
Application of Graph Theory on
Dublin Airport Management

Laxman Singh Doliya
ID:20244665

Research Project
MSCDAD JAN22 A

Dec 2022

Abstract

The airport management face operational challenges with the growth in
the number of passengers, limited infrastructure, congestion in terminals,
and increasing prices. Although significant progress has been made in the
field of passenger analytics such as identifying crowds in the airport and
predicting the inflow of passengers, but real-time management congestion
in airports remains an ongoing problem. The deep learning methodolo-
gies combined with graph theory applications can be applied to tackle the
problem of managing crowds in the airport. The cognitive abilities of deep
learning methodologies identify the formation of crowds and graph theory
is used to provide a solution to manage the crowds by converting the airport
space into a two-dimensional graph. In this research paper, the research pro-
poses a hybrid solution to manage the crowds using the CSRNet algorithm
to identify the density of the crowds and then using the A* path-finding al-
gorithm to provide the optimal path for the passengers to reach from source
to destination. A simulation model verifies the effectiveness of the proposed
solution. The proposed solution creates an intelligent solution that provides
a dynamic path based on the density of the crowd within a given region.
This research will enable the authorities of Dublin airport to better manage
the crowd and thereby provide outstanding services to the passengers using
the airport facilities.

1



1 Introduction
As the demand for air transport increases, the need for the management of airport
processes becomes essential for the well-being of the aviation industry. One of
the crucial aspects of airport management is the management of passengers trav-
eling through the airport. The airport is constrained by tangible resources like the
space inside the airport, the number of airport personnel, and the number of flights
scheduled, and intangible resources like weather conditions, long weekends, and
holiday seasons. The huge influx of passengers exerts pressure on management
as the resources are limited and therefore the quality of service degrades as the
number of passengers increases. The decision-making process in airport manage-
ment is made swift by the use of real-time data from the airport. The Heathrow’s
Airport Operation Centre of the Heathrow airport in London deployed real-time
analytics using machine learning (Guo et al. 2020) to model passenger flows in
an airport. The study supports how the use of predictive algorithms and data flow
can help influence better decision-making. The study claims that Group ADP (for-
merly Aeroports De Paris) contacted the Heathrow’s Airport Operation Centre to
replicate the solutions at Charles de Gaulle, Orly Airport, and Le Bourget Airport.

As per the report (OxfordEconomics 2018, p. 2), over the next five years,
the number of passengers using Dublin Airport is anticipated to climb more fast,
rising by an additional 1.7 million to 62.5 million until 2050. The report (Ox-
fordEconomics 2018, p. 4) highlights the need for additional capacity to meet the
demands by the year 2050 and a possible need for a new terminal (OxfordEco-
nomics 2018, p. 100). The report however does not address the solutions that can
be used to tackle the current situation as described in news article (Elton 2022),
that is, using real-time data analytics to manage the crowd seamlessly with re-
sources at hand.
The previous research utilized real-time data-driven analytics to provide a de-
scriptive view of crowd management such as the formation of crowds at certain
areas within the airport, the expected number of passengers, and automated re-
porting. The previous research lacked in providing solutions to the problems in
real time. The research aims to provide a solution to crowd managementreal-time
the graph theory algorithms to provide the optimal path for passengers based on
real-time data and ensure that no adjacent boarding stations have simultaneous
take-off or landing scheduled for those boarding stations. A convolution neural
network using CSRNet (Congested Scene Recognition Network) is used to iden-
tify the density of the crowds, the A* path-finding algorithm is used for getting the
optimal path from a giver source to the desired destination, and the graph coloring
algorithm to assign different colors to the boarding gates so that no adjacent gates
have passengers coming at the same time.

The results of the research are affected by the number of people arriving at

2



the airport, the quality of images provided by the cameras of the airport, and the
effectiveness of the simulation model to replicate the actual scenario.
Research Question Can a hybrid data mining model combining crowd density
detection and graph theory algorithms be used to find the optimal path in crowd-
congested areas inside the airport?
The objectives of the research is to:

• Design a CSRNet model to identify the group of crowds in the airport.

• Design an OpenCV method to convert the density map images to grid-graph
representation.

• Implement the A* path-finding algorithm to find the optimal path.

• Implement a graph coloring algorithm so that no adjacent boarding gates
have passengers arriving at the same time.

The research has a limitation where it is not able to provide an optimal path in
scenarios where all the source and destination paths are choked by the formation
of crowds and where the manual intervention of airport management authorities
is required.
The research does not have access to the actual data of the Dublin airport therefore
the number of passengers is created using statistical distribution functions based
on monthly passenger data available on the website of the Dublin airport. Simi-
larly, for the image data, the research has used the data available on the internet
for the congested place. The research aims to provide a near real-life scenario of
the airport.
The major contribution of the research is to propose an implementation of a hy-
brid solution by using crowd image data with CSRNet and the A* path-finding
algorithm to provide the optimal path to manage the crowds within the airport.
The research paper is divided into sections and each section serves as an aid to
understand the whole research. The Literature Review section discusses the pre-
vious research done in the particular area. The Research Methodology discusses
in detail CSRNet and A* path-finding algorithm and the rationale behind choosing
them in the research. The Design and Implementation specification deals with the
infrastructure required to replicate the research. The Evaluations section discusses
the use of a simulation model in verifying the advantage of using the proposed
hybrid solution. The results and advantages are summarized in the Conclusion
section.

