3223	49.382303	4.634144
3229	1.490552	0.731712
3234	29.064058	7.317078
3263	55.462525	4.878048
3271	3.946420	0.243904

Figure 13: Distance and Energy Consumption

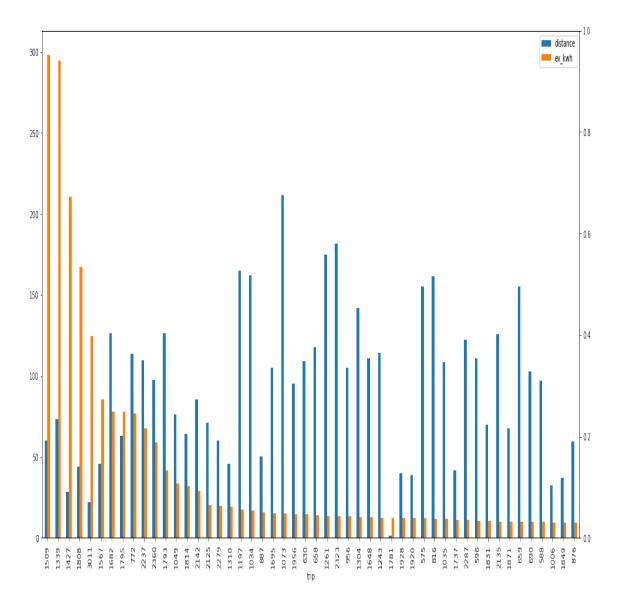


Figure 14: Top 50 Energy consumption trips

Figure 15: Data Transformation

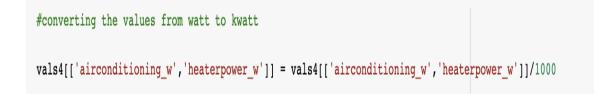


Figure 16: Data Transformation Heater and Air Conditioner

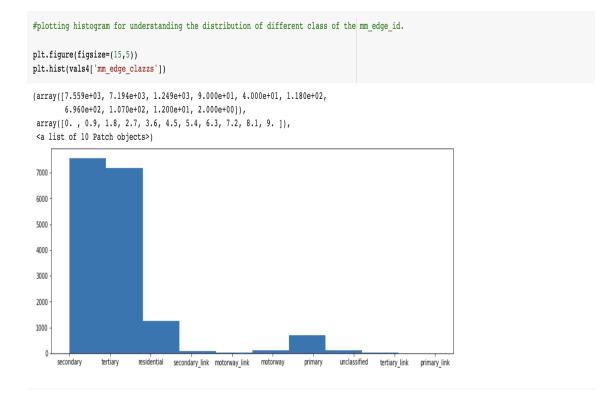


Figure 17: Histograme for Class of the Path

<pre>#importing the OneHotEncoder for transforming the categorical columns. from sklearn.preprocessing import OneHotEncoder onehotencoder = OneHotEncoder()</pre>														
#trans	form	ing	the	cate	gori	cal	colu	mn m	m_ed	.ge_c				
<pre>encoder_mm_edge_clazzs = pd.DataFrame(onehotencoder.fit_transform(vals4[['mm_edge_clazzs']]).toarray()</pre>														
#print	ing	the	tran	sfor	med	data	fram	e.						
encode	r_mm	_edg	e_cl	azzs										
	о	1	2	3	4	5	6	7	8	9				
0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0				
1	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0				
2	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0				
3	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0				
4	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0				
17062					0.0									
17063					0.0									
17064														
17065					0.0									
17066					0.0	1.0	0.0	0.0	0.0	0.0				
17067 rc	ws ×	10 cc	olumn	S										

Figure 18: One Hot Encoding on mm_edge_clazzs

#Joining original vals4 with new categorical dataframe and creating a new vals5 for better processing.

vals5 = vals4.join(encoder_mm_edge_clazzs)

#Printing vals5 dataframe.

