~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Gaurav Singh
Student ID: 21136921

School of Computing
National College of Ireland

Supervisor: Prof. Jorge Basilio

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Gaurav Singh
Student ID: 21136921
Programme: Data Analytics
Year: 2022
Module: MSc Research Project
Supervisor: Prof. Jorge Basilio
Submission Due Date: 15/12/2022
Project Title: Human Face Analysis using Transfer Learning Approach
Word Count: 762
Page Count: [16]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 31st January 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Gaurav Singh
21136921

1 Introduction

This configuration manual may be used to accomplish the same goals as the original
work by producing identical outcomes. It encompasses the system setup that the project
was executed on, the procedures involved in exploratory data analysis, the model imple-
mentation, and the model assessments. The code samples have been appended at the
conclusion of this section.

2 System and Hardware Pre-requisites Requirements

In this part, I will detail all of the tools, system prerequisites, and hardware configurations
that are necessary to reproduce my work are shown in Table

Table 1: System & Hardware Requirements

Environment Kaggle

Operating System Linux x86_64 GNU/Linux
RAM(Random Access Memory) | 16390868 kB(16GB)
CPU(Processor) Intel(R) Xeon(R) CPU @ 2.00GHz
Graphics processing unit(GPU) | GPU P100

Harddisk(Storage) 107.37 GB

2.1 Initial Requirements

In this research, I have below tools and libraries which are below

1. Microsoft office 360
2. Python 3.7.12
3. Jupyter Notebook

4. Anaconda custom (64-bit)

Tools from Microsoft Office, such as Microsoft Excel and Microsoft Word, have been used.
Python was chosen as the research project’s language of choice, and the whole project,
including data collection, data cleaning, transformation, and analysis, was carried out in
Python. Python 3.7.12 may be downloaded from the Python website at the following
address: "https://www.python.org/’. Kaggle, which includes a special embedded version
of Anaconda, provides the platform for the coding competition (64-bit) Jupyter Notebook.

1

3 Datasets Used

In this research I have used three datasets which are as follows:

1. Dataset containing smoking and not-smoking images (smoker vs non-smoker)
Link: https://data.mendeley.com/datasets/Tb52hhzs3r/1

M Mendeley Data

Dataset containing smoking and not-smoking images (smoker
vs non-smoker)

Published: 18 July 2020 | Version 1 | DOI: 10.17632/7b52hhzs3r.1
Contributor: Ali Khan

Description

The dataset contains a total of 2400 raw images, where 1200 images are of smoking (smokers) category and remaining 1200 images belong to
no-smoking (non-smokers) category. The dataset is curated by scanning through various search engines by entering multiple keywords that
include cigarette smoking, smoker, person, coughing, taking inhaler, person on the phone, drinking water etc. We tried to consider versatile
images in both classes for creating a certain degree of inter-class confusion in order to better train the model. For instance, smoking category
consists of images of smokers from multiple angles and various gestures. Moreover, the images in not-smoking category contains images of
non-smokers with slightly similar gestures as that of smoking images such as people drinking water, using inhaler, holding the mobile phone,
biting nails etc. The dataset can be used by the prospective researchers to propose machine learning algorithms for automated detection and
screening of smoker towards ensuring the green environment and performing surveillance in smart cities.

Download Al 621 MB | (D

Figure 1: Smoker Dataset

2. VIP Attribute Dataset , Link: http://antitza.com/VIP_attribute-dataset.html

LY,
viP_atisibute Dac

1717717777177

Dataset

Menu Welcome to the website of the VIP_attribute dataset comprising of face images assembled
for studying heght, weight and body mass index (BMI) based on facial images.
We have assembled 1026 subjects, sepcifically 513 female and 513 male celebrities (mainly
actors, singers and athletes) collected from the WWW. The images include the frontal pose of
the subjects. Co-variates include illumination, expression, image quality and resolution. Further
challenging in this dataset are beautification (e.g., photoshop) of the images, as well as the
presence of makeup, plastic surgery, beard and mustache. We obtained annotations related to
te subjects' body weight and height available on websites such as www.celebheights.com,
www.howtallis.org and celebsize.com. More details about this dataset can be found in:
1. A. Dantcheva, P. Bilinski, F. Bremond, "Show me your face and I will tell you your
height, weight and body mass index," Proc. of 24th IAPR International Conference on
Pattern Recognition (ICPR), (Beijing, China), August 2018.

