~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Arkoprovo Sarkar
Student 1D: x19148038

School of Computing
National College of Ireland

Supervisor: Aaloka Anant

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Arkoprovo Sarkar
Student ID: x19148038
Programme: Data Analytics
Year: 2022-2023
Module: MSc Research Project
Supervisor: Aaloka Anant
Submission Due Date: 15/12/2022
Project Title: Configuration Manual
Word Count: 490
Page Count: B

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 15th December 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Arkoprovo Sarkar
x19148038

1 Introduction

The actions that must be taken in order to successfully execute the scripts that were used
during the research are outlined in this document. You will be able to successfully execute
the code with the assistance of these instructions. In addition to that, information on
the hardware setup of the machine that was used to execute the code has been included
in this document.

2 System Specifications

2.1 Hardware Requirements

This research was carried out on a Dell Vostro 14 laptop. The laptop’s hardware spe-
cifications are as follows:

e Processor: Intel Core i5 10th Generation
e Operating System: Windows 10

e RAM: 16 GB

e Storage: 256 GB

2.2 Software Requirements

During the course of this research, the following tools were used:
e Python version 3.8
e Microsoft Excel

e Power BI

3 Setting Up the Environment

The whole study was carried out using Python script in Jupyter Notebook on Anaconda
Navigator.

3 ANACONDA, Products . Pricing Solutions ~ Resources ~ Partners Blog Company

Individual Edition is now A

ANACON DA DISTRI BUTION Anaconda Distribution

The world's most popular open-
source Python distribution platform For Windows

Python 3.9 « 64-Bit Graphical Installer » 621 MB

Get Additional Installers

RNl el

Figure 1: Anaconda Distribution

Anaconda Navigator was opened once it was installed successfully. Then Jupyter
Notebook was launched using the Google Chrome browser as its basic platform.

O anacenss Naigstor 3 x

) ANACONDA NAVIGATOR 0 2N

Figure 2: Anaconda Navigator

4 Selection of Data

The dataset was gathered from Kaggle.

IPL Complete Dataset (2008-2020)

The latest and complete IPL dataset

DataCard Code (89) Discussion (16)

Usability ©
or

About Dataset

License
Database: Open Database, Cont

Context

Now that this year's IPL is over, let's not curb our cricket love and start analyzing the whole of IPL with this latest and complete Indian

Premier League dataset. It contains the match descriptions, results, winners, player of the matches, bal by ball dataset and much more. Expected update frequency
So, stop thinking and start analyzing Annually
Content

This dataset consists of two seperate CSV files : matches and deliveries. These files contain the information of each match summary and
ball by ball details, respectively.

Figure 3: IPL Dataset

Age of the players was not included in the dataset. Therefore, it had to be inserted
manually. The final dataset with players age has been shared together with the code.
That must be used as source data.

5 Implementation

5.1 Code Blocks

Import Required Libraries

The libraries necessary for executing Batsman_Dataset_VFinal script are mentioned be-
low:

#importing Llibraries

import os

import warnings

import pandas as pd

import numpy as np

from sklearn.preprocessing import LabelEncoder

from matplotlib import pyplot as plt

import seaborn as sns

from sklearn.model selection import train_test split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive bayes import GaussianhB

firom sklearn import metrics

from sklearn.metrics import accuracy_score

from sklearn.metrics import precision_score

from sklearn.metrics import recall score

from sklearn.metrics import f1 score

Figure 4: List of Required Libraries

Reading Data

In order to read the data, Pandas data frame was used, as shown below.

#reading ball by ball dataset
ipl_ballbyball= pd.read_csv("C:/Users/arkos/OneDrive/Documents/Masters/Research Project/IPL_Dataset Final/Ball-by-Ball.csv")
ipl_ballbyball.head()

#reading match details dataset
ipl matches = pd.read_csv("C:/Users/arkos/OneDrive/Documents/Masters/Research Project/IPL_Dataset_Final/Match_Details.csv™)
ipl _matches.head()

Figure 5: Data Reading

Data Preprocessing

After reading the datasets, they were merged in one single dataframe and then the team
names were updated.

