~

-"‘f’“
\ National
College

Ireland

Forecasting Medical Insurance Claim Cost
with Data Mining Techniques

MSc Research Project
Data Analytics

Aditya Naresh Sahare
Student I1D: X21140677

School of Computing
National College of Ireland

Supervisor: Dr. Cristina Hava Muntean

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Aditya Naresh Sahare
Student ID: X21140677
Programme: Data Analytics
Year: 2022
Module: MSc Research Project
Supervisor: Dr. Cristina Hava Muntean
Submission Due Date: 15/12/2022
Project Title: Forecasting Medical Insurance Claim Cost with Data Mining
Techniques
Word Count: 557
Page Count: B

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 1st February 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Forecasting Medical Insurance Claim Cost with Data
Mining Techniques

Aditya Naresh Sahare
X21140677

1 Hardware Requirements

The computer has AMD Ryzen 5 5600H Processor with Radeon Graphics, 3301 Mhz, 6
Core(s), 12 Logical Processor(s) with 8GB RAM, 512GB SSD, 4GB NVIDIA GEFORCE
RTX Graphic Card.(Figure 1)

Device specifications

Device name
Processor
Installed RAM
Device ID
Product ID
System type

Pen and touch

Related links Domain or workgroup ~ System protection ~ Advanced system settings

Windows specifications

Edition Nindows 11 Home Single Language
Version

Installed on

OS build

Experience Wi eature Experience Pack 10(

Microsoft Services Agreement

Microsoft Software License Terms

Figure 1: Hardware Requirements

2 Software Requirements

The code has been written in Python Language. Jupyter Notebook has been used which
is an Integrated Development Environment(IDE) for programming. This IDE is present

1

in Ananconda Application (Figure 2).

Individual Edition is now

ANACONDA DISTRIBUTION

The world’s most popular open-
source Python distribution platform

Figure 2: Anaconda navigator specification

Anaconda Distribution

For Windows

Python 3.9 « 64-Bit Graphical Installer « 621 MB

Get Additional Installers

LI

Install this Anaconda Distribution which launches the Anaconda Navigator home.
This consist of Jupyter Notebook (Figure 3).

) Anaconda Navigator

File Help

i) ANACONDA NAVIGATOR

A Home

@ Envionments
.

N Learning

&% Community

Anaconda =

Notebooks

Cloud notebooks with
hundreds of packages
ready to code.

Install Jupyter Notebook in this pack in Anaconda Navigator.

Applications on | base (roat)

CMD.exe Prompt

Run a cmd.exe terminal with your curre,
enuironment from Navigator activated

| Launch |

Pty

i

Qt Console

As

PyQt GUI that supports inline figures,
proper multiline editing with syntax

hightighting, graphical calltips, and more.

 Loune

h)

nt

v| | channels

Datalore

Online Data Analysis Tool with smart

coding assistance by JetBrains. Edit and run

‘your Python notebooks in the cloud and
share them with your team.

| Launeh |

A'a
Spyder
Asis
Scientific P*fthon Development
EnviRonment. Powerful Python IDE with

advanced editing, interactive testing,
debugging and introspection Features

(Launeh |

o o
e @
1BM Watson Studio Cloud JupyterLab

An extensible environment For interactive
and reproducible computing, based on the
Jupyter Notebook and Architecture.

1BM Watson Studio Cloud provides you the
tools to analyze and visualize data, to
cleanse and shape data, to create and train
machine learning models. Prepare data and
build models, using open source dats
science tools or visual modeling.

(Lounen | (Lounen |
& &
Glueviz Orange 3

100 3320
Multidimensional data visuslization across || Component based data mining Framework
files. Explore relationships within and Data visualization and data analysis for
ameng related datasets. novice and expert. Interactive workFows

with a large toolbox.

[wnseant |

Figure 3: Anaconda navigator overview

s -0 e
Jupyter %
) gl

Notebook Powershell Prompt
A 645
Web-based, interactive computing Run a Powershell terminal with your

notebook environment. Edit and run current environment From Navigator

human-readable docs while describing the activated
data analysis
(Launch | (Launch |
& &
PyCharm Frofessional Rstudio

11436

Aset of integrated tools designed to halp

you be more productive with R.Includes R
essentials and notebooks.