Dataset
Download

Examples:

Figure 2: VIP Attribute Dataset

3. UTKFace Large Scale Face Dataset ,Link: https://susanqq.github.io/UTKFace/

UTKFace

Large Scale Face Dataset

RE R

e 1 P2

b pst Dy by

Introduction

UTKFace dataset is a large-scale face dataset with long age span (range from O to 116
years old). The dataset consists of over 20,000 face images with annotations of age,
gender, and ethnicity. The images cover large variation in pose, facial expression,
ilumination, occlusion, resolution, etc. This dataset could be used on a variety of tasks,

e.g.. face detection. age estimation, age progression/regression, landmark localization,
etc. Some sample images are shown as following

Figure 3: UTKFace Dataset

4 Research Workflow and Design

The overall workflow and the methodology followed are shown in Figure

Figure 4: Workflow Diagram

5 Python packages and Libraries used

In this part, I will provide a rundown of all of the packages, Python packages, and third-
party libraries (if any) utilized in the study. The fact that these packages are freely

accessible, will make it easier to reuse the same work and recreate it. Table [2 shows the
list of all the libraries used.

Table 2: List of Python packages and libraries used in the research

Python Library Name

Description

0os

This is used in order to create folders and manage files and directories

It displays a message but runs. Warning messages are shown using

warnings the ”warning” module’s warn() method. Python’s built-in class
Exception is the warning module’s superclass.
Python data analysis programming language. Its data

pandas structures and actions alter numerical tables and data series.
NumPy, a Python package, supports massive,

numpy multi-dimensional arrays and matrices and a
large number of high-level mathematical functions.

cv2 This is open-source computer vision library.

tqdm The Python module tqdm creates progress metres and bars.

matplotlib.pyplottqdm

For plotting graphs

tensorflow keras.layers

UpSampling2D,Concatenate, MaxPooling2D,

Input, Conv2D , BatchNormalization,Activation,MaxPool2D,

Dropout,Flatten,Dense,GlobalAveragePooling2D

sklearn.model _selection

train_test_split

skimage.transform

used for image transformation

sklearn.metrics

classification_report, confusion_matrix

mlxtend.plotting

plot_confusion_matrix

tensorflow keras.applications

ResNet50V2, VGG16, DenseNet201, EfficientNetB7, InceptionResNet50V2

tensorflow.keras.preprocessing.image | ImageDataGenerator

tensorflow.keras.callbacks

ModelCheckpoint,ReduceLROnPlateau

tensorflow.keras.models Model
skimage.transform resize
MTCNN mtenn

6 Data Pre-processing Code and Image Data Gen-
erators Code

Below are images of all the data processing steps. Here. Figure [f] and [6] shows the code
for first converting the UTKFace dataset images into pre-processed one using MTCNN(a
library that is useful in grasping the face alignment and face extraction).

~ Jupyter utk-mtcnn-processing-images Last Checkpoint: 11 hours ago (autosaved)

File Edit

A oo

View Inset Coll Kemel Widgets Help Tustea £ | Python 3 (pykemen O

B 4+ % @B 4 ¥ PR B C M Code v =

import MTCNN
lotlib.pyplot as plt
1ib

is optimized

To enable them in other i rebuild with the iate compiler flags.

nb', 'UTKface_inthewild', '.ipynb_checkpoints']

1d/part3/1_0_1_20170117130048013.3pg"), cv2.COLOR_BGRZRGB)

D
D
ep
ep
D
D
3

s 112ms/step

Figure 5: MTCNN UTK Face Alignment

1 operat

Figure [7] shows the code which I have developed for generating the images based on
the CSV data available. When performing model building image data generators are
useful for such operation.