#Creating a merged dataframe & dropping the columns which are not required columns

combined_ipl data = pd.merge(ipl matches, ipl ballbyball, left on='id', right on="id',how="outer")

combined_ipl_data = combined_ipl data.drop([umpirel’, umpire2'], axis = 1)
combined_ipl data.head()

#delhi daredevils changed their team name to delhi capitals. Therefore, old team name has been updated with the new name.
combined_ipl data = combined_ipl data.replace(to replace ="Delhi Daredevils", value = "Delhi Capitals")

#deccan chargers changed their team name to Sunrisers Hyderabad. Therefore, old team name has been updated with the new name
combined_ipl data = combined_ipl data.replace(to_replace ="Deccan Chargers"”, value = "Sunrisers Hyderabad")

#Rising pune supergiants name has been printed in two ways. Merging them as both of them are same team.
combined_ipl data = combined_ipl data.replace(to replace ="Rising Pune Supergiant", value = "Rising Pune Supergiants")

Figure 6: Merging Dataframes & Correcting Team Names

Feature Engineering

Batting attributes were added one by one in the dataframe.

highlighted in the following figure.

Batsman Dataset Creation

#runs scored
runs_scored=combined_ipl_data.groupby(["id', 'batsman’])['batsman_runs'].sum()
df_runs_scored = runs_scored.to_frame().reset_index()
df_runs_scored.rename(columns = {'batsman_runs' : 'runs_scored'}, inplace = True)
df_runs_scored.head(1)

#balls_faced

balls=combined_ipl_data[(combined_ipl_data['extra_runs'] == 8)]

balls_faced= balls.groupby(['id", 'batsman’])['batsman_runs'].count()
df_balls_faced = balls_faced.to_frame().reset_index()

df_balls faced.rename(columns = {'batsman_runs' : 'balls faced'}, inplace = True)
df_balls_faced.head(1)

#boundaries_scored

boundaries - combined_ipl data[combined_ipl_data["batsman_runs'] == 4]
boundaries_scored= boundaries.groupby(['id', 'batsman’])['batsman_runs'].count()
df_boundaries_scored=boundaries_scored.to_frame().reset_index()

df_boundaries_scored.rename(columns = {'batsman_runs’ : 'boundaries_scored'}, inplace = True)

df_boundaries_scored.head(1)

#sixes hit

sixes = combined_ipl_data[combined_ipl data['batsman_runs'] == 6]

sixes_scored= sixes.groupby(['id’, 'batsman’'])['batsman_runs'].count()
df_sixes_scored=sixes_scored.to_frame().reset_index()
df_sixes_scored.rename(columns = {'batsman_runs' : "sixes_hit'}, inplace = True)
df_sixes_scored.head()

#merging
merged_df = df_runs_scored.merge(df_balls_faced, how = 'inner’', on = ['id', 'batsman’])
#calculating strike rate

Sample code has been

merged_df['strike_rate’'] = round(((merged_df['runs_scored’] / merged_df['balls_faced']) * 168),2)

merged_df.head(1)

#adding no of innings for each game
merged_df['no_of innings'] = 1

merged_df-merged_df.merge(df_boundaries_scored, how = ‘outer’, on = ['id', 'batsman’'])

merged_df-merged_df.merge(df_sixes scored, how = ‘outer', on = ['id’, 'batsman’])
merged_df[“boundaries_scored"].fillna(8, inplace = True)

Figure 7: Batting Attributes

#caculating consistency by using the equation derived by Passi and Pandey in thier study
#also calculating overall average & overall strike rate
def attribute(df,col_name):
df["avg_runs']=0.8
index_ba=df.columns.get_loc(“avg_runs")
index_in=df.columns.get_loc("no_of_innings"™)
index_inruns=df.columns.get_loc{"runs_scored")
for row in range(len(df)):
inumber=df.iat[row,index_in]
inruns=df.iat[row,index_inruns]
df.iat[row,index_ba]=inruns/inumber

df["srate']=0.8
index_ba=df.columns.get_loc("srate")
index_in=df.columns.get_loc("balls_faced")
index_inruns=df.columns.get_loc{"runs_scored")
for row in range(len(df)):
inumber=df.iat[row,index_in]
inruns=df.iat[row,index_inruns]
df.iat[row,index_ba]=(inruns/inumber)*10a

index_new=df.columns.get_loc(col_name)
index_sr=df.columns.get_loc("srate")
index_av=df.columns.get_loc("avg_runs™)
index_in=df.columns.get_loc("no_of_innings"™)
index_1@@=df.columns.get_loc("1@as")
index_5@=df.columns.get_loc('5@s")
index_©=df.columns.get_loc('ducks')

for row in range(len(df)):

f=0.4262%(df.iat[row,index_av])
f=f+8.2566%(df.iat[row,index_in])
f+=0.1518*(df.iat[row,index_sr])
f+=0.0787*(df .1at[row,index_l108])
f+=0.8556%(df.iat[row,index_5@])
f=f-(2.0328%(df.iat[row,index_8]))
df.iat[row,index_new]=F

return(df)

g=batter_data_df.groupby(batsman")

df=g.sum()

df['consistency’]=0.@

df=attribute(df, consistency')

df['overall_average']=df['avg_runs']

df['overall_strike_rate']=df['srate’]

drop=[‘age’,"'id", 'runs_scored’, 'boundaries_scored’, 'sixes_hit"', 'strike_rate’,'innings_no','no_of_ innings' ,'balls_faced', ‘year
df.drop(drop,axis=1,inplace=True)

batter_data_df=-pd.merge(batter_data_df,df,on="batsman", how="inner")

Figure 8: Derived Attributes

The players were shortlisted depending on their ages.

