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Forecasting Medical Insurance Claim Cost with Data
Mining Techniques

Aditya Naresh Sahare
X21140677

1 Hardware Requirements

The computer has AMD Ryzen 5 5600H Processor with Radeon Graphics, 3301 Mhz, 6
Core(s), 12 Logical Processor(s) with 8GB RAM, 512GB SSD, 4GB NVIDIA GEFORCE
RTX Graphic Card.(Figure 1)
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System type

Pen and touch

Related links  Domain or workgroup ~ System protection ~ Advanced system settings
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Edition Nindows 11 Home Single Language
Version

Installed on
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Microsoft Services Agreement
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Figure 1: Hardware Requirements

2 Software Requirements

The code has been written in Python Language. Jupyter Notebook has been used which
is an Integrated Development Environment(IDE) for programming. This IDE is present
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in Ananconda Application (Figure 2).
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Install this Anaconda Distribution which launches the Anaconda Navigator home.
This consist of Jupyter Notebook (Figure 3).
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Figure 3: Anaconda navigator overview
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3 Libraries required for Python

Following are the libraries used to run the code. If the libraries are not found in JUpyter
Notebook, then write "pip install library name’, here you can library name to required
library listed below.



numpy
matplotlib
pandas
seaborn
sklearn

statsmodels

scipy

Dataset Description

Health insurance dataset can be found in this URL: https://www.kaggle.com/
datasets/sureshgupta/health-insurance-data-set.

The dataset is uploaded with the code artifacts.

Save the daaset in the same file as Python code file and give the file name in
pd.read_csv(”file name”) like in Figure 4

3. Read Data

df_insurance = pd.read_csv({"health_insurance_final.csv")
df_insurance.head{}

Figure 4: Reading the data in code

Data pre-processing
In data pre-processing, the missing values are handled first.
Exploratory Data Analysis of the dataset (Figure 6).

Since the city variable has 91 cities, a new feature is introduced combining some
cities which are from the same region.

Hot encoding of categorical variables needs to be done for Linear Regression model


https://www.kaggle.com/datasets/sureshgupta/health-insurance-data-set
https://www.kaggle.com/datasets/sureshgupta/health-insurance-data-set

Deal with Missing Values

df_insurance['age’].groupby(df_insurance[ 'sex’], axis=@).mean()

sex
female  39.361@48
male 39.738395

Name: age, dtype: floated

The average age for the male and female is nearly the same. We will fill in missing values with the mean age of the policyholder.
df_insurance['age’].fillna(df_insurance['age’].mean(), inplace=True)

Replace missing values by mean for the BMIL

df_insurance['bmi’].fillna(df_insurance[ 'bmi’].mean(), inplace=True)

We have seen that the the minimum bloodpressure is 0, which is absurd. It implies that these are missing values. Let us replace these missing values with the
median value

median_bloedpressure = df_insurance['bloodpressure’].median()
df_insurance[ 'bloodpressure’] = df_insurance[ blocdpressure’].replace(8,median_bloodpressure)

Figure 5: Code for Missing values

4.2.3 Dummy Encoding of Categorical Variables

To build linear regression models we use OLS method. The OLS method fails to perform in presence of categorical variables. To overcome this we use dummy
encoding

1. Filter numerical and categorical variables

df_numeric_features = df_insurance.select_dtypes(include=np.number)
df_numeric_features.columns

Index(["age', 'weight', "bmi', 'no_of_dependents', 'bloodpressure', 'claim',
"sgri_claim'],
dtype="object")

df_categoric_features = df_insurance.select_dtypes(include=[np.object])
df_categoric_features.columns

Index(["sex', 'hereditary disesses’, 'smoker”, 'state', "disbetes’,
"regular_ex', 'job_title', 'region’],
dtype="object')

2. Dummy encode the catergorical variables

for col in df_categoric_features.columns.values:
dummy_encoded_variables = pd.get_dummies(df_categoric_features[col], prefix=col, drop_first=True)
df_categoric_features = pd.concat([df_categoric_features, dummy_encoded variables],axis=1)
df_categoric_features.drop{[col], axis=1, inplace=True)

Figure 8: Creating new feature ”Region”
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4.1.8 Feature Engineering

Create a new feature 'region’ by combining the cities
There are 91 unique cities. We will divide these cities into North-East, West, Mid-West, and South regions.