The overall exploratory analysis performed is shown in Figure [8]

4

Part-2

In [36]: path = r"UTKface_inthewild/part2"
files = os.listdir(path)

In [37): for £ in tqdm(files):
try:

img = cv2.cvtColor(cv2.imread(path+'/"+£), cv2.COLOR_BGR2RGB)
d = detector.detect_faces (img)
if(len(d)>0):
%, ¥, w, h = d[0]["box"]
x1 = resize(imgly:y+h, x:x+w,:], (224, 224))
tplotlib.i i 5 |_images/Part-2/"+£, x1)

except:
pass

r T/TT T7="05"T6ms/5tep
1/1 0s 18ms/step
2/2 0s 4ms/step
0s 20ms/step

| 8015/10719 [1:42:09<35:45, 1.26it/s]

0s 48ms/step
0s 30ms/step
0s 23ms/step
0s 20ms/step
0s 21ms/step
0s 17ms/step
0s 17ms/step
0s 17ms/step
0s 17ms/step
0s 19ms/step
0s 17ms/step
0s 5ms/step
0s 19ms/step

Figure 6: MTCNN UTK Face Alignment

from tensorflow.keras.preprocessing.image import ImageDataGenerator

data augmentation like rotation, shearing , horizontal filp

normalization step also included in this data generator

traindatagen= ImageDataGenerator(

rotation_range=15,

shear_range=0.1,
zoom_range=0.2,
horizontal_flip=True,
width_shift_range=0.1,
height_shift_range=0.1

train_generator = traindatagen.flow_from_dataframe(

train,

x_col="FileName",
y_col="lLabel",
target_size=(224,224),
color_mode='rgh',
class_mode='binary',
classes=['NO SMOKE', 'SMOKE'],

batch_size=8

testdatagen = ImageDataGenerator()

test_generator = testdatagen.flow_from_dataframe(

validate,

x_col="FileName",

y_col="lLabel",

target_size=(224,224),

class_mode='binary',

color_mode='rgh",

batch_size=8,classes=['NO SMOKE', 'SMOKE'],

Figure 7: Image Data Generators Code

10000

4000

8000

3000

2000

1000

o
S
o
5
2
°
s
White
Black
Asian
India
Others

Gender Ethnicity
80
90 0
0 @
60) 20
g 50 N 2
§ FE] H
2 0 § g

-4 2 £ a0
20 & m
20 10
- 10 ,

] g % Y

0 " : £ : i

¢ ¢ . . z § i v

4 [£ ¢

& & H i H 5 g

] ¢ = &

z
Smoker BMI Data BMI Categorical Data

Figure 8: Exploratory Data Analysis

7 Model Implementation Code

7.1 Smoker or Non-Smoker Classification

In this section, some code snippets are attached for reference as shown in Figure [0] and [10]
which shows the model building for Smoke Classification Problem using EfficientNetB7.

Model Building
from tensorflow.keras.layers import Input, Conv2D, BatchNormalization, Activation, MaxPool2D,
UpSampling2D, Concatenate,MaxPooling2D,Dropout,Flatten,Dense,GlobalAveragePooling2D
from tensorflow.keras.models import Model

from tensorflow.keras.utils import plot_model
import tensorflow as tf

2022-12-07 18:38:50.433096: I tensorflow/stream_executor/platform/default/dso_loader.cc:49]
Successfully opened dynamic library libcudart.so.11.0

from tensorflow.keras.applications import EfficientNetB7

efficientNetB7 = EfficientNetB7(weights="imagenet', include_top=False)

Figure 9: Smoker Model Building

Figure shows the Model summary for Smoker Classification problem using Effi-
cientNetB7.

for x in efficientNetB7.layers:

x.trainable = False

input_layer
model_layer
model_layer
model_layer
activation
model_layer
erfitting
model_layer
process
model_layer
activation

= Input(shape=(224, 224, 3)) # input layer with 224,224,3

= efficientNetB7(input_layer) # passing input layer to dense layer

= GlobalAveragePooling2D()(model_layer) # global average pooling

= Dense(256, activation='relu')(model_layer)# dense layer with 256 neurons and relu
= Dropout(0.25) (model_layer)# drop out layer with drop out rate of 0.25 to avoid ov

= BatchNormalization()(model_layer) # batch norm alization to speed up the training

= Dense(128, activation='relu')(model_layer) #dense layer with 128 neurons and relu

output = Dense(1,activation = 'sigmoid')(model_layer)#dense layer with 1 neurons and sigmoid ac

tivation

model = Model(input_layer,output)