vals5.head()

	trip	mm_edge_id o	at_degc	airconditioning_w	heaterpower_w	hvbattery_a	hvbattery_soc_per	hvbattery_v	sub_trip_gid	sub_trip	•••	0	1	2	3	4	5	6	7	8	9
1	554	161633	11.5	0.0	0.0	-67.0	48.414635	365.0	1428	2		0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
2	554	161636	11.5	0.0	0.0	-59.5	48.414635	367.5	1428	2		0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
3	554	552278	11.5	0.4	0.0	30.5	47.682930	376.5	1428	2		0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
4	554	552279	11.5	0.4	0.0	30.0	47.682930	373.0	1428	2		0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
5	554	583267	11.5	0.0	0.0	-25.0	48.414635	370.0	1428	2		0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0

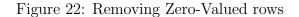
5 rows × 42 columns

Figure 19: vals 5

#dropping the columns whihc will not have contribution in the prediction operation

Figure 20: Data Transformation

Figure 21: Data Transformation for Hourly Precipitation


] #removing all the 0 valued rows from the time columns so that we have rows which have some travelling time.

dataset = dataset[dataset['time'] !=0]

] #checking the new shape of the dataset

dataset.shape

(17032, 25)

#dropping all the null values.

dataset = dataset.dropna()

#printing the description of the dataset.

	speed	time	distance	ev_kwh	oat_degc	airconditioning_w	heaterpower_w	mm_direction	mm_edge_km	hourlydrybulbtemperature	hourlyprecipitation	h
count	15337.000000	15337.000000	15337.000000	15337.000000	15337.000000	15337.000000	15337.000000	15337.000000	15337.000000	15337.000000	15337.000000	
mean	46.047164	26.286477	0.904910	0.197474	10.178294	0.353179	0.404626	0.210928	0.104006	48.529634	0.002774	
std	18.417525	127.185682	1.323194	1.021234	11.370769	0.363775	0.846311	0.977534	0.111399	19.457025	0.016034	
min	0.000000	0.200000	0.009514	0.000000	-15.500000	0.000000	0.000000	-1.000000	0.003448	-12.000000	0.000000	
25%	33.640908	2.900000	0.094774	0.000000	2.000000	0.000000	0.000000	-1.000000	0.048378	34.000000	0.000000	
50%	47.792855	5.800000	0.318273	0.000000	8.000000	0.300000	0.000000	1.000000	0.072998	45.000000	0.000000	
75%	59.893748	11.900000	1.157310	0.000000	20.500000	0.500000	0.500000	1.000000	0.116420	65.000000	0.000000	
max	122.076663	1876.200000	10.508275	26.463417	34.000000	2.300000	4.250000	1.000000	1.951085	92.000000	0.220000	

Figure 23: Cleaned Dataset

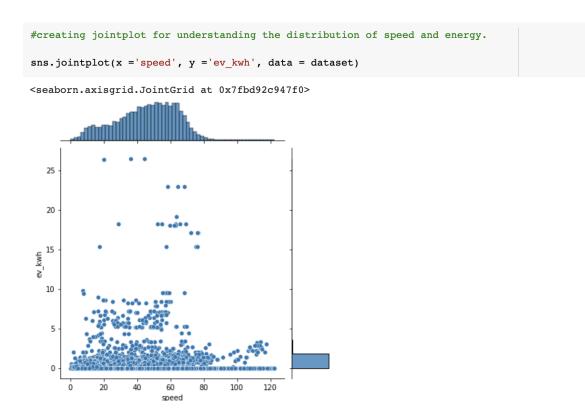
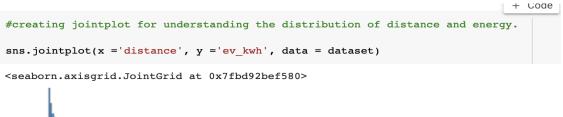



Figure 24: Speed Vs Energy Consumption

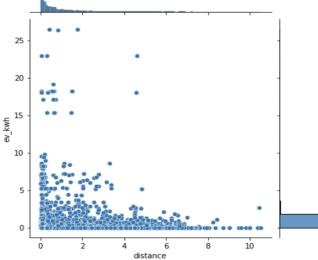


Figure 25: Distance Vs Energy Consumption

```
] #Storing all the independent columns in X.
```

```
X = dataset.drop(['ev_kwh'],axis =1 )
```

-] #Storing the target variable ev_kwh in y.
 - y = dataset['ev_kwh'].values

] #Importing the train_test_split from sklearns library.