3



2 Literature Review
When many people gather in one area, there are considerable vulnerabilities that,
if not adequately managed, could have significant effects. Prior research (Still
et al. 2020) discussed the process of crowd science and describe a methodology
for crowd safety issue(s) in congested environments. The researchers divided the
research into three sections namely, crowd modeling, crowd counting, and crowd
monitoring and management. This research used the Canary Wharf Project as a
case study where the research proposed the circulation movement of people in the
event. In this research, simulation models were used to mimic the crowd scenar-
ios. Visual-based crowd-counting models were used to obtain the demographics
of the crowd. Therefore this research provides a solid foundation for addressing
the management of crowds.
The research (Widera & Hellingrath 2020) discussed the present-day trends and
upcoming challenges. The research highlights two major issues, that are, differ-
ent components of the project are independent but have different goals and the
solutions are guided by protocols that are pre-existing and the structures for the
solution cannot be prepared immediately. These two issues are major issues that
are common to almost every problem that requires a complex solution. The use of
real-time data helps in providing solutions for businesses as they happen.

2.1 Crowd Density Detection
The research (Li et al. 2018, p . 1092-1093) discusses the different categories
of crowd estimation techniques namely, detection-based, regression-based, and
density-based approaches. While the detection-based approach fails for highly
congested areas and the regression-based approach fails due to inaccurate pre-
dictions arising due to different counts of people for the same geometric area,
the detection-based approach overcomes the issue by learning the relationship be-
tween local features and object density maps. In our research, a density-based
approach is used as the goal of the research is to obtain the optimal path by navi-
gating through the crowd. The density maps give us the spread of crowds within
the airport. The research proposed a state-of-the-art deep convolutional neural
network called CSRNet (Congested Scene Recognition). Due to the ability of
CSRNet to output density maps along with the estimate of the number of people
in crowds, CSRNet is used in our research.
The images and/or videos collected by cameras vary in scale. The research (Kuch-
hold et al. 2018) provided a solution that uses FAST (Features from Accelerated
Segment Test) which is a corner detection technique to overcome the scale varia-
tion issue. The use of FAST features is a smart idea as it overcomes the variation
due to the angle of the cameras. The FAST required high-resolution images for

4



training and since it is a corner detection technique, the objects require a stark
difference in pixel intensities. The airport areas have varied lighting in different
areas and therefore in areas that are not well illuminated, the pixels do not vary
drastically.
The research (Zhao et al. 2019) discussed problems like scale variation, clutter
background, and global count for crowd estimation models. The size of humans
near to camera is larger as compared to the ones at the background. Thus, there is
a difference in densities in images which cannot be addressed using a single math-
ematical model. The idea to use the image in segments is a divide-and-conquer
approach that allows CNN to learn features in a better way. This is an advantage
for our CNN model as it makes the model aware of the intra-variation within the
image of the crowd.
The refinement of density maps is discussed in the research (Wan & Chan 2019).
The researcher used three techniques to refine the density maps namely, gaussian
blurring, self-attention, and fusion. The advantage is that the density maps could
be directly generated without having to use intermediate ground truth data. This
reduces the training period for the crowd estimation models.
Another variation of CSRNet, called Soft-CSR is discussed in the research (Bak-
our et al. 2021). The frontend CNN has a VGG16 layer that is a pre-trained
model. But the backend model has 5 layers of convolution. The little variation in
the backend layer leads to the creation of a model that has less time complexity.
The research (Papaioannidis et al. 2021) discussed the use of semantic segmen-
tation and image-to-image translation for crowd detection by UAVs. Semantic
segmentation is used to learn about spatial information which is essential for con-
tinuous video feeds. The advantage of using this approach is that it can be utilized
in areas of airports that have large spaces and the distance from the camera to
passengers is quite large.