Figure 10: Smoker Model Building

model.summary ()

Model "model"
Layer (type) Output Shape Param #
input_2 (InputLayer) [(None, 224, 224, 3)] =]

efficientnetb?7 (Functional) (None, None, None, 2560) 64097687

Total params: 64,787,352
Trainable params: 689, 153
Non-trainable params: 64,098,199

Figure 11: Smoker Model summary

7.2 BMI Identification

For the second experiment, i.e BMI Identification the model-building steps are shown
in Figure and As seen, first various libraries were imported namely from the
TensorFlow layers package, then we added input layers and various model layers.

Model Building

from tensorflow.keras.layers import Input, Conv2D, BatchNormalization, Activation, MaxPool2D,
UpSampling2D, Concatenate,MaxPooling2D,Dropout,Flatten, Dense,GlobalAveragePooling2D

from tensorflow.keras.models import Model

from tensorflow.keras.utils import plot_model

import tensorflow as tf #im

from tensorflow.keras.applications import EfficientNetB7

efficientNetB7 = EfficientNetB7(weigh imagenet’, 1include_top= + o netz t ¢
model loading by discarding top layer is nothi but a

In L1151
input_layer = Input(shape=(224, 224, 3)) # input layer with 224,6224, 3
model_layer = efficieniNelB7(inpul _layer) # passing input layer to dense layer
model layer = GlobalAveragePooling2D()(model layer) # global average pooling
model_layer = Dense(256, activation='relu')(model_layer)# dense layer with 256 neurons and relu
activation
model_layer = Dropout(®.25)(model_layer)# drop out layer with drop out rate of 8.25 to avoid ov
erfitting
model_layer = BatchNormalization()(model_ layer) # batch norm alization to speed up the training
process
model_layer = Dense(128, activation='relu’)(model_layer) #dense Iayer with 128 neurons and relu
activation

In 161
output = Dense(1,activation = °"linear’')(model_layer)#dense layer with 1 neurons and linear acti
vation

In [17]
model - Model(input_layer,output)

Figure 12: BMI EfficientNetB7 Model Building Steps

model.compile(loss="mse', oplimizer="adam”, metlrics=[Lf.keras.melrics.RoolMeanSquaredError(), L
f.keras.metrics.MeanAbsoluteError()])
model.summary ()

Model: "model"

Layer (type) output Shape Param #

input_2 (InputlLayer) [(None, 224, 224, 3)]]

efficientneth? (Functional) (None, None, None, ?560) 64897687

global_average_pooling2d (Gl (None, 2568) 0
dense (Dense) (None, 256) 655616
dropout (Dropout) (None, 256) 2]
batch_normalization (BatchNo (None, 256) 1024
dense_1 (Dense) (None, 128) 32896
dense_2 (Dense) (None, 1) 129

Total params: 64,787,352
Trainable params: 689,153
Non-trainahle params: 64,898,199

Figure 13: BMI EfficientNetB7 Model summary

7.3 Gender Classification (male or female)

For the third experiment, i.e Gender Classification (male or female) the model-building
steps are shown in Figure As seen, first various libraries were imported namely from
the TensorFlow layers package, then we added input layers and various model layers.
Then, in Figure [15| shows the model summary after adding input dense layers, and also,
the data frame is used with ImageDataGenerator() to produce the images.

Model Building

from tensorflow.keras.layers import Input, Conv2D, BatchNormalization, Activation, MaxPool2D,
UpSampling2D, Concatenate, MaxPooling2D,Dropout,Flatten, Dense, GlobalAveragePooling2D

from tensorflow.keras.models import Model

from tensorflow.keras.utils import plot_model

import tensorflow as tf

from tensorflow.keras.applications import EfficientNetB7

pre_model = EfficientNetB7(weights='imagenet’', include_top=False)

2022-12-18 11:59:40.282648: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] suc
cessful NUMA node read from SysFS had negative value (-1), but there must be at least one N
UMA node, so returning NUMA node zero

2822-12-18 11:59:408.375921: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] suc
cessful NUMA node read from SysFS had negative value (-1), but there must be at least one N
UMA node, so returning NUMA node zero

