

Configuration Manual

MSc Research Project Data Analytics

Gaurav Singh Student ID: 21136921

School of Computing National College of Ireland

Supervisor: Prof. Jorge Basilio

National College of Ireland Project Submission Sheet School of Computing

Student Name:	Gaurav Singh
Student ID:	21136921
Programme:	Data Analytics
Year:	2022
Module:	MSc Research Project
Supervisor:	Prof. Jorge Basilio
Submission Due Date:	15/12/2022
Project Title:	Human Face Analysis using Transfer Learning Approach
Word Count:	762
Page Count:	16

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	
Date:	31st January 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).□Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).□You must ensure that you retain a HARD COPY of the project, both for□

your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Gaurav Singh 21136921

1 Introduction

This configuration manual may be used to accomplish the same goals as the original work by producing identical outcomes. It encompasses the system setup that the project was executed on, the procedures involved in exploratory data analysis, the model implementation, and the model assessments. The code samples have been appended at the conclusion of this section.

2 System and Hardware Pre-requisites Requirements

In this part, I will detail all of the tools, system prerequisites, and hardware configurations that are necessary to reproduce my work are shown in Table 1.

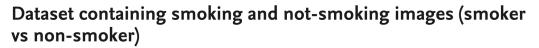
_ 0	1
Environment	Kaggle
Operating System	Linux x86_64 GNU/Linux
RAM(Random Access Memory)	16390868 kB(16GB)
CPU(Processor)	Intel(R) Xeon(R) CPU @ 2.00GHz
Graphics processing unit(GPU)	GPU P100
Harddisk(Storage)	107.37 GB

Table 1: System & Hardware Requirements

2.1 Initial Requirements

In this research, I have below tools and libraries which are below

- 1. Microsoft office 360
- 2. Python 3.7.12
- 3. Jupyter Notebook
- 4. Anaconda custom (64-bit)


Tools from Microsoft Office, such as Microsoft Excel and Microsoft Word, have been used. Python was chosen as the research project's language of choice, and the whole project, including data collection, data cleaning, transformation, and analysis, was carried out in Python. Python 3.7.12 may be downloaded from the Python website at the following address: 'https://www.python.org/'. Kaggle, which includes a special embedded version of Anaconda, provides the platform for the coding competition (64-bit) Jupyter Notebook.

3 Datasets Used

In this research I have used three datasets which are as follows:

1. Dataset containing smoking and not-smoking images (smoker vs non-smoker) Link: https://data.mendeley.com/datasets/7b52hhzs3r/1

Published: 18 July 2020 | Version 1 | DOI: 10.17632/7b52hhzs3r.1 Contributor: Ali Khan

Description

The dataset contains a total of 2400 raw images, where 1200 images are of smoking (smokers) category and remaining 1200 images belong to no-smoking (non-smokers) category. The dataset is curated by scanning through various search engines by entering multiple keywords that include cigarette smoking, smoker, person, coughing, taking inhaler, person on the phone, drinking water etc. We tried to consider versatile images in both classes for creating a certain degree of inter-class confusion in order to better train the model. For instance, smoking category consists of images of smokers from multiple angles and various gestures. Moreover, the images in not-smoking category contains images of non-smokers with slightly similar gestures as that of smoking images such as people drinking water, using inhaler, holding the mobile phone, biting nails etc. The dataset can be used by the prospective researchers to propose machine learning algorithms for automated detection and screening of smoker towards ensuring the green environment and performing surveillance in smart cities.

Download All 621 MB (i)

Figure 1: Smoker Dataset

2. VIP Attribute Dataset , Link: http://antitza.com/VIP_attribute-dataset.html

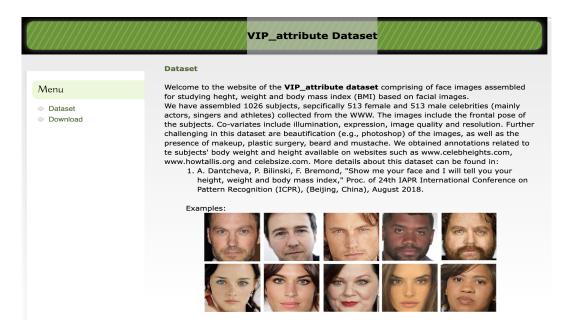


Figure 2: VIP Attribute Dataset

3. UTKFace Large Scale Face Dataset ,Link: https://susanqq.github.io/UTKFace/

Figure 3: UTKFace Dataset

4 Research Workflow and Design

The overall workflow and the methodology followed are shown in Figure 4.

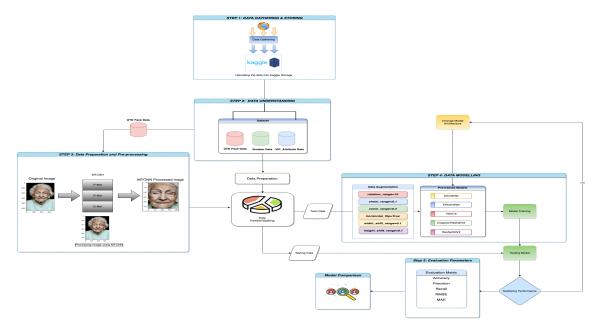


Figure 4: Workflow Diagram

5 Python packages and Libraries used

In this part, I will provide a rundown of all of the packages, Python packages, and thirdparty libraries (if any) utilized in the study. The fact that these packages are freely accessible, will make it easier to reuse the same work and recreate it. Table 2 shows the list of all the libraries used.

