

Configuration Manual

MSc Research Project Data Analytics

Dhruv Vimal Shah Student ID: X21121087

School of Computing National College of Ireland

Supervisor: Qurrat Ul Ain

National College of Ireland Project Submission Sheet School of Computing

Student Name:	Dhruv Vimal Shah
Student ID:	X21121087
Programme:	Data Analytics
Year:	2023
Module:	MSc Research Project
Supervisor:	Qurrat Ul Ain
Submission Due Date:	15/12/2022
Project Title:	Prediction of Accident Severity Using Machine Learning Al-
	gorithms
Word Count:	1129
Page Count:	16

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	Dhruv Vimal Shah
Date:	1st February 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).	
Attach a Moodle submission receipt of the online project submission, to	
each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both for	
your own reference and in case a project is lost or mislaid. It is not sufficient to keep	
a copy on computer.	

Assignments that are submitted to the Programme Coordinator office must be placed into the assignment box located outside the office.

Office Use Only						
Signature:						
Date:						
Penalty Applied (if applicable):						

Configuration Manual

Dhruv Vimal Shah X21121087

1 Introduction

This setup manual provides a summary of the prerequisites, both in terms of software and hardware, to reproduce the research. This manual will help you understand the coding methods needed to do this study again, from setting up the environment to looking at the model's results. The following is a detailed instructional guide that has been broken up into numerous sections for your convenience.

2 Environmental Setup

This section contains a list of all of the tools and software that were used to complete the project successfully.

2.0.1 Hardware Requirements

The hardware specifications used for this project were a 64-bit Windows 10 operating system and 8GB of RAM. The processor used was an Intel i7 (8th Gen). Figure 1 shows the details of the hardware specifications used.

2.0.2 Software Requirements

Python is the programming language that was utilised for the development of the models since it is capable of scripting and executing machine learning models within a web browser. Jupyter Notebook, version 6.4.5, which is supported by Anaconda was used to carry out the code's execution. Because the system is 64-bit compatible the first step is to install the Anaconda application. The link to download the application can be found here ¹. Following successful installation, the dashboard will appear as illustrated in Figure 2. Once anaconda has been installed just click on launch Jupyter notebook and it would be opened and ready to code.

3 Importing Libraries

There are some libraries that need to be installed from the 'pip' command. The installation is done as "pip(library_name)" at the anaconda environment's command prompt. And there are some libraries that are pre-installed in the Anaconda navigator. So to import them just the command mentioned in Figure 3 is required.

¹Anaconda Download: http://www.Anaconda.com/downloads

Device specifications

Device name	DESKTOP-S8JO4KL
Processor	Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz 1.99 GHz
Installed RAM	8.00 GB (7.85 GB usable)
Device ID	920F3C57-57E5-4BE6-A9C2-72F239786BCA
Product ID	00331-10000-00001-AA529
System type	64-bit operating system, x64-based processor
Pen and touch	No pen or touch input is available for this display
Сору	

Rename this PC

Windows specifications

Edition	Windows 10 Pro
Version	21H2
Installed on	03-01-2022
OS build	19044.2251
Experience	Windows Feature Experience Pack 120.2212.4180.0
Сору	

Figure 1: Hardware and Windows Specification

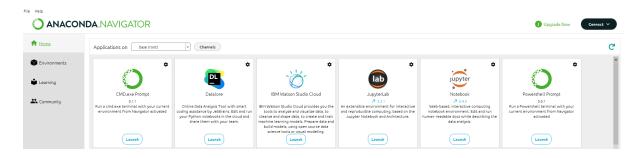
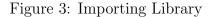



Figure 2: Anaconda Home Page Dashboard

Importing Libraries

```
In [63]: import datetime as dt
            from datetime import datetime
            import pandas as pd
import matplotlib.pyplot as plt
            import numpy as np
            import seaborn as sns
from mpl_toolkits.basemap import Basemap
            from sklearn.model_selection import TimeSeriesSplit
            plt.style.use('ggplot
             %config InlineBackend.figure_format = 'retina'
            import warnings
            warnings.filterwarnings('ignore')
            import folium
            from folium.plugins import HeatMap
            import matplotlib.pyplot as plt
plt.ticklabel_format(useOffset=False)
            %matplotlib inline
            import math
            import statsmodels.api as sm
            from sklearn.model_selection import train_test_split
            from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
            from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC, LinearSVC
            from sklearn.metrics import confusion_matrix,accuracy_score,classification_report
from sklearn.metrics import roc_auc_score,roc_curve,f1_score,recall_score,precision_score
```