2822-12-18 11:59:408.376697: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] suc
cessful NUMA node read from SysFS had negative value (-1), but there must be at least one N

for x in pre_model.layers:
x.trainable = False

input_layer = Input(shape=(224, 224, 3)) # input layer with 224,224,3

model_layer = pre_model(input_layer) # passing input layer to dense layer

model_layer = GlobalAveragePooling2D()(model_layer) # global average pooling

model_layer = Dense(256, activation='relu')(model_layer)# dense layer with 256 neurons and relu
activation

model_layer = Dropout(®.25)(model_layer)# drop out layer with drop out rate of 8.25 to avoid ov
erfitting

model_layer = BatchNormalization()(model_layer) # batch norm alization to speed up the training
process

model_layer = Dense(128, activation='relu’')(model_layer) #dense layer with 128 neurons and relu

activation

output = Dense(1,activation = 'sigmoid’')(model_layer)#dense layer with 1 neurons and sigmoid ac
tivation

model = Model(input_layer,output)

Figure 14: Gender Classification (Male or Female) EfficientNetB7 Model Building Steps

Model Summary

In

loss function is binary cross entropy and optimizer is adam , metrics are accuracy , precision
recall

model.compile(loss="'binary_crossentropy’, optimizer="adam", metrics=['accuracy’,tf.keras.metri

cs.Recall(),tf.keras.metrics.Precision()])

model . summary()

Model: "model”

Layer (type) Output Shape Param #

input_2 (InputLayer) [(None, 224, 224, 3)]]

efficientnetb? (Functional) (None, None, None, 2568) 64097687

global_average_pooling2d (Gl (None, 2568) L]
dense (Dense) (None, 256) 655616
dropout (Dropout) (None, 256) (=]
batch_normalization (BatchNo (None, 256) 1824
dense_1 (Dense) (None, 128) 32896
dense_2 (Dense) (None, 1) 129

Total params: 64,787,352
Trainable params: 689,153
Non-trainable params: 64,898,199

Epoch 68899: val_loss did not improve from ©.26888

Epoch 188/188

261/261 [] - 275s 1s/step - loss: 8.2231 - accuracy: 8.9857 -
recall: 8.9882 - precision: 8.9813 - val_loss: 8.2987 - val_accuracy: 8.8895 - val_recall:
9.8943 - val_precision: 8.8876

Epoch 8818@8: val_loss did not improve from @.26888

model.save_weights('gender_efficientnetb7(w).h5')

In [28]
train

Qut[28]:

FilePath FileName Label
3267 finput/urkfacepreprocessed/Part-1/Part-1/18_... 18.1.0_20170109212818755.J]pg Female
1218 Jfinputjurkfacepreprocessed/Part-1/Part-1/3_1... 3.1.3_20161219230259272.jpg Female
4597 finput/urkfacepreprocessed/Part-1/Part-1/65_... 65_.1_0_20170110160643923.Jpg Female
14670 .finput/urkfacepreprocessed/Part-2/Part-2/31_... 31_0.0_20170117175719891.jpg Male
16973 .finputjurkfacepreprocessed/Part-2/Part-2/43_... 43.0.3 201701122203098502.jpg Male

18727 .Jinputjurkfacepreprocessed/Part-2/Part-2/22_... 22.0.3.20170117154523094.Jpg Male
13589 .Jinputiurkfacepreprocessed/Part-2/Part-2/24_... 24.1.2_20170116163702026.jpg Female
9258 finput/urkfacepreprocessed/Part-1/Part-1/14_... 14_1_0_20170103200819591.Jpg Female
5010 .finputjurkfacepreprocessed/Part-1/Part-1/5_0... 5.0_3_20161220222940507.jpg Male

16449 finputjurkfacepreprocessed/Part-2/Part-2/35_... 35.1.0.20170116222143959.jpg Female

16645 rows x 3 columns

Figure 15: Gender Classification (Male or Female) EfficientNetB7 Model summary

10

7.4 Ethnicity Multi-Classification (” White”, ”Black”, ” Asian”,
?India”, ” Others”)

For the fourth experiment, i.e Ethnicity Multi-Classification the model-building steps

are shown in Figure

TensorFlow layers package, then we added input layers and various model layers.