Python Library Name	Description
OS	This is used in order to create folders and manage files and directories
	It displays a message but runs. Warning messages are shown using
warnings	the "warning" module's warn() method. Python's built-in class
	Exception is the warning module's superclass.
pandas	Python data analysis programming language. Its data
panuas	structures and actions alter numerical tables and data series.
	NumPy, a Python package, supports massive,
numpy	multi-dimensional arrays and matrices and a
	large number of high-level mathematical functions.
cv2	This is open-source computer vision library.
tqdm	The Python module tqdm creates progress metres and bars.
matplotlib.pyplottqdm	For plotting graphs
	Input, Conv2D , BatchNormalization, Activation, MaxPool2D,
tensorflow.keras.layers	$\label{eq:upSampling2D,Concatenate,MaxPooling2D,} UpSampling2D,Concatenate,MaxPooling2D,$
	Dropout, Flatten, Dense, Global Average Pooling 2D
sklearn.model_selection	train_test_split
skimage.transform	used for image transformation
sklearn.metrics	classification_report, confusion_matrix
mlxtend.plotting	plot_confusion_matrix
tensorflow.keras.applications	ResNet50V2, VGG16, DenseNet201, EfficientNetB7, InceptionResNet50V2
tensorflow.keras.preprocessing.image	ImageDataGenerator
tensorflow.keras.callbacks	ModelCheckpoint,ReduceLROnPlateau
tensorflow.keras.models	Model
skimage.transform	resize
MTCNN	mtcnn

Table 2: List of Python packages and libraries used in the research

6 Data Pre-processing Code and Image Data Generators Code

Below are images of all the data processing steps. Here. Figure 5 and 6 shows the code for first converting the UTKFace dataset images into pre-processed one using MTCNN(a library that is useful in grasping the face alignment and face extraction).

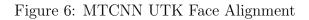

С	Jup	oyte	r	utk-	mtc	nn-	oroce	ssing	i-ima	ages La	ist Ch	eckpo	oint: 1	1 ho	urs a	ago	o (aut	tosave	ed)											2		Log	pout
File	0	Edit	V	iew	Ins	sert	Cell	Ker	nel	Widget	s	Help															Trusted	1	F	Python 3	(ipy	kerni	el) C
8	+	9<	ත	ß	٠	÷	► Ru	•	c	₩ Coo	ie .		~																				
Γ	In	(1):	wa	rni	ngs.	filt	erwarr			nore") rt resi	ze																						
	In	[2]:	in in in fr	por por por on	ma ma cv os qdm	tplc tplc 2 imp	port M tlib.p tlib cnt tç CNN()	yplot	as	plt																							
			wi ic	th ons:	oneA AV	PI C X2 F	eep Ne MA	ural	Netv	I tens work Li rations	brar	у (с	oneDi	an)	to	us	se ti	he fo	ollow	ring	CPU	J ins	truc	tions	in	perfo							
	In	[3]:		les			stdir(08.01	nrdin	:)																							
			ť,	.DS	Sto	re',	'utk-	mtcni	n-pro	ocessin	g-im	nages	.ip	nb'	, ·	'UT	TKfad	ce_in	nthew	/ild'	· ·	.ipy	nb_cl	heck	point	s']							
	In	[7]:	pl	t.i	sho	w(im				nd ("UTK	face	_int	hew:	11d/	par	rt3	3/1_0	0_1_2	20170	1171	1300	4801	3.jp	g"),	cv2.	COLOF	_BGR2	RGB)				
			1/ 1/ 1/ 1/ 1/ 1/ 1/ 4/	1 [1 [1 [1 [1 [1 [4 [=1 - =1 - =1 - =1 - =1 - =1 -	05 08 08 08 08 05 05 05 05	75m 16m 15m 13m 14m 14m 14m 4ms	s/st s/st s/st s/st s/st s/st /ste	ep ep ep ep ep																		

Figure 5: MTCNN UTK Face Alignment

Figure 7 shows the code which I have developed for generating the images based on the CSV data available. When performing model building image data generators are useful for such operation.

The overall exploratory analysis performed is shown in Figure 8.