Let's create a new variable region. We will replace the original variable city with it

#

: |# create @ region column and combine the north-egst cities

df_insurance['region'] = df_insurance['city'].replace(['New York', 'Boston', 'Philadelphia', 'Pittsburgh’, 'Buffalo’,
‘Atlantic City','Portland', 'Cambridge’, 'Hartford',
‘Springfield", 'Syracuse', 'Baltimore', 'York', "Trenton',
"Warwick®', 'Washington DC', 'Providence’, 'Harrisburg®,
'Newiport 'Stamford', 'Worcester'],
'North-East')

#

: | # combine all the souwthern cities into the ‘region’ column

df_insurance['region'] = df_insurance['region’].replace(["Atlanta', 'Birmingham', 'Charleston', 'Charlotte’',
"Louisville', "Memphiz', 'Nashwville', 'New Orleans',
"Raleigh', 'Houston®, 'Georgia', 'Oklahoma', 'Orlando’,
"Macon', "Huntsville', 'Knoxville', 'Florence', 'Miami',
*Tamps', 'Panamz City', 'Kingsport', 'Marshall'],
"Southern')

: | # combine all the mid-west cities into the ‘region’ column

df_insurance['region'] = df_insurance['region’].replace(['Mandan’', 'Weterloo', 'Iowa City', 'Columbia’,
*Indisnapolis', 'Cincinnati', 'Bloomington', 'Salina’,
Kanas City', "Brookings', 'Minot', 'Chicago', 'Lincoln’,
'Falls City', "Grand Forks', 'Fargo', 'Cleveland’,
*Canton', "Columbus®, 'Rochester', 'Minneapolis®,
*Jefferson City", 'Escanaba’,'Youngstown'],
"Mid-West')

: |# combine all the western cities into the ‘region’ column

df_insurance['region'] = df_insurance['region’].replace(["Santa Rosa', "Eureka', 'San Francisco', 'San Jose',
"Los Angeles', "Oxnard', 'San Deigo', 'Oceanside’,
*Carlsbad', 'Montrose', 'Prescott', 'Fresno', 'Reno’,
Las Vegas®', 'Tucson', 'San Luis', 'Denver', 'Kingman',
‘Bakersfield', 'Mexicali', 'Silwer City', 'Phoenix’,
*Santa Fe', 'Lovelock'],
“West')

Figure 7: Creating new feature ”Region”

6 Model Implementation

6.1

Linear Regression

df_insurance_dummy = sm.add_constant(df_insurance_dummy)
df_insurance_dummy.drop{['claim”, "sqrt_claim'], axis=1)
df_insurance_dummy[ [ 'sgrt_claim®, "claim']]

¥ _trein, ¥_test, v_train, y_test = train_test_split({¥, v, random_state=1)
print{“The shape of ¥_train is:",¥_train.shape)

print{“The shape of ¥_test is:",X_test.shape)

print{"The shape of y_trainm is:",y train.shape)

X
:.l.' =

print{"The shape of y_test is:",y test.shape)

The
The
The
The

shape
shape
shape
shape

of ¥_train is: (18238, 9@)
of ¥_test is: (3413, 94)
of v_train is: (18238, 2)
of v_test is: (3413, 2O

Figure 9: Test train split



# build @ full model with significant variables using OLS()
linreg_model_with_significant_var = sm.OLS(y train['claim'], X_train_significant).fit()