. As seen, first various libraries were imported namely from the
Then,

Figure [17| shows the model summary.

from sklearn._model_selection

daf =
train, test =
train = train
test =

Model Building

from tensorflow.keras.layers import Input,

UpSampling2D,

df .sample(frac =

.sample(frac =

test.sample(frac =

import train_test_split

1)

train_test_split(df

1)

test_size=6.20, random_state=42,shuffle=True)

1)

Conv2D, BatchNormalization, Activation, MaxPool2D,

Concatenate,MaxPooling2D, Dropout, Flatten, Dense, GlobalAveragePooling2D

from tensorflow.keras.models import Model

from tensorflow.keras.utils import plot_model
import tensorflow as tf

from tensorflow.keras.applications import DenseNet2081

densenet =

for

x.trainable =

input_layer =
model_layer =
model_layer =
model_layer =
model_layer =
erfitting

model_layer =
model_layer =

activation

output =

tivation

model =

from tensorflow.keras.callbacks

defining cf
in learning
red =
3)
checkpoint =

modelhistory

DenseNet201 (weights="

Dense(5,activation =

ReduceLROnPlateau(monitor=

ModelCheckpoint(model.h5",

imagenet’, include_top=False)

x in densenet.layers:

False

Input(shape=(224, 224, 3))

pa

densenet (input_layer) r
GlobalAveragePooling2D() (model_layer) # g
Dense (256,

activation='relu’) (model_layer

Dropout(®.25)(model_layer)# drop out layer wi

BatchNormalization() (model_layer) # batch norm alization to speed up

Dense(128, activation='relu’')(model_layer) #dense layer wit

‘softmax') (model_layer)#dense layer with 1 and

Model(input_layer,output)

import ModelCheckpoint, ReduceLROnPlateau

ckpoints for best epoch model saving and early stog

val_accuracy', factor=6.5, patience=5, verbose=1, min_lr=1e-

verbose=1, save_best_only=True)

= model.fit_generator(

train_generator,
epochs=1@@,

validation_data=test_generator,

callbacks=[red,

)

checkpoint]

Figure 16: Ethnicity Multi-Classification DenseNet201 Model Building Steps

11

Model Summary

In [22]
loss function is binary cross entropy and optimizer is adam , metrics are accuracy , precision

, recall
model.compile(loss="categorical_crossentropy', optimizer="adam", metrics=['accuracy',tf.keras.
metrics.Recall(), tf keras.metrics.Precision()])

model . summary()

Model: "model"

Layer (type) Qutput Shape Param #

input_2 (InputLayer) [(None, 224, 224, 3)]]

densenet2@1 (Functional) (None, None, None, 1928) 18321984

global_average_pooling2d (G1 (None, 1920)]
dense (Dense) (None, 256) 491776
dropout (Dropout) (None, 256) (]
batch_normalization (BatchNo (None, 256) ----1@24
dense_1 (Dense) (None, 128) 32896
dense_2 (Dense) (None, 5) 645

Total params: 18,848,325
Trainable params: 525,829
Non-trainable params: 18,322,496

Figure 17: Ethnicity Multi-Classification DenseNet201 Model summary

12

7.5 Finding the age of a person

For the last experiment, i.e finding the age of a person the model-building steps are shown
in Figure [I8 As seen, first various libraries were imported namely from the TensorFlow

layers package, then we added input layers and various model layers. Then, Figure

shows the model summary.

In [15]
In [16]
In [17]
In [18]
In [19]:
In [20]
n [308]
n [31]

Model Building

from tensorflow.keras.layers import Input, Conv2D, BatchNormalization, Activation, MaxPoocl2D,
UpSampling2D, Concatenate,MaxPooling2D,Dropout,Flatten, Dense,GlocbalAveragePooling2D

from tensorflow.keras.models import Model

from tensorflow.keras.utils import plot_model

import tensorflow as tf

from tensorflow.keras.applications import DenseNet261

densenet = DenseNet201(weights="imagenet', include_top=False)

for x in densenet.layers:

x.trainable = False

input_layer = Input(shape=(224, 224, 3)) # input layer with 224,224,3

model_layer = densenet(input_layer) # passing input layer to dense layer

model_layer = GlobalAveragePooling2D()(model_layer) # global average pooling

model_layer = Dense(256, activation='relu’')(model_layer)# dense layer with 256 neurons and relu
activation

model_layer = Dropout(©.25)(model_layer)# drop out layer with drop out rate of €6.25 to avoid ov
erfitting

model_layer = BatchNormalization()(model_layer) # batch norm alization to speed up the training
process

model_layer = Dense(128, activation='relu')(model_layer) #dense layer with 128 neurons and relu

activation

output = Dense(1,activation = 'linear’)(model_layer)#dense layer with 1 neurons and sigmoid act

ivation
model = Model(input_layer,output)

from tensorflow.keras.callbacks import ModelCheckpoint, ReducelLROnPlateau

defining checkpoints for best epoch model saving and early stopping if there is no improvement
in learning

red = ReduceLROnPlateau(monitor='val_root_mean_squared_error’', factor=0.5, patience=5, verbose
=1, min_lr=1e-3)

checkpoint = ModelCheckpoint(' model.h5', verbose=1, save_best_only=True)

modelhistory = model.fit_generator(
train_generator
epochs=1080,
validation_data=test_generator,

callbacks=[red, checkpoint]

)

Figure 18: Age DenseNet201 Model Building Steps

13

Model Summary

In (2]
loss function is mean sqaured error and optimizer is adm , metrics are rmse , mae

model.compile(loss="mse", optimizer="adam", metrics=[tf.keras .metrics.RootMeanSquaredError(),t
f.keras.metrics MeanAbsoluteError()])

model. summary)

Model: "model"

Layer (type) Qutput Shape Param #

input_2 (Inputlayer) [(None, 224, 224, 3)] 0

densenet201 (Functional) (None, None, None, 1920) 18321984

global_average_pooling2d (G1 (None, 1920) 0

dense (Dense) (None, 256) 49177&7777
dropout (Dropout) (None, 256) 0
batch_normalization (BatchNo (None, 256) o
dense_1 (Dense) (None, 128) %
dense_2 (Dense) (None, 1) 129

Total params: 18,847,889
Trainable params: 525,313
Non-trainable params: 18,322,496

Figure 19: Age DenseNet201 Model summary

14

8 Model Implementation

Figure [20[shows the overall model implementation results, I have run the epochs till 100.

Model RMSE Model MAE

- Model Loss
— Tain — TFain —— Tain
14 oSt
200
12
10 150
E]]
“ 8 ¥ 100 *
: \
S0
4 | || *I
SN .
&0 e 0 ¢ (] 20 a0 &0 B0 100
epocn epocn epoch
EfficientNetB7 BMI Identification Graphs till 100 epochs
Model accuracy Model Precision Model Recall
0975 1 — Tain 0975 | — Tain 0975 { — TFain
o .
0950 09s0{ A MY A AN A W" , osso
csas{ 4/ V) -V_‘-"‘-—\J\J‘\a va.f.v N A oazs| YV \ "u‘ \/ VA '} W W' . ; P
; %Y oy | Y
g 0900 ! ! ! § 0900 — oso0 1\ ‘. \ | \ \‘.I.' LJ,\, ["I.r”_«. v
; 0875 i‘ 0875 X osrs '
0850 0850 0850
0825 0825 0825
0800 0800 0800
o 20 80 100 o 0 0 @ 80 100 L] 20 80 100
Epoch Epoch Epoch
EfficientNetB7 Smoker Classification Graphs till 100 epochs
Model RMSE Model MAE Model Loss
— Tain — Tain 275 | = TWain
16 — st
250
15
225
14 200
é B g s
2 150
1n 125
10 100
] 20 40 60 80 100 0 20 80 100 o 20 80 100
Epoch Epoch Epoch
EfficientNetB7 Gender Classification Graphs till 100 epochs
Model accuracy Model Precision Model Recall
— Tain el [== Tain
090~ Test 0.90 PYTE Lo N Ao\
A M A \Ml ‘ | \ath
088 v \ 088 090 |||!WF|\‘ | Al VI
ggss § 086 3 oss \‘ ‘l
b g 084 £ 0.86 k
084 084
082
082 080 082
o 20 40 60 80 100 o 20 40 80 100 o 20 80 100
Epoch Epoch Epoch
DenseNet201 Age Graphs till 100| epochs
Model accuracy Model Recall Model Precision
074 06504 — ‘h\n 084
. i
072 0625 . AN 1 [
| || W A ‘I AN ,"ul 082
>‘”" 0600 H \ ‘Iﬂ | "MMMR’\““ Il"‘”“‘; \’I §°%®
£oe Foor { éula
* 0.66 0550
ars
064 0525
062 0500
en
0 20 0 &0 80 100 [] 20 60 80 100 ° 2 «© © L] 100
Epoch Epoch Epoch