4 Datasets

Income and the set Desta

The data selected was the "UK Car Accidents 2005-2015" dataset from Kaggle². The data was initially extracted from the United Kingdom's Department of Transport. It contains 3 files (Accident0515, Casualties0515, and Vehicles0515) in (.csv) format. Accident0515 is the main file, and through the Accident Index column, it has links to Casualties0515 and Vehicles0515. The Accident0515 file comprises 1780653 rows and 31 columns. The Casualties0515 file contains 2216720 rows and 14 columns, and the Vehicles0515 file has 3004425 rows and 21 columns. Figure 4 shows the code for importing all these files and seeing their shapes.

	Importing Data
n [47]:	<pre>accidents = pd.read_csv('Accidents0515.csv',index_col='Accident_Index') casualties=pd.read_csv('Casualties0515.csv' , error_bad_lines=False,index_col='Accident_Index',warn_bad_lines=False) vehicles=pd.read_csv('Vehicles0515.csv', error_bad_lines=False,index_col='Accident_Index',warn_bad_lines=False)</pre>
[49]:	accidents.shape
ut[49]:	(1780653, 31)
[97]:	casualties.shape
t[97]:	(681643, 14)
n [98]:	vehicles.shape
t[98]:	(3004425, 21)

Figure 4: Importing Data

²Dataset: https://www.kaggle.com/datasets/silicon99/dft-accident-data

5 Data Exploring

The data were explored to get some insight which could be helpful to create a good model. Figures 5, 6, and 7 show the data exploration in the research. It includes how many values are there in a particular column and even finding the sum of null values.