	Part-2	
In [36]:	<pre>path = r"UTKface_inthewild/part2" files = os.listdir(path)</pre>	
	files = os.fistdif(path)	
In [37]:	for f in tqdm(files):	
	try:	
	<pre>img = cv2.cvtColor(cv2.imread(path+"/"+f), cv2.COLOR_BGR2RGB) d = detector.detect faces(img)</pre>	
	if (len(d)>0):	
	$\mathbf{x}, \mathbf{y}, \mathbf{w}, \mathbf{h} = \mathbf{d}[0]["box"]$	
	x1 = resize(imq(y;y+h, x;x+w;z), (224, 224))	
	<pre>matplotlib.image.imsave("Preprocessed_images/Part-2/"+f, x1)</pre>	
	except:	
	pass	
	1/1 [] - 0s 16ms/step	7
	1/1 [========================] = 0s 18ms/step	
	2/2 [===================================	
	I/I [===================================	
	75% 8015/10719 [1:42:09<35:45, 1.26it/s]	
	1/1 [] - 0s 48ms/step	
	1/1 [=====] - 0s 30ms/step	
	1/1 [=====] - 0s 23ms/step	
	1/1 [] - 0s 20ms/step	
	1/1 [] - 0s 21ms/step	
	1/1 [=========================] - 0s 17ms/step	
	1/1 [
	1/1 [] - 0s 1/ms/step	
	1/1 [
	//1 [] - 0s 17ms/step	
	2/2 [] - 00 5 5ms/step	


```
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# data augmentation like rotation, shearing , horizontal filp
# normalization step also included in this data generator
traindatagen= ImageDataGenerator(
    rotation_range=15,
    shear_range=0.1,
    zoom_range=0.2,
    horizontal_flip=True,
    width_shift_range=0.1,
    height_shift_range=0.1
)
train_generator = traindatagen.flow_from_dataframe(
   train,
   x_col='FileName',
   y_col='Label',
   target_size=(224,224),
   color_mode='rgb',
   class_mode='binary',
   classes=['NO SMOKE', 'SMOKE'],
    batch_size=8
)
testdatagen = ImageDataGenerator()
test_generator = testdatagen.flow_from_dataframe(
   validate,
   x_col='FileName',
   y_col='Label',
   target_size=(224,224),
   class_mode='<mark>binary</mark>',
   color_mode='<mark>rgb</mark>',
   batch_size=8,classes=['NO_SMOKE', 'SMOKE'],
)
```

Figure 7: Image Data Generators Code

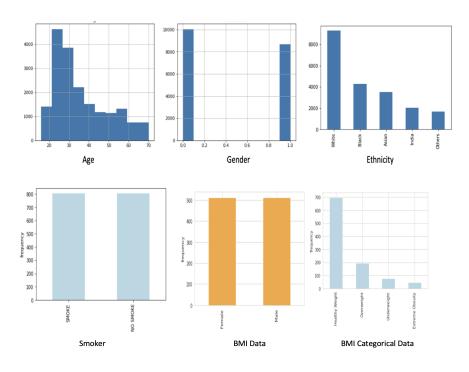


Figure 8: Exploratory Data Analysis

7 Model Implementation Code

7.1 Smoker or Non-Smoker Classification

In this section, some code snippets are attached for reference as shown in Figure 9 and 10 which shows the model building for Smoke Classification Problem using EfficientNetB7.

Model Building

Figure 9: Smoker Model Building

Figure 11 shows the Model summary for Smoker Classification problem using EfficientNetB7.

```
input_layer = Input(shape=(224, 224, 3)) # input layer with 224,224,3
model_layer = efficientNetB7(input_layer) # passing input layer to dense layer
model_layer = GlobalAveragePooling2D()(model_layer) # global average pooling
model_layer = Dense(256, activation='relu')(model_layer)# dense layer with 256 neurons and relu
activation
model_layer = Dropout(0.25)(model_layer)# drop out layer with drop out rate of 0.25 to avoid ov
erfitting
model_layer = BatchNormalization()(model_layer) # batch norm alization to speed up the training
process
model_layer = Dense(128, activation='relu')(model_layer) #dense layer with 128 neurons and relu
activation
```

output = Dense(1,activation = 'sigmoid')(model_layer)#dense layer with 1 neurons and sigmoid ac tivation

model = Model(input_layer,output)

Figure 10: Smoker Model Building

model.summary()		
Model: "model"		
Layer (type)	Output Shape	Param #
input_2 (InputLayer)	[(None, 224, 224, 3)]	0
efficientnetb7 (Functional)	(None, None, None, 2560)	64097687
global_average_pooling2d (Gl	(None, 2560)	0
dense (Dense)	(None, 256)	655616
dropout (Dropout)	(None, 256)	0
batch_normalization (BatchNo		1024
	(None, 128)	32896
	(None, 1)	129
Total params: 64,787,352 Trainable params: 689,153 Non-trainable params: 64,098		

Figure 11: Smoker Model summary

7.2 BMI Identification

For the second experiment, i.e BMI Identification the model-building steps are shown in Figure 12 and 13. As seen, first various libraries were imported namely from the TensorFlow layers package, then we added input layers and various model layers.