from sklearn.model_selection import train_test_split

] #splitting the dataset in train, validation and test set for measuring the performance of the model.

```
X_train, X_rem, y_train, y_rem = train_test_split(X,y, train_size=0.8)
X_val, X_test, y_val, y_test = train_test_split(X_rem,y_rem, test_size=0.5)
```

Figure 26: X and y Datasets

```
#Printing subset of all the sub sets.
print(X_train.shape), print(y_train.shape)
print(X_val.shape), print(y_val.shape)
print(X_test.shape), print(y_test.shape)
(12269, 24)
(12269,)
(1534, 24)
(1534,)
(1534, 24)
(1534,)
(None, None)
#standardising all the subsets for the model training.
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_val = scaler.fit_transform(X_val)
X_test = scaler.fit_transform(X_test)
```

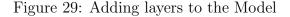
Figure 27: Data Transformation using StandardScalar Technique

```
#setting the seed for reproducible results
import tensorflow as tf
tf.random.set_seed(10)
#importing the keras libraries for model training.
from keras.models import Sequential
from keras.layers import Activation, Dense, Dropout
from tensorflow.keras.optimizers import Adam
```

Figure 28: Importing Libraries

#initialising the sequential class for the training.

```
model = Sequential()
```


#adding the dense layers in the model. activation set to relu.

```
model.add(Dense(X_train.shape[1],activation='relu'))
model.add(Dense(64,activation='relu'))
```

```
model.add(Dense(64, activation='relu'))
```

```
model.add(Dense(128,activation='relu'))
```

```
model.add(Dense(1))
```



```
| #Fitting the model and training it with 1500 epochs
 r = model.fit(X_train, y_train,
             validation_data=(X_val,y_val),
             batch size=64,
             epochs=1500)
 Epoch 1452/1500
 192/192 [========] - 1s 5ms/step - loss: 0.0791 - val_loss: 0.1294
 Epoch 1453/1500
 192/192 [===========] - 1s 5ms/step - loss: 0.0608 - val_loss: 0.1432
 Epoch 1454/1500
 192/192 [============] - 1s 7ms/step - loss: 0.0597 - val loss: 0.1469
 Epoch 1455/1500
 192/192 [============] - 1s 6ms/step - loss: 0.0596 - val_loss: 0.1556
 Epoch 1456/1500
 192/192 [===========] - 1s 5ms/step - loss: 0.0634 - val_loss: 0.1964
 Epoch 1457/1500
 192/192 [===========] - 1s 6ms/step - loss: 0.0704 - val loss: 0.2269
 Epoch 1458/1500
                                                    s: 0.0697 - val loss: 0.1397
```

Figure 30: Model Training Process

```
#Visualising training and validation loss
plt.figure(figsize=(10, 6))
plt.plot(r.history['loss'], label='loss')
plt.plot(r.history['val_loss'], label='val_loss')
plt.legend()
```

<matplotlib.legend.Legend at 0x7f8834dbac10>

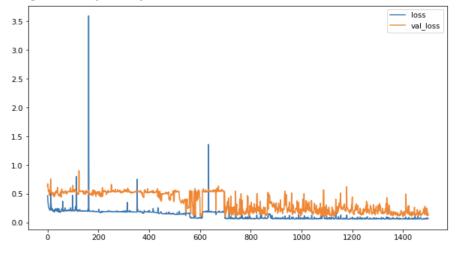


Figure 31: Training and Validation loss

```
] print_evaluate(y_train, y_train_pred, 'train')
 print_evaluate(y_val, y_val_pred, 'validation')
 print_evaluate(y_test, y_test_pred, 'test')
 ======Training Result======
 MAE:
       0.12969676279441741
 MSE:
       0.05896567838612335
 RMSE:
       0.2428284958280707
 R2 Square: 0.9433114353373161
 =======Validation Result=======
       0.16670457885253023
 MAE:
 MSE:
       0.12524125166334157
 RMSE:
       0.35389440750503753
 R2 Square: 0.8961316324498286
 ======Testing Result======
       0.16399552538073225
 MAE:
 MSE:
       0.09942433507042563
 RMSE: 0.31531624612510156
 R2 Square: 0.8896393243397365
```

Figure 32: Final Results