	Location_Eastin	ng_OSGR	Location_Northin	ng_OSGR	Longitude	Latitude	Police_Forc	e Accident_Severi	ty Number_of_Vehicle	s Number_of_Ca
Accident_In	dex									
200501BS00	0001	525680.0		178240.0	-0.191170	51.489096	;	1	2	1
200501BS00	0002	524170.0		181650.0	-0.211708	51.520075	;	1	3	1
200501BS00	0003	524520.0		182240.0	-0.206458	51.525301	l .	1	3	2
200501BS00	0004	526900.0		177530.0	-0.173862	51.482442	2	1	3	1
200501BS00	0005	528060.0		179040.0	-0.156618	51.495752	2	1	3	1
4										
∢ accidents.	describe()									
	describe() ation_Easting_OSGR	Location_	Northing_OSGR	Long	itude	Latitude	Police_Force	Accident_Severity	Number_of_Vehicles	
			Northing_OSGR					Accident_Severity 1.780653e+06		
Loca	ation_Easting_OSGR	_		1.780515	ie+06 1.78	0515e+06	- 1.780653e+06			Number_of_Casu
Loca	ation_Easting_OSGR 1.780515e+06	_	1.780515e+06	1.780515 -1.428579	ie+06 1.78)e+00 5.25	0515e+06 7450e+01	1.780653e+06 3.075348e+01	1.780653e+06	1.780653e+06	Number_of_Casu
Loca count mean	ation_Easting_OSGR 1.780515e+06 4.401799e+05		1.780515e+06 2.985128e+05	1.780515 -1.428579 1.403495	ie+06 1.78)e+00 5.25 ie+00 1.45	0515e+06 7450e+01 1753e+00	1.780653e+06 3.075348e+01 2.551787e+01	1.780653e+06 2.838219e+00	1.780653e+06 1.832064e+00 7.148732e-01	Number_of_Casu 1.78065 1.34945
Loca count mean std	ation_Easting_OSGR 1.780515e+06 4.401799e+05 9.547599e+04		1.780515e+06 2.985128e+05 1.612254e+05	1.780515 -1.428579 1.403495 -7.516225	ie+06 1.78)e+00 5.25 ie+00 1.45 ie+00 4.99	0515e+06 7450e+01 1753e+00 1294e+01	1.780653e+06 3.075348e+01 2.551787e+01 1.000000e+00	1.780653e+06 2.838219e+00 4.017948e-01	1.780653e+06 1.832064e+00 7.148732e-01	Number_of_Casu 1.78065 1.34945 8.23747
Loca count mean std min	ation_Easting_OSGR 1.780515e+06 4.401799e+05 9.547599e+04 6.495000e+04		1.780515e+06 2.985128e+05 1.612254e+05 1.029000e+04	1.780515 -1.428579 1.403495 -7.516225 -2.354786	ie+06 1.78 ie+00 5.25 ie+00 1.45 ie+00 4.99 ie+00 5.14	0515e+06 7450e+01 1753e+00 1294e+01 8769e+01	1.780653e+06 3.075348e+01 2.551787e+01 1.000000e+00 7.000000e+00	1.780653e+06 2.838219e+00 4.017948e-01 1.000000e+00	1.780653e+06 1.832064e+00 7.148732e-01 1.000000e+00	Number_of_Casu 1.78065 1.34945 8.23747 1.00000
Loca count mean std min 25%	ation_Easting_OSGR 1.780515e+06 4.401799e+05 9.547599e+04 6.495000e+04 3.764000e+05		1.780515e+06 2.985128e+05 1.612254e+05 1.029000e+04 1.779900e+05	1.780515 -1.428579 1.403495 -7.516225 -2.354786 -1.386472	5e+06 1.78 0e+00 5.25 5e+00 1.45 5e+00 4.99 5e+00 5.14 2e+00 5.22	0515e+06 7450e+01 1753e+00 1294e+01 8769e+01 7209e+01	1.780653e+06 3.075348e+01 2.551787e+01 1.000000e+00 7.000000e+00 3.100000e+01	1.780653e+06 2.838219e+00 4.017948e-01 1.000000e+00 3.000000e+00	1.780653e+06 1.832064e+00 7.148732e-01 1.000000e+00 1.000000e+00	Number_of_Casu 1.780653 1.34945- 8.23747 1.00000 1.00000

Figure 5: Description of the data

6 Cleaning the data

After the exploration of the data now the unwanted columns such as Location_Easting_OSGR, Location_Northing_OSGR, LSOA_of_Accident_Location, Junction_Control, and 2nd_Road_Class being removed from the data as it has a very high number of null values in it. Figure 8 shows the code for it.

7 Exploratory Data Analysis (EDA)

For a better understanding of the data, the EDA process is carried out using the variables of the dataset. This process explains what kind of data is present in the dataset. Different

In [135]:	accidents.info() #Prints information about the Da	taframe					
	<class 'pandas.core.frame.dataframe'=""></class>						
	Index: 1780653 entries, 200501B500001 to 2015984141415						
	Data columns (total 31 columns):						
	# Column	Dtype					
	0 Location_Easting_OSGR	float64					
	1 Location_Northing_OSGR	float64					
	2 Longitude	float64					
	3 Latitude						
	4 Police Force						
	5 Accident_Severity	int64					
	6 Number_of_Vehicles	int64					
	7 Number_of_Casualties	int64					
	8 Date	object					
	9 Day_of_Week	int64					
	10 Time	object					
	11 Local_Authority_(District)	int64					
	12 Local_Authority_(Highway)						
	13 1st_Road_Class	int64					
	14 1st_Road_Number	int64					
	15 Road_Type	int64					
	16 Speed_limit	int64					
	17 Junction_Detail	int64					
	18 Junction_Control	int64					
	19 2nd_Road_Class	int64					
	20 2nd_Road_Number	int64					
	21 Pedestrian_Crossing-Human_Control	int64					
	22 Pedestrian_Crossing-Physical_Facilities	int64					
	23 Light_Conditions	int64					
	24 Weather_Conditions	int64					
	25 Road_Surface_Conditions	int64					
	<pre>26 Special_Conditions_at_Site</pre>	int64					
	27 Carriageway_Hazards	int64					
	28 Urban_or_Rural_Area	int64					
	29 Did_Police_Officer_Attend_Scene_of_Accident	int64					
	30 LSOA_of_Accident_Location	object					
	dtypes: float64(4), int64(23), object(4)						
	memory usage: 434.7+ MB						