A Full-Fledged IDE by JetBrains For both
Scientific and Web Python development.
Supports HTML, JS, and SQL.

[wnseant | [wnseant |

The best part of

Jupyter Notebook is it automatically update the system environment variables to run

Python.exe

3 Libraries required for Python

Following are the libraries used to run the code. If the libraries are not found in JUpyter
Notebook, then write "pip install library name’, here you can library name to required
library listed below.

numpy
matplotlib
pandas
seaborn
sklearn

statsmodels

scipy

Dataset Description

Health insurance dataset can be found in this URL: https://www.kaggle.com/
datasets/sureshgupta/health-insurance-data-set.

The dataset is uploaded with the code artifacts.

Save the daaset in the same file as Python code file and give the file name in
pd.read_csv(”file name”) like in Figure 4

3. Read Data

df_insurance = pd.read_csv({"health_insurance_final.csv")
df_insurance.head{}

Figure 4: Reading the data in code

Data pre-processing
In data pre-processing, the missing values are handled first.
Exploratory Data Analysis of the dataset (Figure 6).

Since the city variable has 91 cities, a new feature is introduced combining some
cities which are from the same region.

Hot encoding of categorical variables needs to be done for Linear Regression model

https://www.kaggle.com/datasets/sureshgupta/health-insurance-data-set
https://www.kaggle.com/datasets/sureshgupta/health-insurance-data-set

Deal with Missing Values

df_insurance['age’].groupby(df_insurance['sex’], axis=@).mean()

sex
female 39.361@48
male 39.738395

Name: age, dtype: floated

The average age for the male and female is nearly the same. We will fill in missing values with the mean age of the policyholder.
df_insurance['age’].fillna(df_insurance['age’].mean(), inplace=True)

Replace missing values by mean for the BMIL

df_insurance['bmi’].fillna(df_insurance['bmi’].mean(), inplace=True)

We have seen that the the minimum bloodpressure is 0, which is absurd. It implies that these are missing values. Let us replace these missing values with the
median value

median_bloedpressure = df_insurance['bloodpressure’].median()
df_insurance['bloodpressure’] = df_insurance[blocdpressure’].replace(8,median_bloodpressure)

Figure 5: Code for Missing values

4.2.3 Dummy Encoding of Categorical Variables

To build linear regression models we use OLS method. The OLS method fails to perform in presence of categorical variables. To overcome this we use dummy
encoding

1. Filter numerical and categorical variables

df_numeric_features = df_insurance.select_dtypes(include=np.number)
df_numeric_features.columns

Index(["age', 'weight', "bmi', 'no_of_dependents', 'bloodpressure', 'claim',
"sgri_claim'],
dtype="object")

df_categoric_features = df_insurance.select_dtypes(include=[np.object])
df_categoric_features.columns

Index(["sex', 'hereditary disesses’, 'smoker”, 'state', "disbetes’,
"regular_ex', 'job_title', 'region’],
dtype="object')

2. Dummy encode the catergorical variables

for col in df_categoric_features.columns.values:
dummy_encoded_variables = pd.get_dummies(df_categoric_features[col], prefix=col, drop_first=True)
df_categoric_features = pd.concat([df_categoric_features, dummy_encoded variables],axis=1)
df_categoric_features.drop{[col], axis=1, inplace=True)

Figure 8: Creating new feature ”Region”

sex

female

smoker

diabetes

°

£l

£l

Epilepsy (77

Eye Disease ||12

Mzheimer ||31

Arthritis |m
Heart Disease |B7

Diabetes ||3s

hereditary diseases

Cancer |1u7

1000 2000 3000 2000 5000 €000 7000 0 2000 2000 €000 8000 10000

New Yark
Massachuselts

New Jersey
Oregon
Connecticut
linois
n
11114 Rhode Isiand
Washingion DG
rginia
Ceorgia
Mlabama
South Carolina
North Carolina

state
b

12000

California
issouri

South Dakota
ta

Colorade

Arizona

xico
New Mexico

2000 4000 6000 8000 10000 [} 50 500 750 1000 1250 1500
count count

3182 0

| | .m

2000 4000 6000 8000 10000 [} 2000 4000 6000 8000
count count

regular_ex

Figure 6: EDA of Numerical and Categorical values

1750

10000

10696

4.1.8 Feature Engineering

Create a new feature 'region’ by combining the cities
There are 91 unique cities. We will divide these cities into North-East, West, Mid-West, and South regions.