2.2 Path Finding: Graph Theory
The research (Goldberg & Harrelson 2003) discussed the A* path-finding algo-
rithm and compared it to the classic Dijkstra algorithm. The research also includes
landmarks in the graph that are nodes lying in the path of the source node to the
destination node. Since the A* algorithm takes into account the cost to select the
optimal path, the research selects the A* algorithm to find out the best path in our
research.
The graph theory can be used for finding the paths for the internet of vehicles, as
discussed in (gan Zhang et al. 2019). The use of dynamic links is adequate in this
research and is replicated in our research where the different paths between source
and destination depend on the formation of crowds within the airport.
Another use of the path-finding algorithm for robots using the graph theory is dis-

5



cussed in (Cheng et al. 2019). The research deployed the Dijkstra algorithm with
backtracking to feed the path to the robot. The graph is generated using a grid
approach where the obstacles are non-path blocks within the grid. Unlike conven-
tional graphs, which have directed nodes between nodes, the grid act as a link.
Additionally, the cost of movement is calculated by multiplying the unit cost of
moving from one grid block to another adjacent block with the number of blocks
traveled.
The research (Song et al. 2019) discussed the advantage of using smoothed A* al-
gorithm. The (Song et al. 2019, p . 11) highlights the disadvantages of the A* algo-
rithm such as a huge number of sharp turns in the proposed path. Path smoothing
techniques namely, line-of-sight path smoother, waypoint refining path smoother,
and interpolation path smoother were used in the research. The advantage of us-
ing smoothing is that it provides a path that is easier to travel and collisions can
be avoided on sharp turns.
The research (Zhong et al. 2020) discussed another approach to provide a collision-
free path by using an adaptive window approach with the A* algorithm. The ad-
vantage of an adaptive window is that it searches for all possible angles at which
the next step is to be taken. An angle that provides a smooth path is chosen. The
angle selected also provides the change in velocity required.

2.3 Graph Coloring Algorithm
The research (Giorgetta et al. 2006) explained the use of graph coloring with back-
tracking for Filed Programmable Gate Array systems that hot-swap application-
specific modules without distracting other operations. Backtracking minimizes
the number of colors that are used to color by revisiting the previous color assign-
ment and assigning the color to the current node if a swap can help to choose an
already used color instead of new color. The backtracking although reduces the
number of colors, but backtracking can take a long time especially when the graph
has a depth.
The use of graph coloring for flight gate assignment for an entire terminal has been
discussed in the research (Li et al. 2019). The use of flight time conflicts and flight
assignment difficulty coefficient provides a realistic scenario. The research used
constraints like a safety interval of 45 minutes between two successive flights and
parking of smaller flights on bigger boarding gates while the converse not being
true.
The research (Das et al. 2020) used deep learning algorithms to approximate the
number of colors for graph coloring problems. An LSTM model is used to pro-
vide a global minimum for the number of colors to color the graph nodes. The
constraints were not considered in the research while applying the LSTM. Hence,
the number of colors provided by the LSTM is sub-optimal.

6



Another research (Stollenwerk et al. 2021), approached the flight gate allocation
problem using the graph coloring algorithm with quadratic binary function with
constraints that follows quantum annealing. The strong point in the research is the
use of partially controlled color exchange that swaps colors in the graph which
is controlled by the nodes adjacent to the current node. The research provides a
minimum number of colors but fails in special cases and thus cannot be used in
all scenarios.

2.4 Simulation
The evacuation of a school using agent-based simulation is discussed in the re-
search (Poulos et al. 2018). The research effectively used personal attributes like
differences in speeds of 4-6 years old students and students above 6 years in age,
using Weibull distribution for the arrival of students for evacuation, and reducing
the speed on stairs by 50%. The use of attributes created a realistic simulation
which is further evident in the research when the simulation and actual drill had
near-similar outputs. Thus simulation help as an alternative to implementing the
solution before actually rolling it out.
In their research for the mobile ad-hoc networks under failure processes, the sim-
ulation is used to study the average shortest path length in (Liu et al. 2019, p
. 21352-21356). The use of graphs generated after running the simulations model
gives us a contrast under a different set of conditions. Thus, the advantage of sim-
ulations is different conditions are studied giving us an estimate of the efficiency
of the solution.
The research (Hao et al. 2020) used agents to the efficiency of a navigation model
that provided commands using visuals and natural language. The use of agents al-
lows the researcher to fine-tune the model for a specific layer in the model. It also
allows the extraction of features from a pre-trained model and adds a layer to the
model. The advantage of using agent-based simulation is that it allows us a scope
to make or roll out a change and study its impact before the actual implementation.

3 Research Methodology: Design and Implementa-
tion

The research uses different components that interact with each other in a sequen-
tial manner to provide the best solution. The steps used in the research are:

1. Obtain a map of Dublin airport to find the region of interest for the problem.

7



2. The crowd density estimation model is created using a state-of-the-art con-
volutional neural network: CSRNet. The model identifies the blobs or den-
sities of the crowd within the region of interest.

3. A 2D grid graph combining the map of the region of interest in the airport
and hotspots of crowd density in that region is created using OpenCV. The
goal is to find the best path using grids that do not have any obstacles.

4. The A* algorithm is applied to the grid graph obtained in the above step to
finding the optimal path in the given region.