Figure 6: Prints information about the Dataframe

accidents.isnull().sum()		
Location_Easting_OSGR	138	
Location Northing OSGR	138	
Longitude	138	
Latitude	138	
Police Force	0	
Accident_Severity	0	
Number of Vehicles	0	
Number_of_Casualties	0	
Date	0	
Day of Week	0	
Fime	151	
Local_Authority_(District)	0	
Local_Authority_(Highway)	0	
1st Road Class	0	
lst Road Number	0	
Road_Type	0	
Speed_limit	0	
Junction_Detail	0	
Junction_Control	0	
2nd_Road_Class	0	
2nd_Road_Number	0	
Pedestrian_Crossing-Human_Control	0	
Pedestrian_Crossing-Physical_Facilities	0	
Light_Conditions	0	
Veather_Conditions	0	
Road_Surface_Conditions	0	
<pre>Special_Conditions_at_Site</pre>	0	
Carriageway_Hazards	0	
Jrban_or_Rural_Area	0	
Did_Police_Officer_Attend_Scene_of_Accident	0	
LSOA_of_Accident_Location dtype: int64	129471	

In [138]: accidents = accidents.join(vehicles, how='outer')

In [139]:	<pre>accidents.drop(['Location_Easting_OSGR', 'Location_Northing_OSGR','LSOA_of_Accident_Location',</pre>
	<pre>for col in accidents.columns: accidents = (accidents[col]!=-1])</pre>
	<pre>for col in casualties.columns: casualties = (casualties[col]!=-1])</pre>
	<pre>accidents['Date_time'] = pd.to_datetime(accidents.Date_time) accidents.drop(['Date', 'Time'],axis =1 , inplace=True) accidents.dropna(inplace=True)</pre>

Figure 8: Data Cleaning

types of histograms are used to explore the different variables. All the EDA done in the research are shown in Figures 9, 10, 11, and 12.

```
In [112]: plt.figure(figsize=(12,6))
accidents.Date_time.dt.dayofweek.hist(bins=7,rwidth=0.55,alpha=0.5, color= 'blue')
plt.title('Day of Week Accidents Occured' , fontsize= 20)
plt.glabel('Accident Count' , fontsize = 20)
plt.ylabel('Accident Count' , fontsize = 20)
plt.xlabel('0 - Sunday , 1 - Monday , 2 - Tuesday , 3 - Wednesday , 4 - Thursday , 5 - Friday , 6 - Saturday' , fontsize = 14)
```

Figure 9: Sum of Null values in the data

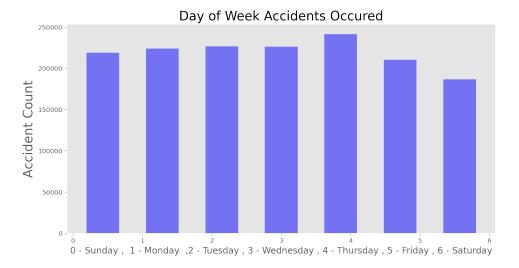


Figure 10: Sum of Null values in the data

8 Plotting Accidents on Open Street Maps

Now we will be using Open Street Maps (OSM) to plot the accidents. Using longitude and latitude information, we can see what area has the most accidents. For using the Open Street Maps the package folium would be required, which was already installed at the start of the code as shown in Figure 3. The accident plots can give us a really good idea about traffic in any area of the UK. Figure 13 depicts the accidents on the map with an "Accident" popup. Also with help of folium the casualties were displayed on the

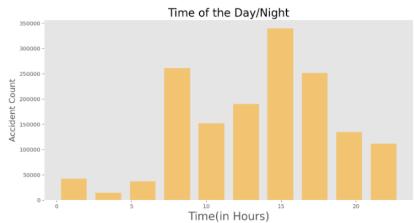


Figure 11: Sum of Null values in the data

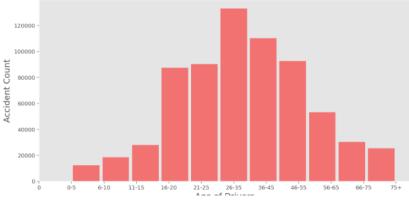


Figure 12: Sum of Null values in the data

map shown in Figure 14. Blue denotes one casualty on the hotspot. Orange denotes 2 casualties on the hotspot and red denotes more than 2 casualties on the given hotspot.