Model Building

In [12]:	from tensorflow.keras.layers import Input, Conv2D, BatchNormalization, Activation, MaxPool2D, UpSampling2D, Concatenate,MaxPooling2D,Dropout,Flatten,Dense,GlobalAveragePooling2D from tensorflow.keras.models import Model from tensorflow.keras.utils import plot_model import tensorflow as tf #importing requried tensorflow packages and modules
In [13]:	from tensorflow.keras.applications import EfficientNetB7 efficientNetB7 = EfficientNetB7(weights='imagenet', include_top=False) # densenet201 pretrained
	model loading by discarding to layer that is nothing but a softmax layer
	model robaring by accountanty cop rayer that to nothing but a solumax rayer
In [15]:	<pre>input_layer = Input(shape=(224, 224, 3)) # input layer with 224,224,3 model_layer = efficientNetB7(input_layer) # passing input layer to dense layer model_layer = GlobalAveragePooling2D()(model_layer) # global average pooling model_layer = Dense(256, activation='relu')(model_layer)# dense layer with 256 neurons and relu activation model_layer = Dropout(0.25)(model_layer)# drop out layer with drop out rate of 0.25 to avoid ov erfiting model_layer = BatchNormalization()(model_layer) # batch norm alization to speed up the training process model_layer = Dense(128, activation='relu')(model_layer) # dense layer with 128 neurons and relu activation</pre>
In [16]:	<pre>output = Dense(1,activation = 'linear')(model_layer)#dense layer with 1 neurons and linear acti vation</pre>
In [17]:	<pre>model = Model(input_layer,output)</pre>

Figure 12: BMI EfficientNetB7 Model Building Steps

model.compile(loss=' <mark>mse</mark> ', opt f.keras.metrics.MeanAbsoluteE model.summary()		f.keras.metrics.RootMeanSquaredError(),1
Model: "model"		
Layer (type)		Param #
input_2 (InputLayer)		
efficientnetb7 (Functional)	(None, None, None, 2560)	64097687
global_average_pooling2d (Gl		0
dense (Dense)	(None, 256)	655616
dropout (Dropout)	(None, 256)	0
batch_normalization (BatchNo	(None, 256)	1024
dense_1 (Dense)	(None, 128)	32896
dense_2 (Dense)		129
Total params: 64,787,352		
Trainable params: 689,153	100	
Non-trainable params: 64,098,	199	

Figure 13: BMI EfficientNetB7 Model summary

7.3 Gender Classification (male or female)

For the third experiment, i.e Gender Classification (male or female) the model-building steps are shown in Figure 14. As seen, first various libraries were imported namely from the TensorFlow layers package, then we added input layers and various model layers. Then, in Figure 15 shows the model summary after adding input dense layers, and also, the data frame is used with ImageDataGenerator() to produce the images.

```
Model Building
 In [17]:
          from tensorflow.keras.layers import Input, Conv2D, BatchNormalization, Activation, MaxPool2D,
          UpSampling2D, Concatenate, MaxPooling2D, Dropout, Flatten, Dense, GlobalAveragePooling2D
          from tensorflow.keras.models import Model
          from tensorflow.keras.utils import plot_model
          import tensorflow as tf
 In [18]:
          from tensorflow.keras.applications import EfficientNetB7
          pre_model = EfficientNetB7(weights='imagenet', include_top=False)
          2022-12-10 11:59:40.282640: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] suc
          cessful NUMA node read from SysFS had negative value (-1), but there must be at least one N
          UMA node, so returning NUMA node zero
          2022-12-10 11:59:40.375921: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] suc
          cessful NUMA node read from SysFS had negative value (-1), but there must be at least one N \,
          UMA node, so returning NUMA node zero
          2022-12-10 11:59:40.376697: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] suc
          cessful NUMA node read from SysFS had negative value (-1), but there must be at least one N
In [19]:
         for x in pre_model.layers:
            x.trainable = False
In [20]:
         input layer = Input(shape=(224, 224, 3)) # input layer with 224,224,3
         model_layer = pre_model(input_layer) # passing input layer to dense layer
         model_layer = GlobalAveragePooling2D()(model_layer) # global average pooling
         model_layer = Dense(256, activation='relu')(model_layer)# dense layer with 256 neurons and relu
         activation
         model_layer = Dropout(0.25)(model_layer)# drop out layer with drop out rate of 0.25 to avoid ov
         erfitting
         model_layer = BatchNormalization()(model_layer) # batch norm alization to speed up the training
         process
         model_layer = Dense(128, activation='relu')(model_layer) #dense layer with 128 neurons and relu
         activation
In [21]:
         output = Dense(1, activation = 'sigmoid') (model_layer)#dense layer with 1 neurons and sigmoid ac
         tivation
In [22]:
         model = Model(input_layer,output)
```

Figure 14: Gender Classification (Male or Female) EfficientNetB7 Model Building Steps