DenseNet201 Ethnicity Graphs till 100 epochs

Figure 20: Model Implementation

15

9 Model Evaluation

Figure[21|shows the overall model evaluation results, as seen for BMI, Smoker and Gender
the EfficientNetB7 model performed the best, and for age and DenseNet201 performed
the best.

Table 1: BMI results

Model RMSE MAE
Test Train Test Train
EfficientNetB7 3.1871 2.8063 2.0966 2.0118
DensetNet201 3.3346 3.2611 2.1761 2.2317
VGG16 3.795 3.6466 2.3436 2.3421
InceptionResNetVv2 3.1795 3.6867 2.1927 2.3738
ResNet50VvV2 4.6423 2.9988 3.0637 2.0788

Table 2: Evaluation of Smoking Based Binary Classification Results

Model Accuracy Precision Recall
Test Train Test Train Test Train
EfficientNetB7 92.48% 99.75% 92.52% 99.75% 92.48% 99.75%
DensetMNet201 87.72 95.02% 88.15 95.02% 87.71 95.02%
VGG16 83.46% 86.82% 83.45% 87.22% 83.49% 86.82%
InceptionResNetWv2 57.89% 56.47% 62.93% 61.44% 57.97% 56.47%
ResMet50Vv2 89.72% 98.01% 90.10% 98.01% 89.71% 98.01%

Table 3: Evaluation of Age Results

Model RMSE MAE
Test Train Test Train
EfficientNetB7 20.0096 20.351 15.4478 15.5997
DensetNet201 9.6027 9.6719 6.7815 6.8777
VGG16 12.0148 12.4385 9.0947 9.14
InceptionResNetV2 19.8154 19.1108 16.1248 14.8278
ResNet50Vv2 19.9665 19.1297 15.5431 14.7911

Table 4: Gender Based Binary Classification Results

Model Accuracy Precision Recall
Test Train Test Train Test Train
EfficientNetB7 89.02% 93.99% 89.02% 93.899% 89.02% 93.99%
DensetNet201 B7.19% 89.44% 87.25% 89.49% 87.18% 89.47%
VGG16 T7.15% 78.04 % 78.09% 79.22% 77.09% 78.17%
InceptionResMNetV2 54.76% 55.07% 56.33% 57.49% 54.75% 55.39%
ResMNet50VvV2 71.34% 72.96% 76.08% 77.15% 71.86% 73.08%

Table 5: Multi class Ethnicity classification Results

Model Accuracy Precision Recall
Test Train Test Train Test Train
EfficientNetB7 43.22% 45.01% 47.01% 48.71% 48.96% 42.97%
DensetNet201 74.05% 77.21% 65.09% 73.71% 58.96% 62.97%
VGG16 49.21% 64.59% 22.3T% 75.41 83.57% 52.64%
InceptionResMNetVv2 AT .62% 48.31% 58.20% 58.56% 49.60% 48.90%
ResMNet50v2 51.66% 56.78% 61.57% 67.69% 32.34% 40.70%

Figure 21: Model Evaluation Results

16

	Introduction
	System and Hardware Pre-requisites Requirements
	Initial Requirements

	Datasets Used
	Research Workflow and Design
	Python packages and Libraries used
	Data Pre-processing Code and Image Data Generators Code
	Model Implementation Code
	Smoker or Non-Smoker Classification
	BMI Identification
	Gender Classification (male or female)
	Ethnicity Multi-Classification ("White", "Black", "Asian", "India", "Others")
	Finding the age of a person

	Model Implementation
	Model Evaluation