# to print the summory output
print(linreg _model with significant_var.summary())

0OLS Regression Results

Dep. Variable: claim R-sgquared: @.712
Model: OLS  Adj. R-squared: @.712
Method: Least Squares F-statistic: 3186,
Date: Wed, 14 Dec 2822 Prob (F-statistic): a.e0
Time: 11:83:5%  Log-Likelihood: -1.8432e+85
Mo. Observations: 18238  AIC: 2.987e+25
Df Residuals: 1la2123  BIC: 2.98T7e+83
Df Model: 8
Covariance Type: nonrobust

cosf std err t Prlt| [8.0825 ©.975]
const -1.854e+04 615.974 -17.822 8.089 -1.17e+@84  -9322.94%
age 258.4304 4.832 53.487 8.088 249,018 267.961
weight -5@.32815 5.889 -18.835 8.a88 -68.879 -43.444
bmi 271.4069 11.695 23.288 9.088 245,482 294,332
no_of_dependents  424.8461 52.8@21 8.248 8.088 321.445 528.447
bloodpressure 35.99538 6.838 5.962 8.088 24,181 47.831
smoker_1 2.325e+04 168,983 144,453 9.088 2.292+84 2.36e+84
diabetes_1 1738.1415 154,136 11.878 8.288 1495.987 201a.376
regular_ex_1 -915.7722 152.445 -5.897 9.088  -1214.6@2 -616.944
Omnibus: 18308.877  Durbin-Watsen: 2.822
Prob{Omnibus);: @.008  Jarque-Bera (JB): 4737.254
Skew: @.982  Prob{JB): a.e0
Kurtosis: 5.695 Cond. No. 1.87e+33
Motes:

[1] Standard Errors assume that the covsriance matrix of the errors iz correctly specified.
[2] The condition number is large, 1.87e+@3. This might indicate that there are
strong multicollinearity or other numerical problems.

Figure 10: Linear Regression Model

7 Evaluation of Implemented Methods

Evaluation metrics used are R2 score, Adjusted R2 score and RMSE value

3. Predict the values using test set

In [480]: |# predict the 'sqrt_claim® using predict()
linreg_full_model_withsgrt_predictions = linreg_full_model_withsgrt.predict(X_test)
Note that the predicted values are log transformed claim. In order to get claim values, we take the antilog of these predicted values by using the
function np.exp()

In [481]: predicted_claim = np.square{linreg_full_model_withsqrt_predictions)

actual_claim = y_test['claim’]

4. Compute accuracy measures

Now we calculate accuray measures like Roof-mean-square-error (RMSE), R-squared and Adjusted R-squared

In [482]: |# calculate rmse using rmse()
linreg full_model withsgrt_rmse =

rmse(actual_claim, predicted_claim)

# calculate R-squared using rsquared

linreg_full_model_withsqr_rsquared - linreg_full_model_withsqrt.rsquared
# calculate Adjusted R-Squared using rsquared_adj
linreg_full_model_withsqrt_rsquared adj - linrez full_model withsgrt.rsquared_adj

5. Tabulate the results

In [483]: score_card = pd.DataFrame({columns=["Model_MName', "R-Sgquared', 'Adj

score_card

. R-Squared', 'RMSE'])

Model_Name R-Squared Adj. R-Squared RMSE

In [484]: linreg_full_model_withsgrt_metrics = pd.Series({
"Model_Mame': "Linreg full model with sqrt of target variable",
"RMSE':linreg full_model_withsgrt_rmse,
"R-Squared': linreg full_medel withsgrt_rsquared,
"Adj. R-Squared': linreg full_model_withsqrt_rsquared_adj
)

score_card = score_card.append(linreg_full_model_withsqrt_metrics, ignore_index=True)
score_card

Wodel_Name R-Squared Adj. R-Squared RMSE

0 Linreg full model with sqrt of target varable  0.763457 0761383 5831.709884

Figure 11: Evaluating model on test data



plt.scatter(actual_claim,predicted_claim)
plt.xlabel("Actusl Claim")
plt.ylabel("Predicted Claim")
plt.title("Actual Claim vs Predicted Claim")

Text(@.5, 1.2, 'Actual Claim vs Predicted Claim')

Actual Claim vs Predicled Claim
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Figure 12: Actual vs Predicted plot of the best model
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