5. The map of boarding gates is used and converted into an adjacency matrix.
The graph coloring algorithm is applied to assign different colors to the
boarding gates so that no boarding gates adjacent to each other have the
same color. Different color ensures that no adjacent boarding gates are used
as boarding gates simultaneously and allowing free movement of passengers
and lowering the risk of formation of crowds.

Figure 1 shows the flow of the entire research methodology. The research follows
Knowledge Discovery in Databases(KDD) methodology.

Figure 1:
The Research Methodology Flow Chart

3.1 CSRNet: Crowd Density Estimation
In our research, a density-based approach known as CSRNet is used to identify
the number of people in the crowd and generate their density maps.
Dataset: The Shanghai crowd dataset which is a public dataset 1 is used to train

1Dataset Link: https://www.kaggle.com/datasets/tthien/shanghaitech

8

https://www.kaggle.com/datasets/tthien/shanghaitech


the CSRNet model and is obtained from Kaggle (ShanghaiTech Dataset Link).
The dataset appeared first in the research (Zhang et al. 2016) and contains the ac-
tual images of the crowds with the faces of people blurred. The dataset is divided
into two parts. The dataset consists of actual images and ground truth data. The
ground truth(.mat file format) contains information like the (x,y) coordinates of
the head of people in the crowd as on a 2D cartesian plane and the actual number
of people in the corresponding image.
Data Augmentation: Random horizontal flip is used to flip the image within a
probability range. The research used probability range of 0.5 for the random flip.
The paired crop is used to crop images at specific locations. The research used a
factor of 16 to get random cropped areas of size 1/16th of the image.
Design: The model uses a pre-trained VGG16 model for the front end. The back
end is used for back propagation. In its back-propagation, model tries to up-
date the filter values, adjusting them to be more effective at fitting the output and
aiding in learning. In order to train the model, the density maps matrix of the
image are generated. The model learns the relationship between the density maps
matrix and the actual number of people to approximate the number of people in
any given image of the crowd. The basic concept behind the suggested design is
to use a deeper CNN to capture high-level features with broader receptive fields
and produce superior-quality density maps without drastically increasing network
complexity.
Implementation: The first step is to density map for each image in training set.
The ground-truth images contain the coordinates of the head of the people in the
crowd. A gaussian-filter is used on the coordinates of the head of people. The
gaussian filter computes a weighted average of the neighbouring pixels on the ba-
sis of the normal distribution. The research uses a sigma value of 15 that is used
as the size of the kernel. The gaussian filter returns a numpy matrix which is used
to create the density map data.
Model creation and parameters: The research uses a pre-trained VGG16 model
along with transfer learning to train the model with our crowd dataset. To create a
CSRNet model, additional 10 layers are added to the VGG16 model to create the
front end.
The kernel in convolutional layers is used to scan the pixels to convert data into
a smaller or larger format. The padding is added to convolutional layers to assist
the kernel to move more freely over the pixels especially the pixels at the corners
of the image. The stride defines the amount of movement of the kernel.
The dilation is used in the back end of the crowd density estimation model. The
dilation is used because it does not cause a loss in the resolution of the output
image. This is required as the images captured by cameras have differences in the
size of the heads. The people near have large heads as compared to the ones at
the back, thus loss in resolution causes loss of information as well. Dilation has

9

https://www.kaggle.com/datasets/tthien/shanghaitech


an advantage over the max-pooling layer which chooses the pixel with the highest
intensity and thus loses valuable information in the process.
The architecture of the front end is shown in figure 2. The back end of the CSRNet
consists of 6 layers as shown in the figure 3.

Figure 2:
The front end of CSRNet.

Figure 3:
The back end of CSRNet.

10



The model is trained root mean square loss function that adjusts the weights of
the hidden layers. The research trained our model for 30 epochs and stored the
configuration of the epoch with the lowest Mean Absolute Error. The configura-
tion of the best epoch is then loaded into the CSRNet at a later time to make the
predictions.
Figure 4 shows the actual image and density map returned by our CSRNet model.

Figure 4:
Original Image vs Density Map returned by CSRNet model

3.2 OpenCV to convert density maps to grid graph
The A* path-finding algorithm requires the data in a list of list format with each
element in the list specifying if the position is a path or an obstacle. Therefore,
the researcher converts the image into a grid-type format, where each square in
the grid represents if the square is a path or an obstacle. OpenCV is a python
library that is used for image processing and analysis. The density map returned
by our CSRNet model is an image. The researcher creates the graph using a grid
so that the path provided by the research allows for free movement, similar to how
humans move in reality.
Dataset: The density map images returned by CSRNet.
Design: The design phase starts by reading the image. The crowd density is then
highlighted using image thresholding. Image thresholding is a technique to parti-
tion image into foreground and background. The foreground in our research is the
crowd densities and background is the rest of the image. A threshold value is used
to partition the image. If the value of pixel is image is above the threshold value,
it is given higher intensity so that the pixel has a black color. If it is below the
pixel value it is given white color. The next step is to partition images into smaller
regions. The research computes the average color of the region. If the average is

