~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
MSc. Data Analytics

Mayur Said
Student ID: x21118515

School of Computing
National College of Ireland

Supervisor: Qurrat Ul Ain, PhD

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Mayur Said
Student ID: x21118515
Programme: MSc. Data Analytics
Year: 2018
Module: MSc Research Project
Supervisor: Qurrat Ul Ain, PhD
Submission Due Date: 20/12/2018
Project Title: Configuration Manual
Word Count: 506
Page Count: S

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 27th January 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Mayur Said
x21118515

This configuration manual provides an overview of the software and hardware that are
necessary to run the code and implement the project. Python codes for data preparation,
implementing data preprocessing techniques, visualization, and training deep learning
models are written using Jupyter Notebook. Jupyter Notebook can be used by installing
Anaconda in the system or with the help of Google Colab.

Python: Version 3.7-3.9

keras_vggface library E]: Latest Version

MTCNN Libraryﬂ: Latest Version

OpenCV: Latest Version

scikit-learn: Latest Version

Tensorflow Library: Version 2.7.0

Nvidia Drivers: Nvidia Drivers for NVIDIA GeForce GTX 1650 Ti

Nvidia CUDA Toolkit: Version 11.2

Nvidia cuDNN: Version 8.1

1 Data Augmentation

To implement data augmentation the code in figure 1 is written in python. Run the code
on a particular dataset to apply data augmentation techniques.

def aug(ing):
data augnentation = tf keras. Sequential([
Layers.experinental. preprocessing RandonF Lip(horizontal'),
Layers.experinental. preprocessing RandonContrast (0.7)

)
return data augnentation(ing)

Figure 1: Data Augmentation Code

Ykeras_vggface library https://github.com/rcmalli/keras-vggface
2MTCNN Library: https://github.com/ipazc/mtcnn

https://github.com/rcmalli/keras-vggface
https://github.com/ipazc/mtcnn

2 Image Enhancement

To implement image enhancement techniques, a code is written in figure 2. Run the code
on a particular image to apply image enhancement techniques.

for face in faces:

face path = os,path. join(roat, face)

pixels = cvd nred(face path, f1ags=cy2, IREAD COLGR)
0st = cv2. festilbeansDennisingC olored(plxels None, 16,18,7,21)
Inage sharp = 0. Flterd0(srcedst, ddeoth=-1, Kerel=ternel)

012, e dataset Getected faces enchanced/{face}', inage sharp)

Figure 2: Image Enhancement Code

3 Capture Frames from video clip

To capture frames from the test video clip, the code in figure 3 is executed.

video_path = 'Dataset)\clipsi\clip2.mp4’
cap = cv2.VideoCapture(video path)

idx = @
while True:
ret, frame = cap.read()
if ret == False:
cap.release()
break

if idx == e:
cv2.imurite(f"{filename}/{idx}.jpg", frame)
else:
if idx % framers per second == 0:
cv2.imwrite(f"{filename}/{idx}.jpg", frame)

idx += 1

Figure 3: Code to Capture Frames from video clip

4 Detect Faces from Capture Video Frame

To detect faces from the captured frames, a python class DetectFaces is written. The
code for the same is shown in figure 4. This class is the implementation of a face detection
block in the proposed solution. It takes the captured frame as the input and outputs all
the faces in that frame. To detect faces, first, instantiate the class DetectFaces and use
detect method to detect faces from the input image.

class DetectFaces:
def _ init (self):
#initialize the dector
self.detector = MTCHN()
self.is_face = load_model('face detection\\is_face.h5")

def detect(self, frames_path, required_size):
root, _, frames = list(os.walk(frames_path, topdown=True))[8]

#initialize empty dict for detecting faces in each frame
detected_faces = {}

#iterate through each frame

for frame in frames:
#get the path of a particular frame
path = os.path.join(roct, frame)

#set frame path as key in the dictionary
detected faces.setdefault(frame, [])

#read the frame
pixels = pyplot.imread(path)

#detect faces from frames
results = self.detector.detect_faces(pixels)
for i in range(len(results)):
get coordinates
x1, y1, width, height = results[i]['box']
x2, ¥2 = x1 + width, y1 + height
#extract the face
face = pixels[yl:y2, x1:x2]
x = np.expand_dims(face, axis=8)
if np.argmax(is_face.predict(x)) == @:
resize pixels to the model size
image = Image.fromarray(face)
image = image.resize((required_size, required_size))
face_array = asarray(image)
detected_faces[frame].append(face_array)
return detected faces

Figure 4: Code to Detect Faces

5 Implementation of Custom Convolutional Neural
Network Model

To create the custom convolutional model, run the code shown in figure 5. To compile
and fit the created model to the dataset run the code in figure 6.

6 Fine-tuning ResNet-50

First, freeze the first four stages, get the output layer of the ResNet-50 and then add
a global average pooling layer and a dense layer of five neurons on top of it. Then the

model is compiled and fitted on the authorised face dataset by running the code in figure
7.