Let's create a new variable region. We will replace the original variable city with it

#

: |# create @ region column and combine the north-egst cities

df_insurance['region'] = df_insurance['city'].replace(['New York', 'Boston', 'Philadelphia', 'Pittsburgh’, 'Buffalo’,
‘Atlantic City','Portland', 'Cambridge’, 'Hartford',
‘Springfield", 'Syracuse', 'Baltimore', 'York', "Trenton',
"Warwick®', 'Washington DC', 'Providence’, 'Harrisburg®,
'Newiport 'Stamford', 'Worcester'],
'North-East')

#

: | # combine all the souwthern cities into the ‘region’ column

df_insurance['region'] = df_insurance['region’].replace(["Atlanta', 'Birmingham', 'Charleston', 'Charlotte’',
"Louisville', "Memphiz', 'Nashwville', 'New Orleans',
"Raleigh', 'Houston®, 'Georgia', 'Oklahoma', 'Orlando’,
"Macon', "Huntsville', 'Knoxville', 'Florence', 'Miami',
*Tamps', 'Panamz City', 'Kingsport', 'Marshall'],
"Southern')

: | # combine all the mid-west cities into the ‘region’ column

df_insurance['region'] = df_insurance['region’].replace(['Mandan’', 'Weterloo', 'Iowa City', 'Columbia’,
*Indisnapolis', 'Cincinnati', 'Bloomington', 'Salina’,
Kanas City', "Brookings', 'Minot', 'Chicago', 'Lincoln’,
'Falls City', "Grand Forks', 'Fargo', 'Cleveland’,
*Canton', "Columbus®, 'Rochester', 'Minneapolis®,
*Jefferson City", 'Escanaba’,'Youngstown'],
"Mid-West')

: |# combine all the western cities into the ‘region’ column

df_insurance['region'] = df_insurance['region’].replace(["Santa Rosa', "Eureka', 'San Francisco', 'San Jose',
"Los Angeles', "Oxnard', 'San Deigo', 'Oceanside’,
*Carlsbad', 'Montrose', 'Prescott', 'Fresno', 'Reno’,
Las Vegas®', 'Tucson', 'San Luis', 'Denver', 'Kingman',
‘Bakersfield', 'Mexicali', 'Silwer City', 'Phoenix’,
*Santa Fe', 'Lovelock'],
“West')

Figure 7: Creating new feature ”Region”

6 Model Implementation

6.1

Linear Regression

df_insurance_dummy = sm.add_constant(df_insurance_dummy)
df_insurance_dummy.drop{['claim”, "sqrt_claim'], axis=1)
df_insurance_dummy[['sgrt_claim®, "claim']]

¥ _trein, ¥_test, v_train, y_test = train_test_split({¥, v, random_state=1)
print{“The shape of ¥_train is:",¥_train.shape)

print{“The shape of ¥_test is:",X_test.shape)

print{"The shape of y_trainm is:",y train.shape)

X
:.l.' =

print{"The shape of y_test is:",y test.shape)

The
The
The
The

shape
shape
shape
shape

of ¥_train is: (18238, 9@)
of ¥_test is: (3413, 94)
of v_train is: (18238, 2)
of v_test is: (3413, 2O

Figure 9: Test train split

build @ full model with significant variables using OLS()
linreg_model_with_significant_var = sm.OLS(y train['claim'], X_train_significant).fit()

to print the summory output
print(linreg _model with significant_var.summary())