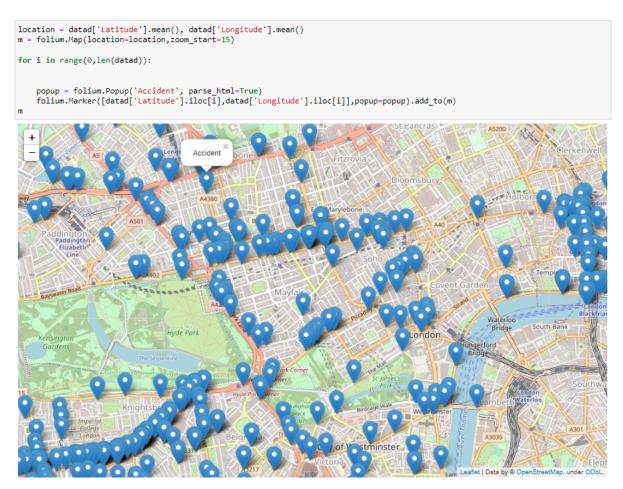


Figure 13: Accidents Plotted on Map

9 Normalization of Data

In this, the normalization of variables was carried out because there were 2 variables that skewed the performance. The variables 'age of driver" and "age of vehicle". Figure 15 shows the before graph and code of both these variables, and Figure 16 shows the after normalization graph of both these variables.

10 Machine Learning

There were 3 machine learning algorithms used in this research. All the algorithms were even tuned with hyperparameters. The section even displays the evaluation of the algorithms.