Model Summary

cs.Rec	<pre>compile(loss='binary_cr all(),tf.keras.metrics. summary()</pre>	ras.metrics.Precision()])								
Model	"model"									
	(type)	Output \$		Param #						
			224, 224, 3)]							
effici	entnetb7 (Functional)			60) 64097687						
global	_average_pooling2d (Gl	(None, 2	2560)	0						
dense	(Dense)	(None, 2	256)	655616						
dropou	it (Dropout)	(None, 2	256)	0						
batch_	normalization (BatchNo	(None, 2	256)	1024						
dense_	.1 (Dense)	(None,	128)	32896						
dense	2 (Dense)	(None,	1)	129						
Traina	tal params: 64,787,352 ainable params: 689,153 n-trainable params: 64,098,199									
Epo Epo 261 reo	cch 00099: val_loss did icch 100/100 /261 [====================================	not imp n: 0.901	=====] - 275s	: 1s/step - loss: 0.						
Epc 261 rec 0.8	ch 00099: val_loss did ch 100/100 /261 [====================================	not imp n: 0.901 .8876	=====] - 275s 3 - val_loss:	: 1s/step - loss: 0. 0.2907 - val_accura						
Epc 261 rec 0.8 Epc 35]:	ch 00099: val_loss did ch 100/100 /261 [====================================	not imp n: 0.901 .8876 not imp	=====] - 275s 3 - val_loss: rove from 0.26	: 1s/step - loss: 0. 0.2907 - val_accura 0000						
Epc Epc 261 rec 0.8 Epc 35]: mod	cch 00099: val_loss did cch 100/100 /261 [not imp n: 0.901 .8876 not imp	=====] - 275s 3 - val_loss: rove from 0.26	: 1s/step - loss: 0. 0.2907 - val_accura 0000						
Epc 261 rec 0.8 Epc 35]: mod	cch 00099: val_loss did cch 100/100 /261 [not imp n: 0.901 .8876 not imp	=====] - 275s 3 - val_loss: rove from 0.26	: 1s/step - loss: 0. 0.2907 - val_accura 0000						
Epc Epc 261 rec 0.8 Epc 35]: mod	ch 00099: val_loss did ch 100/100 //261 [not imp n: 0.901 .8876 not imp	=====] - 275s 3 - val_loss: rove from 0.26 entnetb7(w).h5	: 1s/step - loss: 0. 0.2907 - val_accura 0000	cy: 0.8895 - val_re					
Epc 261 rec 0.8 Epc 35]: mod]: train a]:	<pre>ch 00099: val_loss did ch 100/100 /261 [====================================</pre>	not imp n: 0.901: .8876 not imp	=====] - 275s 3 - val_loss: rove from 0.26 entnetb7(w).h5	: 1s/step - loss: 0. 0.2907 - val_accura 0000 '')	cy: 0.8895 - val_re					
Epc 261 rec 0.8 Epc 35]: mod]: train s]: 3267	hch 00099: val_loss did hch 100/100 /261 [not imp n: 0.901: .8876 not imp r_efficio	=====] - 275s 3 - val_loss: rove from 0.26 entnetb7(w).h5 FileName -1/18 18_1_0_	: 1s/step - loss: 0. 0.2907 - val_accura 0000 (')	cy: 0.8895 - val_re Label Female					
Epc 261 rec 0.8 Epc 35]: mod]: train 3]: 3267 1216	ch 00099: val_loss did ch 100/100 /261 [====================================	not imp n: 0.901: .8876 not imp r_efficio Part-1/Part- Part-1/Part-	=====] - 275s 3 - val_loss: rove from 0.26 entnetb7(w).h5 	: 1s/step - loss: 0. 0.2907 - val_accura 0000 '') e 20170109212818755.jpg 0161219230259272.jpg	Label Female					
Epc 251 rec 0.8 Epc 35]: mod]: train 3]: 3267 1216 4597	<pre>ch 00099: val_loss did ch 100/100 /261 [====================================</pre>	not imp n: 0.901: .8876 not imp r_efficio Part-1/Part- Part-1/Part- Part-1/Part-	FileNamu -1/18 18_1_0_ -1/3_1 3_1_3_2 -1/65 65_1_0_	<pre>: 1s/step - loss: 0. 0.2907 - val_accura 0000 '') e 20170109212818755.jpg 0161219230259272.jpg 20170110160643923.jpg</pre>	Label Female Female					
Epc 261 rec 0.8 Epc 35]: mod]: train 3]: 3267 1216 4597 14670	<pre>ch 00099: val_loss did ch 100/100 /261 [====================================</pre>	not imp n: 0.901: .8876 not imp r_efficio Part-1/Part- Part-1/Part- Part-1/Part- Part-2/Part-	FileNam. 1/18 18_1_0 -1/3_1 3_1_3_2 -2/31 31_0_0_	<pre>: 1s/step - loss: 0. 0.2907 - val_accura 0000 '') e 20170109212818755.jpg 0161219230259272.jpg 20170110160643923.jpg 201701101160643923.jpg</pre>	Label Female Female Mate					