0OLS Regression Results

Dep. Variable: claim R-sgquared: @.712
Model: OLS Adj. R-squared: @.712
Method: Least Squares F-statistic: 3186,
Date: Wed, 14 Dec 2822 Prob (F-statistic): a.e0
Time: 11:83:5% Log-Likelihood: -1.8432e+85
Mo. Observations: 18238 AIC: 2.987e+25
Df Residuals: 1la2123 BIC: 2.98T7e+83
Df Model: 8
Covariance Type: nonrobust

cosf std err t Prlt| [8.0825 ©.975]
const -1.854e+04 615.974 -17.822 8.089 -1.17e+@84 -9322.94%
age 258.4304 4.832 53.487 8.088 249,018 267.961
weight -5@.32815 5.889 -18.835 8.a88 -68.879 -43.444
bmi 271.4069 11.695 23.288 9.088 245,482 294,332
no_of_dependents 424.8461 52.8@21 8.248 8.088 321.445 528.447
bloodpressure 35.99538 6.838 5.962 8.088 24,181 47.831
smoker_1 2.325e+04 168,983 144,453 9.088 2.292+84 2.36e+84
diabetes_1 1738.1415 154,136 11.878 8.288 1495.987 201a.376
regular_ex_1 -915.7722 152.445 -5.897 9.088 -1214.6@2 -616.944
Omnibus: 18308.877 Durbin-Watsen: 2.822
Prob{Omnibus);: @.008 Jarque-Bera (JB): 4737.254
Skew: @.982 Prob{JB): a.e0
Kurtosis: 5.695 Cond. No. 1.87e+33
Motes:

[1] Standard Errors assume that the covsriance matrix of the errors iz correctly specified.
[2] The condition number is large, 1.87e+@3. This might indicate that there are
strong multicollinearity or other numerical problems.

Figure 10: Linear Regression Model

7 Evaluation of Implemented Methods

Evaluation metrics used are R2 score, Adjusted R2 score and RMSE value

3. Predict the values using test set

In [480]: |# predict the 'sqrt_claim® using predict()
linreg_full_model_withsgrt_predictions = linreg_full_model_withsgrt.predict(X_test)
Note that the predicted values are log transformed claim. In order to get claim values, we take the antilog of these predicted values by using the
function np.exp()

In [481]: predicted_claim = np.square{linreg_full_model_withsqrt_predictions)

actual_claim = y_test['claim’]

4. Compute accuracy measures

Now we calculate accuray measures like Roof-mean-square-error (RMSE), R-squared and Adjusted R-squared

In [482]: |# calculate rmse using rmse()
linreg full_model withsgrt_rmse =

rmse(actual_claim, predicted_claim)

calculate R-squared using rsquared

linreg_full_model_withsqr_rsquared - linreg_full_model_withsqrt.rsquared
calculate Adjusted R-Squared using rsquared_adj
linreg_full_model_withsqrt_rsquared adj - linrez full_model withsgrt.rsquared_adj

5. Tabulate the results

In [483]: score_card = pd.DataFrame({columns=["Model_MName', "R-Sgquared', 'Adj

score_card

. R-Squared', 'RMSE'])

Model_Name R-Squared Adj. R-Squared RMSE

In [484]: linreg_full_model_withsgrt_metrics = pd.Series({
"Model_Mame': "Linreg full model with sqrt of target variable",
"RMSE':linreg full_model_withsgrt_rmse,
"R-Squared': linreg full_medel withsgrt_rsquared,
"Adj. R-Squared': linreg full_model_withsqrt_rsquared_adj
)

score_card = score_card.append(linreg_full_model_withsqrt_metrics, ignore_index=True)
score_card

Wodel_Name R-Squared Adj. R-Squared RMSE

0 Linreg full model with sqrt of target varable 0.763457 0761383 5831.709884

Figure 11: Evaluating model on test data

plt.scatter(actual_claim,predicted_claim)
plt.xlabel("Actusl Claim")
plt.ylabel("Predicted Claim")
plt.title("Actual Claim vs Predicted Claim")

Text(@.5, 1.2, 'Actual Claim vs Predicted Claim')

Actual Claim vs Predicled Claim

50000
L]
L]
40000
E o
8 L]
E 0000
3
i
20000
10000
0
0 10000 20000 0000 20000 50000 80000
Actual Claim

Figure 12: Actual vs Predicted plot of the best model

	 Hardware Requirements
	Software Requirements
	Libraries required for Python
	Dataset Description
	Data pre-processing
	Model Implementation
	 Linear Regression

	Evaluation of Implemented Methods