11



equal to zero, consider it an obstacle. The output is saved to a text file so that it
can be referenced later.
Implementation: The image is read using OpenCV. For image threshold, a thresh-
old value of 200 is used, so that even pixels with light grey color are treated as an
obstacle. The image is partitioned into regions using a nested loop. The NumPy
library’s average function is used to calculate the average value of each region. If
the average is 0, it is considered a crowd or an obstacle, and write the data to a
text file with ’$’ value, and with ’-’ otherwise. The text file is then read line by
line into a list of lists, with each element list representing a square in the grid. Plot
the grid and visualize the grid graph representation.
Figure 5 shows the grid graph obtained. The black squares are the path and the
red squares are the obstacles. For reference, the yellow square in the grid is the
starting position and the white square is the destination.

Figure 5:
Gird Map with Source-Destination

3.3 A* Path-Finding Algorithm
Dataset: The text file containing path and obstacle returned by OpenCV logic.
Design: The choice of movement to a neighboring square in a particular direction
is based on the cost known as F-cost. The F-cost is the summation of two costs
called G-cost and H-cost. The G-cost is the exact distance from the source square
in the grid to the current square. The H-cost is a heuristic cost, which is the exact
opposite of the G-cost. The H-cost is the distance of the current square in the
grid from the destination square. If the algorithm, finds two or more squares with
the same F-cost, the algorithm visits each one of them and looks for the updated
F-costs of its neighboring squares. The method maintains two lists to keep track

12



of the visited squares and unvisited squares. The squares are moved in and out of
the list if the algorithm chooses another square for the movement that provides a
lower F-cost.
Implementation: Initially a class Node which is used to store the coordinates of
each square on the grid and provide a move cost is created. A move cost of 1 is
used for a move from one square to an adjacent square. The possible movement
links are calculated. A link is possible if the square we are moving to is not an
obstacle. A four direction move is used. The eight directions move is not used to
avoid any collision on the edges of the crowd densities. Initially G-cost is set to
zero. With each possible move the G-cost is updated by 1. The research has used
the Manhattan distance to calculate the F-cost. The algorithm chooses the next
square on the basis of the lowest F-cost until it reaches the destination. Figure 6
shows the result obtained to reach point A to point B.

Figure 6:
A* Path to follow

3.4 Flight Gates allocation using Graph Coloring Algorithm
Dataset: The flight gate allocation requires the map of the boarding gates in the
form of an adjacency matrix. A square matrix is created with a dimension equal to
the total number of flight gates, with values in 0 or 1. For a flight gate, for example,
gate A, if gate B and gate D are adjacent to it, put a 1 in their corresponding
location, and the rest are 0 as shown in Figure 7.
Design: The degree for each boarding gate is calculated by finding the number
of adjacent gates to it. Sort the boarding gates in descending order. An iterative
process assigns a color to each gate. The gate in the sorted list is assigned the
first color. A nested loop with an outer loop running for the list of degree-sorted
gates and an inner loop running for the length of the row of the current gate in the
process. For the gate that is now being selected by the outer loop, the loop gives

13



Figure 7:
Terminal 1 and corresponding adjacency matrix

the neighboring gate a color. Each iteration of the loop ensures the adjacent node
has been assigned a different color.
Implementation: The research used boarding gates of T1 of Dublin airport. The
adjacency matrix is created manually. Take six different colors as the terminal
has six flight gates. The degree for each gate is calculated and sorted using the
selection sort. A nested loop assigns the color with the outer loop running for
each row in the matrix and the inner loop for the length of each row. Figure 8
shows the color assigned to each gate.

Figure 8:
Flight Gate Color

4 Evaluation
The efficiency of the proposed model is checked using the simulation model. The
research also evaluates the crowd density model used in the research. The A*
algorithm achieves both optimality and completeness. Optimality refers to the
ability of the algorithm to find the best possible solution. Completeness refers to

14



the ability of the algorithm to find the solution if there exists one. Therefore, the
research cannot evaluate the algorithm on any metric. Similarly, the graph color-
ing algorithm is an NP-complete problem. NP-problem is a problem for which the
solution exists but it does not have a definite polynomial time. The research Garey
& Johnson (1976) discusses the complexity of graph coloring algorithms. How-
ever, due to the simpler design of flight gates in the Dublin airport, the algorithm
is able to find the minimum number of colors easily.

4.1 CSRNet: Evaluation using Mean Absolute Error
The mean absolute error is the average of all the errors returned during the training
phase of the CSRNet model. To evaluate the model, the author only uses forward
propagation layers in the CSRNet. This is because backward propagation layers
are used to adjust the weights of the hidden layer. The specific layers like dropout
and batchnorm layers are turned off. The model.eval() is used to switch off these
layers. The torch.no grad() is used so the model only updates the weights in
the training phase and forgets the gradients as they are not required during the
evaluation of each epoch. For each image used for testing, calculate the error by
subtracting the density value returned by the model from the actual ground truth
density value. This sum value is divided by the total number of test images. Figure
9 shows the execution of epochs until epoch 22 for which our model had the least
mean absolute error.