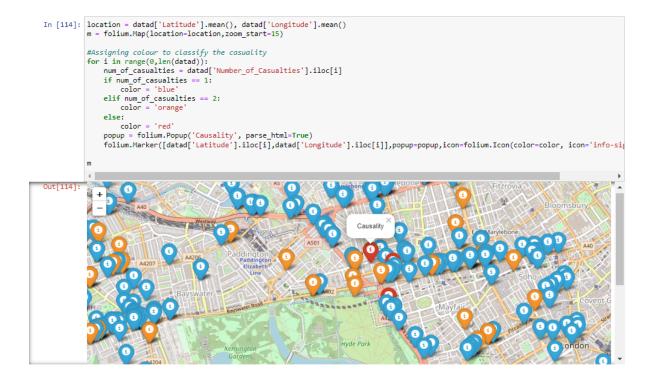


Figure 14: Causalities Plotted on Map

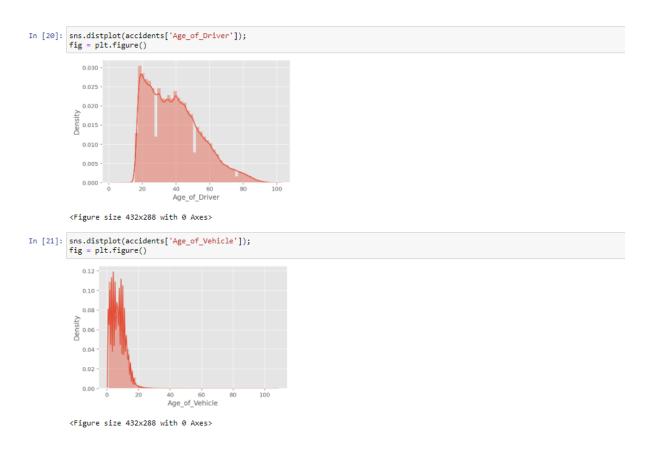


Figure 15: Before normalization

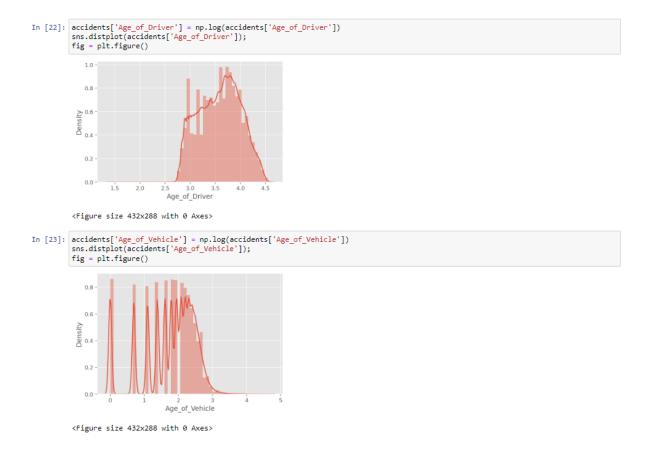


Figure 16: After Normalization

10.1 Train Test Split

To do the training and testing the libraries "from sklearn.model_selection import train_test_split" is required which is shown in Figure 3. The data was divided into 80% training and 20% test data. The random state was kept to 99. Figure 17 shows the train test split.

Figure 17: Train Test Split

10.2 Random Forest with & without Hyperparameter

For running a random forest model the library required is "sklearn.ensemble import RandomForestClassifier" as shown in Figure 3. Figure 18 shows a random forest model built with default parameters and the classification report which includes the accuracy, precision, recall and f1 score and the confusion matrix. For using this evaluation method the library "from sklearn.metrics import confusion_matrix,accuracy_score,classification_report" and "from sklearn.metrics import roc_auc_score,roc_curve,f1_score,recall_score,precision_score" is used as shown in Figure 3. Figures 19 and 20 show a random forest model built with hyperparameters.

Random Forest

```
In [26]: random_forest = RandomForestClassifier(n_estimators=200)
          random_forest.fit(X_train,y_train)
Y_pred = random_forest.predict(X_test)
           random_forest.score(X_test, y_test)
          acc random forest1 = round(random forest.score(X test, y test) * 100, 2)
           sk_report = classification_report(digits=6,y_true=y_test,y_pred=Y_pred)
          print("Accuracy", acc_random_forest1)
print(sk_report)
pd.crosstab(y_test, Y_pred, rownames=['Actual'], colnames=['Predicted'], margins=True)
          Accuracy 84.59
                          precision
                                        recall f1-score
                                                               support
                       1 0.053114 0.007054 0.012454
                                                                  4111
                         0.231720 0.056486 0.090831
0.866542 0.972663 0.916541
                                                                 38151
                       з
                                                                264697
               accuracy
                                                  0.845862
                                                                306959
                           0.383792 0.345401
                                                  0.339942
                                                                306959
              macro avg
           weighted avg
                          0.776748 0.845862 0.801808
                                                                306959
Out[26]:
           Predicted
                     1
                           2
                                    3
                                          All
              Actual
                  1 29 313 3769
                                        4111
                  2 113 2155 35883 38151
               3 404 6832 257461 264697
                 All 546 9300 297113 306959
```

Figure 18: Random Forest without hyperparameters

Random Forest Hyperparameter tuning

First, we will see the default parameters of the random forest model before we tune the parameters.