Epc 261 rec 0.8 Epc 35]: mod]: train 3]: 3267 1216 4597 14670 16973	<pre>ch 00099: val_loss did ch 100/100 /261 [====================================</pre>	not imp n: 0.901: .8876 not imp r_efficio Part-1/Part- Part-1/Part- Part-1/Part- Part-2/Part-	FileNam. 1/18 18_1_0 -1/3_1 3_1_3_2 -2/31 31_0_0_	<pre>: 1s/step - loss: 0. 0.2907 - val_accura 0000 '') e 20170109212818755.jpg 0161219230259272.jpg 20170110160643923.jpg</pre>	Label Female Female Male					
Epc 261 rec 0.8 Epc 35]: mod]: train]: train 3267 1216 4597 14570 16973 	ch 00099: val_loss did ch 100/100 //261 [not imp n: 0.901: .8876 not imp r_efficio Part-1/Part Part-1/Part Part-2/Part Part-2/Part	FileNamm. FileNamm. 1/18 1/18 1/18 1/2.1 3.1.3.22 1/65 5.10.0. 2/43 43.0.3	<pre>s 1s/step - loss: 0. 0.2907 - val_accura 0000 '') e 20170109212818755.jpg 0161219230259272.jpg 20170117175718891.jpg 2017011727518891.jpg 201701112220309502.jpg</pre>	Label Female Female Male 					
Epc 261 rec 0.8 Epc 35]: mod]: train]: train]: 1216 4597 14670 16873 18727	ch 00099: val_loss did ch 00099: val_loss did /261 [====================================	not imp n: 0.901: .8876 not imp r_efficit Part-1/Part Part-1/Part Part-2/Part Part-2/Part	FileNam FileNam FileNam 1/18 18_1_0 -1/3_1 3_1_3_2 -1/65 65_1_0 -2/31 31_0_3 -2/23 43_0_3 	<pre>: 1s/step - loss: 0. 0.2907 - val_accura 0000 '') e 20170109212818755.jpg 0161219230259272.jpg 20170110160643923.jpg 2017011715719891.jpg 2017011715719891.jpg 20170117154523094.jpg</pre>	Label Female Female Male Male					
Epc 261 rec 0.8 Epc 35]: mod]: train 3267 1216 4597 14670 16973 18727 13589	ch 00099: val_loss did ch 00099: val_loss did val: 0.9082 - precision 943 - val_precision: 0 ch 00100: val_loss did el.save_weights('gender h FilePath ./input/urkfacepreprocessed/ ./input/urkfacepreprocessed/ ./input/urkfacepreprocessed/ ./input/urkfacepreprocessed/ ./input/urkfacepreprocessed/ ./input/urkfacepreprocessed/ ./input/urkfacepreprocessed/ ./input/urkfacepreprocessed/ ./input/urkfacepreprocessed/ ./input/urkfacepreprocessed/ ./input/urkfacepreprocessed/ ./input/urkfacepreprocessed/ ./input/urkfacepreprocessed/ ./input/urkfacepreprocessed/ ./input/urkfacepreprocessed/ ./input/urkfacepreprocessed/	not imp n: 0.901: .8876 not imp r_efficie Part-1/Part- Part-1/Part- Part-2/Part- Part-2/Part- Part-2/Part-	=====] - 275s 3 - val_loss: - rove from 0.26 entnetb7(w).h5 - -1/18 18_1_0_ -1/3_1 3_1_3_2 -1/65 65_1_0_ -2/31 31_0_0 -2/43 31_0_0 -2/24 22_0_3 -2/24 24_1_2	<pre>: 1s/step - loss: 0. 0.2907 - val_accura 0000 '') e 20170109212818755.jpg 0161219230259272.jpg 20170110160643923.jpg 20170111715719891.jpg 20170111715719891.jpg 20170117154523094.jpg 201701117154523094.jpg</pre>	Label Female Female Male Male Female Female					
Epc 261 rec 0.8 Epc 35]: mod]: train]: train]: 1216 4597 14670 16873 18727	ch 00099: val_loss did ch 00099: val_loss did /261 [====================================	not imp n: 0.901: .8876 not imp r_efficion Part-1/Part- Part-1/Part- Part-2/Part- Part-2/Part- Part-2/Part- Part-2/Part- Part-2/Part-	FileName FileName FileName 1/18 18_1_0_ 1/13 3_1_3_2 1/05 65_1_0_ -2/31 31_0_0_ -2/31 31_0_0_ -2/42 22_0_3_ -2/22 22_1_3_ -2/24 22_1_2_ -1/14 14_1_0_	<pre>: 1s/step - loss: 0. 0.2907 - val_accura 0000 '') 20170109212818755.jpg 0161219230259272.jpg 20170110160643923.jpg 2017011715719891.jpg 201701112220309502.jpg 20170117154523094.jpg 20170117154523094.jpg 2017011016163702026.jpg 20170110163702026.jpg</pre>	Label Female Female Male Male Female Female					