Figure 9:
MAE of the best epoch 22

15



4.2 Simulation: Evaluation of Research
The path provided by the A* algorithm is verified as optimal by comparing it to
the path provided by another greedy path-finding algorithm. An agent-based sim-
ulation technique is used to compare the paths provided by the A* algorithm and
the greedy path-finding algorithm.
Why Greedy Path-Finding Algorithm for human behavior: The greedy algo-
rithm divides a complex problem into smaller sub-problems. The solution to sub-
problems is found more easily as compared to a large complex problem. These
sub-solutions then are combined for the solution to the complex problem. Instinc-
tively humans behave in a similar manner as discussed in the research (Prasanth
et al. 2020, p . 2831). While navigating through the crowded space, the passengers
try to move into spaces that are more convenient and navigate their path as they
move along into these convenient spaces.
Why Agent-Based Simulation: The agent-based simulation is used to model an
individual who can imitate the behavior using the properties and behavior assigned
to it. Since both the A* algorithm and the greedy algorithm model the path taking
into account the cost of moving, and the crowd formation inside the given region,
the agent-based simulation are best fit to evaluate the research. Furthermore, the
agent-based simulation best capture the dynamic behavior of the pedestrians as
discussed in the research Rozo et al. (2019).
Implementation: The research creates the greedy approach by taking into ac-
count only the G-cost. The G-cost is similar to the one used in the A* star algo-
rithm. Since the G-cost is the distance from the source to the adjacent square in
the grid, the passenger moves into the square that is least far and is not an obsta-
cle. The algorithm then finds the next square with the least distance value. A class
Node is created to create an object that holds attributes of the square of the grid
like its coordinates and the parent that is used to hold the square from proceed-
ing the object in the path. A method is written to check the path provided by the
greedy algorithm so that it does not try to find a path through the crowds in the
region. If so is the case, the path is truncated and the path terminates on the crowd
the path reaches first. This method highlights the case where the greedy algorithm
does not find a path, but rather contributes to the growth of crowd formation. The
researcher created a method that calculates the number of moves taken by the
paths provided by the A* algorithm and the greedy algorithm.
Figure 6 showed us the path returned by the A* algorithm.
Figure 10 shows the path returned by the greedy algorithm which is longer than
the one returned by the A* algorithm. Figure 11 shows the case where the path
returned by the greedy algorithm does not reach the destination but adds to the
crowd.
Figure 12 compares the A* and greedy path-finding algorithms.

16



Figure 10:
The path returned by the greedy algorithm

Figure 11:
The path returned by the greedy algorithm that reaches a crowd

Figure 12:
Comparison of path-finding algorithms

Limitation: The research does not evaluate the crowd-counting model that is able
to detect other objects like flight check-in desks, inquiry desks, luggage, and esca-
lators. Another aspect lacking in the research is checking the width of pathways
and providing a path that penalizes the capacity of pathways. The analysis of im-
ages from the airport is not used as the actual data is not present due to security
reasons. The simulation model lacks the capability to handle the dynamic changes
in the environment like updating the grid graph with the influx of more passengers.

17



5 Experiment
The experiments are conducted to establish the correctness of the path-finding
problem. The researcher conducts three experiments with different crowd scenar-
ios and a different set of sources and destinations for each scenario. The source
in the grid graph is the yellow square and the destination is the white square.
However, while plotting the path both the source and the destination are yellow
squares, and the path is plotted using white squares. The grid has 60 rows and 79
columns of data.

5.1 Experiment 1
Figure 13 shows from left to right, the original image used for the scenario, the
corresponding density map, and the grid graph representation. The start location
for the path is (17,63) and the destination to reach is (7,61). Figure 14 shows the
path returned from the A* algorithm, simulation1, and simulation2 of the greedy
path-finding algorithm.

Figure 13:
Original Image(left), Density Map(middle), and Grid Graph

Representation(right)

Figure 14:
A* Path(left), Simulation 1 path(middle), and Simulation2 path(right)

18



5.2 Experiment 2
Figure 15 shows from left to right, the original image used for the scenario, the
corresponding density map, and the grid graph representation. The start location
for the path is (5,69) and the destination to reach is (33,23). Figure 16 shows the
path returned from the A* algorithm, simulation1, and simulation2 of the greedy
path-finding algorithm.