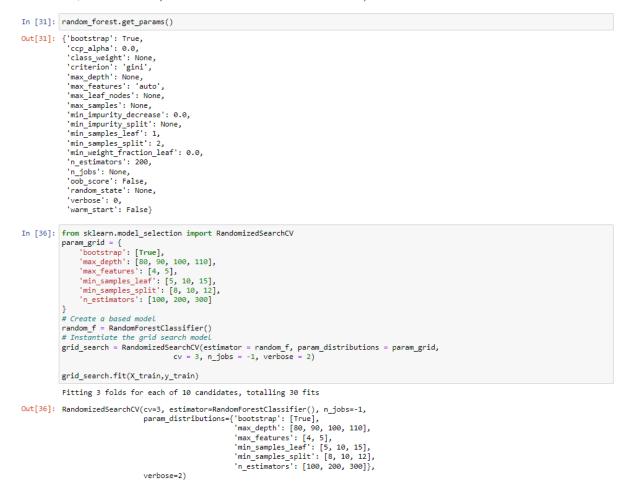


Figure 19: Random Forest with hyperparameters

```
In [37]: Y_pred = grid_search.predict(X_test)
          acc_random_forest1 = round(grid_search.score(X_test, y_test) * 100, 2)
          sk_report = classification_report(
              .
digits=6,
          y_true=y_test,
y_pred=Y_pred)
print("Accuracy",
                           , acc_random_forest1)
          print(sk_report)
          pd.crosstab(y test, Y pred, rownames=['Actual'], colnames=['Predicted'], margins=True)
          Accuracy 86.23
                        precision
                                     recall f1-score
                                                          support
                         0.000000 0.000000 0.000000
                                                             4111
                     1
                     2
                          0.444380 0.020104
                                               0.038468
                                                            38151
                         0.864674 0.997091 0.926173
                                                           264697
                     З
                                                           306959
                                               0.862311
              accuracy
             macro avg
                         0.436351 0.339065
                                               0.321547
                                                            306959
          weighted avg
                         0.800857 0.862311 0.803439
                                                           306959
Out[37]:
          Predicted
                      2
                             3
                                   All
             Actual
                                  4111
                    189
                          3922
                1
                 2
                    767
                          37384
                                 38151
                3 770 263927 264697
                All 1726 305233 306959
```

Figure 20: Random Forest with hyperparameters

10.3 Logistics Regression with & without Hyperparameter

For running a logistic regression model the library required is "from sklearn.linear_model import LogisticRegression" as shown in Figure 3. Figure 21 shows a logistic regression model built with default parameters and the classification report which includes the accuracy, precision, recall and f1 score and the confusion matrix. Figures 22 shows a logistics regression model built with hyperparameters.

10.4 Decision Tree with & without Hyperparameter

For running a decision tree model the library required are "from sklearn.tree import DecisionTreeClassifier" as shown in Figure 3. Figure 23 shows a random forest model built with default parameters and the classification report which includes the accuracy, precision, recall and f1 score and the confusion matrix. Figures 24 show a decision tree model built with hyperparameters.

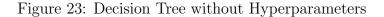
10.5 Accuracy of all Models

Figure 25 shows the accuracy of all the models.

Logistic Regression ¶

In [27]:	lr = Logi	isti	cRegres	sion()						
					rainna dat	a.					
	lr.fit(X										
	y_pred =				+)						
					on report(
	digit			ICacit	in_report c(
	y_true=y_test, y pred=y pred)										
	<pre>print("Accuracy", round(accuracy_score(y_pred, y_test)*100,2))</pre>										
	print(sk										
	pd.crosst	tab(y_test,	y_pre	ed, rownam	es=['Actua	I'], colna	ames=['Predicted'], margins=True)			
	Accuracy	86.	23								
			preci	ision	recall	f1-score	support				
						0.000000					
		1				0.000000	4111				
		_		00000		0.000000	38151				
		3	0.86	52323	0.999928	0.926042	264697				
	accur	racv	,			0.862258	306959				
	macro	ave	0.28	37441	0.333309	0.308681	306959				
						0.798545	306959				
		- 0									
Out[27]:	Predicted		3	AI							
	Predicted	1	3	AI							
	Actual										
	1	0	4111	4111							
	2	4	38147	38151							
	-										
	3	19	264678	264697	·						
	All	23	306936	306959)						