#Removing players of age greater than 30 (as of 2620)
batter_data_df bin_lessthan3@ = batter_data df _bin_lessthan3@[batter_data_df bin_lessthan3@.age <= 30]

Figure 9: Shortlisting Players

Data Binning

Here each batting attribute was given a value between one and five, with one being the
least significant and five representing the most essential.

BINNING KEY ATTRIBUTES

binning Consistency
tempData = []
dummy_con = []

for 1 in range (@,len(batter_data df_bin.index)):
tempData.append(temp’)
batter_data_df_bin['consistency_bin']=tempData

for i in range (@,len(batter_data df_bin.index)):

if batter data_df bin['consistency'][i] <= 2@:
batter_data_df_bin['consistency_bin'][i] = 1

elif batter_data_df_bin['consistency'][1]>28 and batter_data_df_bin['consistency’][i] <=48@:
batter_data_df_bin['consistency_bin'][i] = 2

elif batter_data_df_bin['consistency'][i] »4@ and batter_data_df_bin['consistency']J[1] <=58:
batter data df bin['consistency bin'][i] = 3

elif batter_data_df_bin['consistency'][i] »5@ and batter_data_df_bin['consistency'][i] <=68:
batter_data_df bin['consistency bin*][i] = 4

elif batter_data_df_bin['consistency’'][i] »6@:
batter_data_df_bin['consistency bin"]J[i] = 5

#binning form
tempData = []
dummy_form = []

for i in range (@,len(batter_data_df_bin.index)):
tempData.append("temp’)
batter_data_df_bin['form_bin']=tempData

for i in range (@,len(batter_data df_bin.index)):
if batter_data_df bin['form'][i] <= 28
batter_data_df_bin['form_bin'][i] = 1
elif batter_data_df bin['form’][i]>28 and batter_data_df bin[‘'form'][i] <=48:

]
batter_data_df_bin['form_bin'][i] = 2
elif batter_data_df_bin['form'][i] >48 and batter_data_df_bin['form'][i] <=6@:
batter_data_df_bin['form_bin'][i] = 3
elif batter_data_df_bin['form'][i] >6@ and batter_data_df_bin['form'][i] <=8@:
batter data_df bin['form bin'][i] = 4
elif batter_data_df_bin['form'][i] >80
batter data_df_bin['form bin'][i] = 5

Figure 10: Data Binning

Data Encoding

Data that was not numerical in nature was changed into numerical value so that it could

be more readily fitted into a machine learning model.

#converting dtypes

batter_data_df_bin["venue_wise strike_rate_bin"] = batter_data_df_bin["venue_wise_strike_rate bin"].astype(float)
batter_data_df_bin["opposition_wise_strike_rate_bin"] = batter_data_df_bin["opposition_wise_strike_rate_bin"].astype(float)
batter_data_df_bin["yearly strike_rate_bin"] = batter_data df bin["yearly strike rate_bin"].astype(float)
batter_data_df_bin["strike_rate_bin"] = batter_data_df_bin["strike_rate_bin"].astype(float)
batter_data_df_bin["overall strike rate_bin"] = batter data_df_bin["overall_strike_rate_bin"].astype(float)
batter_data_df_bin["venue_wise_average_bin"] = batter_data_df_bin["venue_wise_average_bin"].astype(float)
batter_data_df_bin["opposition_wise_average_bin"] = batter_data_df_bin["opposition_wise_average_bin"].astype(float)
batter_data_df_bin["yearly_average bin"] = batter_data_df_bin["yearly_average bin"].astype(float)
batter_data_df_bin["overall_average_bin"] = batter_data_df_bin["overall_average_bin"].astype(float)
batter_data_df_bin["opponent_bin"] = batter_data_df bin["opponent_bin"].astype(float)
batter_data_df_bin["form_bin"] = batter_data_df_bin["form_bin"].astype(float)

batter_data_df_bin["consistency bin"] = batter_data df_bin["consistency_bin"].astype(float)
batter_data_df_bin["runs_bin"] = batter_data_df_bin["runs_bin"].astype(float)

batter_data_df_bin["venue_bin"] = batter_data_df_bin["venue_bin"].astype(float)

#Label Encoding

def encode(df,col):
le = LabelEncoder()
batter_data_df_bin[col] = le.fit_transform(df[col])

encode(batter_data_df_bin, 'batsman’)
encode(batter_data_df_bin, 'ground')

encode(batter_data_df_bin, 'opponent”)
encode(batter_data_df_bin, 'date’)

Figure 11: Data Encoding

Data Correlation

The pairwise correlation of each column was found with the help of the corr() function.