Figure 15:
Original Image(left) and Density Map(middle) and Grid Graph

Representation(right)

Figure 16:
A* Path(left), Simulation 1 path(middle), and Simulation2 path(right)

5.3 Experiment 3
This is the final experiment conducted for the comparison of the A* and the greedy
path-finding algorithm. This experiment tries to find the path for the start location
to the right and the destination to the left. Figure 17 shows from left to right, the
original image used for the scenario, the corresponding density map, and the grid
graph representation. The start location for the path is (20,45) and the destination
to reach is (0,15). Figure 18 shows the path returned from the A* algorithm, sim-
ulation1, and simulation2 of the greedy path-finding algorithm.

19



Figure 17:
Original Image(left) and Density Map(middle) and Grid Graph

Representation(right)

Figure 18:
A* Path(left), Simulation 1 path(middle), and Simulation2 path(right)

Figure 19 summarizes the result of all the above-conducted experiments. The
index of the image is the index in the folder where test images are kept. The A*
algorithm outperforms the greedy algorithm in all three experiments. The path
provided by the A* algorithm takes less number of moves as compared to the
greedy path. Further, the greedy path contributes to the formation of the crowd.

Figure 19:
Summary of the experiments 1, 2, and 3

20



6 Conclusions and Discussion
The research created a hybrid model using the CSRNet convolutional neural net-
work and A* path-finding algorithm. The research provides the density of crowds
in different regions which is crucial in planning the management of the airport
space in real-time. The research also provides a method to convert an image to
a grid-graph representation. The grid representation makes it easy to implement
graph algorithms on the images. The A* algorithm finds the optimal path con-
necting the source to the destination in minimal steps. For a particular time, the
boarding gates that have been given the same color by the graph coloring algo-
rithm can be scheduled to operate simultaneously, thus avoiding crowd concentra-
tion during flight take-off and landing. The path provided by the A* algorithm can
also be used for robotic and automated guidance systems. The research provides
a methodology that implements a model where the output of one model acts as an
input to another model sequentially. This allows us to provide solutions approxi-
mating artificial intelligence systems.
Due to privacy and security issues, the research however does not collect the
crowd data of the Dublin airport that would have helped in understanding the dy-
namics inside the airport accurately. The images of the airport would have helped
the actual formation of the crowd inside the airport. The grid graph does not ac-
count the obstacles like desks, luggage, escalators, and stairs. The schedule of
airport flights can be taken to put constraints on the graph-coloring algorithm to
suggest gate allocation more accurately. The simulation model lacks the capacity
to capture the influx of passengers and update the graph at regular time intervals.

7 Future Works
The research provides a solution that can be used in applications that require effi-
cient path and resource planning like evacuation from war zones, stadiums, con-
certs, and artificial-intelligence-guided systems such as self-moving cars, drones,
and robots. The virtual-reality-based systems can use path-finding to simulate ex-
ploration and industrial tasks before actually investing in them. The methods to
incorporate the obstacles inside the given region with crowd densities could be
developed to provide a more accurate grid graph for path-finding algorithms.

Acknowledgement
I would like to thank my parents, my professors, and my friends for providing

support and guidance for my research.

21



References
Bakour, I., Bouchali, H. N., Allali, S. & Lacheheb, H. (2021), Soft-csrnet: Real-

time dilated convolutional neural networks for crowd counting with drones,
Institute of Electrical and Electronics Engineers Inc., pp. 28–33.

Cheng, K. P., Mohan, R. E., Nhan, N. H. K. & Le, A. V. (2019), ‘Graph theory-
based approach to accomplish complete coverage path planning tasks for re-
configurable robots’, IEEE Access 7, 94642–94657.

Das, D., Ahmad, S. A. & Kumar, V. (2020), Deep learning-based approximate
graph-coloring algorithm for register allocation, IEEE, pp. 23–32.
URL: https://ieeexplore.ieee.org/document/9307022/

Elton, C. (2022), “hellish queue’ stretches a mile out of dublin airport after
thousands miss weekend flights’.
URL: https://www.euronews.com/travel/2022/05/31/hellish-queues-outside-
dublin-airport-in-the-early-hours-as-passengers-try-not-to-miss-fli

gan Zhang, D., meng Tang, Y., ya Cui, Y., xin Gao, J., huan Liu, X. & Zhang, T.
(2019), ‘Novel reliable routing method for engineering of internet of vehicles
based on graph theory’, Engineering Computations (Swansea, Wales) 36, 226–
247.

Garey, M. R. & Johnson, D. S. (1976), ‘The complexity of near-optimal graph
coloring’, Journal of the ACM (JACM) 23(1), 43–49.

Giorgetta, M., Santambrogio, M., Sciuto, D. & Spoletini, P. (2006), A graph-
coloring approach to the allocation and tasks scheduling for reconfigurable ar-
chitectures, pp. 24–29.

Goldberg, A. V. & Harrelson, C. (2003), ‘Computing the shortest path: A *
search meets graph theory’.
URL: http://www.research.microsoft.comhttp://www.avglab.com/andrew/index.html.

Guo, X., Grushka-Cockayne, Y. & Reyck, B. D. (2020), ‘London heathrow airport
uses real-time analytics for improving operations’, Journal on Applied Analyt-
ics .