Figure 15: Gender Classification (Male or Female) EfficientNetB7 Model summary

7.4 Ethnicity Multi-Classification ("White", "Black", "Asian", "India", "Others")

For the fourth experiment, i.e Ethnicity Multi-Classification the model-building steps are shown in Figure 16. As seen, first various libraries were imported namely from the TensorFlow layers package, then we added input layers and various model layers. Then, Figure 17 shows the model summary.

```
In [15]:
          from sklearn.model_selection import train_test_split
          df = df.sample(frac = 1)
          train, test = train_test_split(df, test_size=0.20, random_state=42,shuffle=True)
          train = train.sample(frac = 1)
test = test.sample(frac = 1)
        Model Building
In [16]:
          from tensorflow.keras.layers import Input, Conv2D, BatchNormalization, Activation, MaxPool2D,
          UpSampling2D, Concatenate,MaxPooling2D,Dropout,Flatten,Dense,GlobalAveragePooling2D
from tensorflow.keras.models import Model
from tensorflow.keras.utils import plot_model
          import tensorflow as tf
In [17]:
from tensorflow.keras.applications import DenseNet201
          densenet = DenseNet201(weights='imagenet', include_top=False)
In [18]:
          for x in densenet.layers:
              x.trainable = False
In [19]:
          input_layer = Input(shape=(224, 224, 3)) # input layer with 224,224,3
          model_layer = densenet(input_layer) # passing input layer to dense layer
model_layer = GlobalAveragePooling2D()(model_layer) # global average pooling
model_layer = Dense(256, activation='relu')(model_layer)# dense layer with 256 neurons and relu
           activation
          model_layer = Dropout(0.25)(model_layer)# drop out layer with drop out rate of 0.25 to avoid ov
           erfitting
          model_laver = BatchNormalization()(model_laver) # batch norm alization to speed up the training
          proc
           model_layer = Dense(128, activation='relu')(model_layer) #dense layer with 128 neurons and relu
          activation
In [20]:
          output = Dense(5,activation = 'softmax')(model_layer)#dense layer with 1 neurons and sigmoid ac
          tivation
In [21]:
          model = Model(input_laver.output)
 In [32]:
           from tensorflow.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau
           # defining checkpoints for best epoch model saving and early stopping if there is no improvement
           in learning
           red = ReduceLROnPlateau(monitor='val_accuracy', factor=0.5, patience=5, verbose=1, min_lr=1e-
           checkpoint = ModelCheckpoint('model.h5', verbose=1, save_best_only=True)
           modelhistory = model.fit_generator(
               train_generator,
                epochs=100,
                validation_data=test_generator,
                callbacks=[red, checkpoint]
                )
```

Figure 16: Ethnicity Multi-Classification DenseNet201 Model Building Steps

Model Summary

```
In [22]:
```

loss function is binary cross entropy and optimizer is adam , metrics are accuracy , precision , recall

model.compile(loss='categorical_crossentropy', optimizer="adam", metrics=['accuracy',tf.keras. metrics.Recall(),tf.keras.metrics.Precision()]) model.summary()

Model: "model"

Layer (type)	Output			Param #
input_2 (InputLayer)	[(None	, 224,	224, 3)]	0
densenet201 (Functional)				
global_average_pooling2d (Gl				0
	(None,	256)		491776
dropout (Dropout)				0
batch_normalization (BatchNo	(None,	256)		1024
- ()	(None,			32896
dense_2 (Dense)	(None,			645
Total params: 18,848,325 Trainable params: 525,829				
Non-trainable params: 18,322	, 496			

Figure 17: Ethnicity Multi-Classification DenseNet201 Model summary

7.5 Finding the age of a person

For the last experiment, i.e finding the age of a person the model-building steps are shown in Figure 18. As seen, first various libraries were imported namely from the TensorFlow layers package, then we added input layers and various model layers. Then, Figure 19 shows the model summary.

```
Model Building
In [15]:
         from tensorflow.keras.layers import Input, Conv2D, BatchNormalization, Activation, MaxPool2D,
         \label{eq:upSampling2D} UpSampling2D, \ Concatenate, MaxPooling2D, Dropout, Flatten, Dense, GlobalAveragePooling2D \\
         from tensorflow.keras.models import Model
         from tensorflow.keras.utils import plot_model
         import tensorflow as tf
In [16]:
         from tensorflow.keras.applications import DenseNet201
         densenet = DenseNet201(weights='imagenet', include_top=False)
In [17]:
        for x in densenet.lavers:
            x.trainable = False
In [18]:
        input_layer = Input(shape=(224, 224, 3)) # input layer with 224,224,3
         model_layer = densenet(input_layer) # passing input layer to dense layer
         model_layer = GlobalAveragePooling2D()(model_layer) # global average pooling
         model_layer = Dense(256, activation='relu')(model_layer)# dense layer with 256 neurons and relu
         activation
         model_layer = Dropout(0.25)(model_layer)# drop out layer with drop out rate of 0.25 to avoid ov
         erfittina
         model_layer = BatchNormalization()(model_layer) # batch norm alization to speed up the training
         proces
         model_layer = Dense(128, activation='relu')(model_layer) #dense layer with 128 neurons and relu
         activation
In [19]:
        output = Dense(1,activation = 'linear')(model_layer)#dense layer with 1 neurons and sigmoid act
         ivation
In [20]:
        model = Model(input_layer,output)
n [30]:
        from tensorflow.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau
        # defining checkpoints for best epoch model saving and early stopping if there is no improvement
        in learning
        red = ReduceLROnPlateau(monitor='val_root_mean_squared_error', factor=0.5, patience=5, verbose
        =1, min_lr=1e-3)
        checkpoint = ModelCheckpoint('model.h5', verbose=1, save_best_only=True)
n [31]:
        modelhistory = model.fit_generator(
            train_generator,
            epochs=100,
            validation_data=test_generator,
            callbacks=[red, checkpoint]
            )
```

Figure 18: Age DenseNet201 Model Building Steps

Model Summary

<pre>model.compile(loss='mse', opt f.keras.metrics.MeanAbsolutef model.summary()</pre>				
noder.summary()				
Model: "model"				
Layer (type)	Output	Shape	Param #	
input_2 (InputLayer)	[(None	, 224, 224, 3)]	0	
densenet201 (Functional)	(None,	None, None, 1920)	18321984	
global_average_pooling2d (Gl	(None,	1920)	0	
dense (Dense)	(None,	256)	491776	
dropout (Dropout)	(None,	256)	0	
batch_normalization (BatchNo	(None,	256)	1024	
dense_1 (Dense)	(None,	128)	32896	
dense_2 (Dense)	(None,	1)	129	
Trainable params: 525,313				

Figure 19: Age DenseNet201 Model summary

8 Model Implementation

Figure 20 shows the overall model implementation results, I have run the epochs till 100.