#Model Architecture
input_shape = (BATCH_SIZE, IMAGE SIZE, IMAGE_SIZE, CHANNELS)
n_classes = 2

model = models.Sequential([
resize_and_rescale,
data_augmentatien,
layers.Conv2D(32, kernel_size = (3,3), activation="relu’, input_shape=input_shape),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, kernel_size = (3,3), activation='relu'),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, kernel_size = (3,3), activation='relu'),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(84, (3, 3), activation="relu'),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(84, (3, 3), activation="relu'),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(84, (3, 3), activation="relu'),
layers.MaxPooling2D((2, 2)),
layers.GlobalAveragePooling2D(),
layers.Dense(n_classes, activation='softmax'),

D

model.build(input_shape=input_shape)

Figure 5: Code to Build CNN Model

model. compile(
optimizer="adzm’,
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
metrics=["accuracy']

history = model.fit(
train_ds,
batch_size=BATCH_SIZE,
validation_data=val_ds,
verbose=1,
epochs=58,
callbacks=[custom_early_stopping]

Figure 6: Code to Compile and Fit CNN Model

base_model = VGGFace(model="resnet50", include_top=False, input_shapez(224, 224, 3), pooling='avg')

don't train the first 4 stages
for layer in base_model.layers[:143]:
layer.trainable = False

x = base_model.get_layer('avg_pool’).output
x = GlobalAveragePooling2D()(x)
preds = Dense(classes, activationz'softmax', names'classifier')(x)

model = Model(inputs = base_model.input, outputs = preds)

model .compile(optimizer="Adan',
loss="categorical crossentropy’,
metrics=['accuracy'])

from tensorflow.keras.callbacks import EarlyStopping
custom_early_stopping = EarlyStopping(

monitor='val accuracy',

patience=10,

min_delta=0.0a1,

mode="'max"

)

history = model.fit(train_generator,
validation_data=val_generator,
batch_size = 1,
verbose = 1,
epochs = 160,
callbacks=[custom_early_stopping])

Figure 7: Code to Fine-tune ResNet-50 Model

7 Predict Face Embedding of the detected faces

To predict face embeddings of a particular face, a python class FaceEmbedd is written.
This class FaceEmbedd can predict faces using the ResNet-50 model pre-trained on the
VGGFace2 dataset without any fine-tuning as well the fine-tuned version. First, instanti-
ate the class FaceEmbedd with either of the two models and then use the get_embeddings
method to predict face embeddings. Execute the code in Figure 8 to implement the same.

class FaceEmbedd:
def __init__ (self, model_name = 'vggface2'):

if model_name == ‘vggface2':
self.model_name = model_name
self.model = VGGFace(model="resnetse', include top=False, input_shape=(224, 224, 3), pooling='avg')

elif model_name == ‘vggface?_fine_tuned':
self.model_name = model_name
model = load_model(’models\\resnetse_model.hs')
last_layer = model.get_layer(*avg_pool’).output
x = GlobalAveragePooling2d()(last_layer)
model = Model(inputs = model.input, outputs = x)
self.model = model

else:
print (" Unknown Model')

d

o
i

get_embeddings(self, faces_path):
#read the faces from the faces path
faces_pixels_lis
root, _, faces =
for face in faces:
face_path = os.path.join(root, face)
pixels = pyplot.imread(face_path)
image - Image.fromarray(pixels)

1
(0s.walk(faces_path, topdown=True))[@]

if self.model_name == 'vggface2':
image = image.resize((224, 224))
elif self.model_name == 'facenet’:

image - image.resize((16@, 16@))
face_array = asarray(image)
faces_pixels_list.append(face_array)
face_pixels_array = asarray(faces_pixels list, 'float32')

#if model is vgg

if self.model name == 'vggface2 fine tuned’ or \

self.model _name == "vggface2':
#preprocess the faces
pre_process_pixels = preprocess_input(face_pixels_array, version=2)
#get face embeddings
face_embeddings_list = self.model.predict(pre_process_pixels)
return faces, face_embeddings_list

Figure 8: Code to Predict Face Embeddings

8 Predict detected face as ‘Authorised Face’ or ‘Un-
authorised Face’

To predict the detected face as an ‘Authorised Face’ or ‘Unauthorised Face’, a python
class called DetectUnauth is written. First Instantiate this class using the authorised face
embeddings and then use detect method in it to detect face embeddings of a particular
face as ‘Authorised Face’ or ‘Unauthorised Face’. The code for the same is shown in
Figure 9

class DetectUnauth:
def __init_ (self, known_faces_embeddings, method):
self.known_faces embeddings = known faces embeddings
if method == 'cosine’:
self.method = 'cosine'
else:
print(’Unknoun method"')

def detect(self, detected face, thresh):
for known_face in self.known _faces embeddings:
score = cosine(detacted face, known_face)
if score <= thresh:
return ('Authorised Face', score, thresh)
return ('Unauthorised Face', score, thresh)

Figure 9: Code to Detect a Given Face as ’Authorised Face’ or "Unauthorised Face’

9 Calculate precision, recall, and fl-score

Precision, recall, and fl-score are calculated using the scikit-learn library. Run the code
in figure 10 to calculate the same.

: fro sklearn inport metrics
: confusion_metric = metrics. confusion matrix(results.iloc(: 8], results.iloc[:,1])

 precision = round(metrics. precision_score(results. iloc[:,0], results.iloc[:,1], average="macro"), 3)
recall = round(metrics.recall scora(results.iloc[:,], results.iloc]:,1], average="nacro’), 3)

 accuracy = round(netrics.accuracy score(results.iloc[: 8], results.ilocf:,1]), 7)

© atcuracy, precision, recall

(L8, 18, 18)

Figure 10: Code to calculate precision, recall, and fl-score

	Data Augmentation
	Image Enhancement
	Capture Frames from video clip
	Detect Faces from Capture Video Frame
	Implementation of Custom Convolutional Neural Network Model
	Fine-tuning ResNet-50
	Predict Face Embedding of the detected faces
	Predict detected face as ‘Authorised Face’ or ‘Unauthorised Face’
	Calculate precision, recall, and f1-score