Hao, W., Li, C., Li, X., Carin, L. & Gao, J. (2020), ‘Towards learning a generic
agent for vision-and-language navigation via pre-training’.
URL: https://github.com/weituo12321/PREVALENT

22



Kuchhold, M., Simon, M., Eiselein, V. & Sikora, T. (2018), Scale-adaptive real-
time crowd detection and counting for drone images, IEEE Computer Society,
pp. 943–947.

Li, H., Ding, X., Lin, J. & Zhou, J. (2019), ‘Study on coloring method of airport
flight-gate allocation problem’, Journal of Mathematics in Industry 9.

Li, Y., Zhang, X. & Chen, D. (2018), Csrnet: Dilated convolutional neural net-
works for understanding the highly congested scenes, IEEE Computer Society,
pp. 1091–1100.

Liu, S., Zhang, D. G., Liu, X. H., Zhang, T., Gao, J. X., Gong, C. L. & Cui, Y. Y.
(2019), ‘Dynamic analysis for the average shortest path length of mobile ad hoc
networks under random failure scenarios’, IEEE Access 7, 21343–21358.

OxfordEconomics (2018), ‘Review of future capacity needs at ireland’s state air-
ports final report for the department of transport, tourism and sport’.
URL: https://assets.gov.ie/22659/d2cbb36779534741adde4be4f0943a7d.pdf

Papaioannidis, C., Mademlis, I. & Pitas, I. (2021), Autonomous uav safety by vi-
sual human crowd detection using multi-task deep neural networks, Vol. 2021-
May, Institute of Electrical and Electronics Engineers Inc., pp. 11074–11080.

Poulos, A., Tocornal, F., de la Llera, J. C. & Mitrani-Reiser, J. (2018), ‘Validation
of an agent-based building evacuation model with a school drill’, Transporta-
tion Research Part C: Emerging Technologies 97, 82–95.

Prasanth, S., Mathu, T., Santhosh, C. C. & Allwin, F. (2020), ‘Applications of
greedy algorithm in human life and the natural world’.

Rozo, K. R., Arellana, J., Santander-Mercado, A. & Jubiz-Diaz, M. (2019), ‘Mod-
elling building emergency evacuation plans considering the dynamic behaviour
of pedestrians using agent-based simulation’, Safety Science 113, 276–284.

Song, R., Liu, Y. & Bucknall, R. (2019), ‘Smoothed a* algorithm for practical
unmanned surface vehicle path planning’, Applied Ocean Research 83, 9–20.

Still, K., Papalexi, M., Fan, Y. & Bamford, D. (2020), ‘Place crowd safety, crowd
science? case studies and application’, Journal of Place Management and De-
velopment 13, 385–407.

Stollenwerk, T., Hadfield, S. & Wang, Z. (2021), ‘Toward quantum gate-model
heuristics for real-world planning problems’, IEEE Transactions on Quantum
Engineering 1, 1–16.

23



Wan, J. & Chan, A. (2019), Adaptive density map generation for crowd count-
ing, Vol. 2019-October, Institute of Electrical and Electronics Engineers Inc.,
pp. 1130–1139.

Widera, A. & Hellingrath, B. (2020), ‘Trends and future challenges in congestion
management prologis-production and logistic intelligent systems view project
driver view project’, Conference: 17th International Conference on Informa-
tion Systems for Crisis Response and Management pp. 622–636.
URL: https://www.researchgate.net/publication/342523254

Zhang, Y., Zhou, D., Chen, S., Gao, S. & Ma, Y. (2016), Single-image crowd
counting via multi-column convolutional neural network, Vol. 2016-December,
IEEE Computer Society, pp. 589–597.

Zhao, M., Zhang, J., Zhang, C. & Zhang, W. (2019), Leveraging heterogeneous
auxiliary tasks to assist crowd counting, Vol. 2019-June, IEEE Computer Soci-
ety, pp. 12728–12737.

Zhong, X., Tian, J., Hu, H. & Peng, X. (2020), ‘Hybrid path planning based on
safe a* algorithm and adaptive window approach for mobile robot in large-scale
dynamic environment’, Journal of Intelligent and Robotic Systems: Theory and
Applications 99, 65–77.

24


	Introduction
	Literature Review
	Crowd Density Detection
	Path Finding: Graph Theory
	Graph Coloring Algorithm
	Simulation

	Research Methodology: Design and Implementation
	CSRNet: Crowd Density Estimation
	OpenCV to convert density maps to grid graph
	A* Path-Finding Algorithm
	Flight Gates allocation using Graph Coloring Algorithm

	Evaluation
	CSRNet: Evaluation using Mean Absolute Error
	Simulation: Evaluation of Research

	Experiment
	Experiment 1
	Experiment 2
	Experiment 3

	Conclusions and Discussion
	Future Works