#Checking co-relation between columns

corr = batter data df bin lessthan3@.corr()

fig, ax = plt.subplots(figsize=(3@, 18))

colormap = sns.diverging palette(220, 1@, as cmap=True)

dropself = np.zeros_like(corr)

dropSelf[np.triu_indices_from(dropSelf)] = True

colormap = sns.diverging_palette(220, 1@, as_cmap=True)

sns.heatmap(corr, cmap=colormap, linewidths=.5, annot=True, fmt=".2f", mask=dropSelf)
plt.title('Runs - Features Correlations’)

plt.show()

Figure 12: Correlation Between Columns

Data Split and Machine Learning Model Evaluation

Finally the experiments were carried out using a range of training and test set sizes in
order to access the models.

70:30 Split
: X_train2, X_test2, Y_train2, Y_test2 = train_test_split(runs_train, runs_target, test_size = @.30, random_state = @)

sc = StandardsScaler()
X_train2 = sc.fit_transform(X_train2)
X_test2 = sc.transform(X_test2)

1 #Random Forest
model rf.fit(X_train2, Y_train2)
Y_pred2=model_rf.predict(X_test2)

print('Training Accuracy:', model rf.score(X train2, Y train2))
print(F'Accuracy:',accuracy_score(Y_test2, Y_pred2))

print(F'Precision: ', precision_score(Y_test2, Y_pred2,average='weighted'))
print(F'Recall:’, recall score(Y_test2, Y_pred2,average="weighted'))
print(F'F1 Score:', f1_score(Y_test2, Y_pred2,average='weighted'))

1 | #Naive Bayes
nb_model.fit(X_train2,Y train2)
y_pred2=nb_model,predict(X_test2)

print('Training Accuracy:', nb_model.score(X_train2, Y_train2))
accuracy=accuracy_score(Y_test2,y_pred2)
precision=precision_score(Y_test2,y pred2,average='weighted")
recall=recall_score(Y_test2,y_pred2,average="weighted')
f1=f1_score(Y_test2,y pred2,average="weighted")

print
print
print
print

"Accuracy - {}'.format(accuracy))
‘Precision - {}'.format(precision))
'Recall - {}'.format(recall))

"F1 - {}'.format(f1))

Figure 13: 70:30 Data Split & Model Evaluation

80:20 split
X_train3, X_test3, Y_train3, Y _test3 = train_test_split(runs_train, runs_target, test_size = ©.20, random state = @)

sc = StandardScaler()
X_train3 = sc.fit_transform(X_train3)
X_test3 = sc.transform(X_test3)

#Random Forest
print(model_rf.fit(X_train3, Y_train3))
¥Y_pred3=model_rf.predict(X_test3)

print('Training Accuracy:", model rf.score(X_train3, Y_train3))
print(F'Accuracy: ' ,accuracy_score(Y_test3, Y_pred3))

print(F'Precision:’, precision_score(Y_test3, Y_pred3,average="weighted'))
print(F'Recall:", recall_score(Y_test3, Y_pred3,average='weighted'))
print(F'F1 Score:', f1_score(Y_test3, Y_pred3,average="weighted'))

#Naive Bayes
nb_model.fit(X_train3,y_train3)
y_pred3=nb_model.predict(X test3)

print(’'Training Accuracy:", nb_model.score(X_train3, Y_train3))
accuracy=accuracy_score(Y_test3,y_pred3)
precision=precision_score(Y_test3,y_pred3,average="weighted")
recall=recall_score(Y_test3,y pred3,average="weighted")
f1=f1_score(Y_test3,y_pred3,average="weighted")

print('Accuracy - {}'.format{accuracy))
print('Precision - {}'.format(precision))
print('Recall - {}'.format(recall))
print('F1 - {}'.format(f1))

Figure 14: 80:20 Data Split & Model Evaluation

A similar procedure was followed while running the Bowlers_Dataset_VFinal script.

	Introduction
	System Specifications
	Hardware Requirements
	Software Requirements

	Setting Up the Environment
	Selection of Data
	Implementation
	Code Blocks