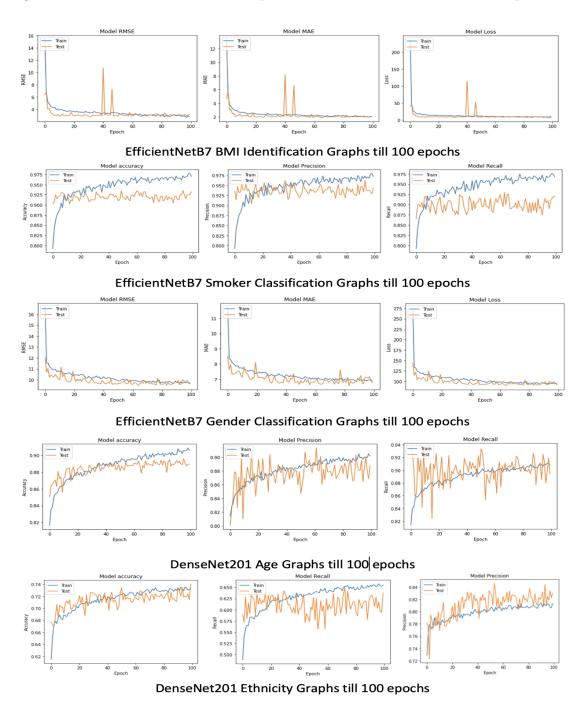


Figure 20: Model Implementation

9 Model Evaluation

Figure 21 shows the overall model evaluation results, as seen for BMI, Smoker and Gender the EfficientNetB7 model performed the best, and for age and DenseNet201 performed the best.

Table 1: BMI results							
Model	RMSE		MAE				
	Test	Train	Test	Train			
EfficientNetB7	3.1871	2.8063	2.0966	2.0118			
DensetNet201	3.3346	3.2611	2.1761	2.2317			
VGG16	3.795	3.6466	2.3436	2.3421			
InceptionResNetV2	3.1795	3.6867	2.1927	2.3738			
ResNet50V2	4.6423	2.9988	3.0637	2.0788			

 Table 2: Evaluation of Smoking Based Binary Classification Results

Model Accuracy		uracy	Prec	ision	Recall	
	Test	Train	Test	Train	Test	Train
EfficientNetB7	92.48%	99.75%	92.52%	99.75%	92.48%	99.75%
DensetNet201	87.72	95.02%	88.15	95.02%	87.71	95.02%
VGG16	83.46%	86.82%	83.45%	87.22%	83.49%	86.82%
InceptionResNetV2	57.89%	56.47%	62.93%	61.44%	57.97%	56.47%
ResNet50V2	89.72%	98.01%	90.10%	98.01%	89.71%	98.01%

Table 3: Evaluation of Age Results

Model	RMSE		MAE			
	Test	Train	Test	Train		
EfficientNetB7	20.0096	20.351	15.4478	15.5997		
DensetNet201	9.6027	9.6719	6.7815	6.8777		
VGG16	12.0148	12.4385	9.0947	9.14		
InceptionResNetV2	19.8154	19.1108	16.1248	14.8278		
ResNet50V2	19.9665	19.1297	15.5431	14.7911		

Table 4: Gender Based Binary Classification Results

Model	Accuracy		Precision		Recall	
	Test	Train	Test	Train	Test	Train
EfficientNetB7	89.02%	93.99%	89.02%	93.99%	89.02%	93.99%
DensetNet201	87.19%	89.44%	87.25%	89.49%	87.18%	89.47%
VGG16	77.15%	78.04.%	78.09%	79.22%	77.09%	78.17%
InceptionResNetV2	54.76%	55.07%	56.33%	57.49%	54.75%	55.39%
ResNet50V2	71.34%	72.96%	76.08%	77.15%	71.86%	73.08%

Table 5: Multi class Ethnicity classification Results

I

Model	Accu	iracy	Prec	ision	Recall	
	Test	Train	Test	Train	Test	Train
EfficientNetB7	43.22%	45.01%	47.01%	48.71%	48.96%	42.97%
DensetNet201	74.05%	77.21%	65.09%	73.71%	58.96%	62.97%
VGG16	49.21%	64.59%	22.37%	75.41	83.57%	52.64%
InceptionResNetV2	47.62%	48.31%	58.20%	58.56%	49.60%	48.90%
ResNet50V2	51.66%	56.78%	61.57%	67.69%	32.34%	40.70%

Figure 21: Model Evaluation Results