Figure 21: Logistics Regression without Hyperparameters

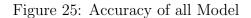

Logistic Regression with Hyperparameter tuning

```
In [29]: from sklearn.linear_model import LogisticRegressionCV
lr = LogisticRegressionCV(cv=3, random_state=0,multi_class='multinomial')
                Ir = LogisticKegression(V(cv=3, random_state=0,multi_class= multinomial
# Fit the model on the training data.
lr.fit(X_train, y_train)
y_pred = lr.predict(X_test)
sk_report = classification_report(digits=6,y_true=y_test,y_pred=y_pred)
print("Accuracy", round(accuracy_score(y_pred, y_test)*100,2))
print(sk_report)
dc_spectb(v_test_v_pred_powpress['Actual'], coloress['Decdicted'])
                 pd.crosstab(y_test, y_pred, rownames=['Actual'], colnames=['Predicted'], margins=True)
                 Accuracy 86.23
                                           precision recall f1-score support
                                     1 0.000000 0.000000 0.00000
2 0.000000 0.000000 0.000000
3 0.862319 0.999989 0.926065
                                                                                                          4111
                                                                                                        38151
                                                                                                      264697
                                                                                 0.862311
                                                                                                       306959
                        accuracy
                 macro avg 0.287440 0.333330 0.308688
weighted avg 0.743595 0.862311 0.798565
                                                                                                       306959
306959
Out[29]:
                  Predicted 1
                                              3
                                                        All
                       Actual
                             1 0 4111 4111
                              2 0 38151 38151
                         3 3 264694 264697
                            All 3 306956 306959
```

Figure 22: Logistics Regression with Hyperparameters

Decision Tree

```
In [28]: decision_tree = DecisionTreeClassifier()
decision_tree.fit(X_train, y_train)
Y_pred = decision_tree.predict(X_test)
acc_decision_tree1 = round(decision_tree.score(X_test, y_test) * 100, 2)
sk_report = classification_report(digits=6,y_true=y_test,y_pred=Y_pred)
print("Accuracy", acc_decision_tree1)
print(sk_report)
              print(sk_report)
              ### Confusion Matrix
              pd.crosstab(y_test, Y_pred, rownames=['Actual'], colnames=['Predicted'], margins=True)
              Accuracy 75.36
                                 precision
                                                   recall f1-score support
                             1 0.034483 0.042569 0.038101
                                                                                    4111
                             2
                                   0.160482 0.188750 0.173472
                                                                                   38151
                             3
                                  0.871364 0.846069 0.858531
                                                                                 264697
                                                                0.753612
                                                                                 306959
                    accuracy
              macro avg 0.355443 0.359129 0.356701
weighted avg 0.771803 0.753612 0.762399
                                                                                  306959
                                                                                 306959
Out[28]:
               Predicted
                             1
                                       2
                                                3
                                                         All
                  Actual
                        1 175 907
                                            3029
                                                       4111
                        2 918 7201 30032 38151
                     3 3982 36763 223952 264697
                      All 5075 44871 257013 306959
```



Decision Tree hyperparameters tuning

All we are going to do is find the best values for mininum sample leaf and maximum features to get the best score.

```
In [30]: decision_tree = DecisionTreeClassifier(min_samples_leaf=12, max_features=4)
    decision_tree.fit(X_train, y_train)
    Y_pred = decision_tree.predict(X_test)
    acc_decision_tree1 = round(decision_tree.score(X_test, y_test) * 100, 2)
    sk_report = classification_report(digits=6, y_true=y_test,y_pred=Y_pred)
    priot("mccurescu" acc_decision_test)
              print("Accuracy", acc_decision_tree1)
print(sk_report)
               ### Confusion Matrix
              pd.crosstab(y_test, Y_pred, rownames=['Actual'], colnames=['Predicted'], margins=True)
              Accuracy 85.69
                                                    recall f1-score support
                                   precision
                               1 0.153846 0.000973 0.001934
                                                                                        4111
                                    0.316212 0.044376 0.077830
                                                                                      38151
                               2
                                    0.866592 0.987340 0.923034
                                                                                    264697
                               3
                                                                  0.856932
                                                                                     306959
                    accuracy
              macro avg 0.445550 0.344230 0.334266
weighted avg 0.788642 0.856932 0.805650
                                                                                     306959
                                                                                    306959
Out[30]:
               Predicted 1
                                    2
                                              3
                                                       All
                  Actual
                       1 4 329 3778 4111
                        2 3 1693 36455 38151
                      3 19 3332 261346 264697
                      All 26 5354 301579 306959
```

Figure 24: Decision Tree with Hyperparameters

Accuracy of all Machine Learning Models

