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1 Introduction

The paper includes comprehensive information on the equipment and programs used to support the
project's development from beginning to end. This setup manual paper, which is included with the
research project report, enables readers to comprehend the study better. Therefore, any technical
details necessary for project completion but are not permitted to be included in the report are discussed
here.

2 Hardware and Software requirement

To study the architecture of Machine learning classification models (Linear SVC, Random Forest,
KNN Algorithm, Logistic Regression) and BERT, RoBERTa model we have used software. The
software and hardware necessary to complete the work are thus described here.2.1Software used

Table 1: Software used

Tools used for programming Anaconda navigator,Jupyter
Notebook, Google Colab

Tools used to build the report MS. Excel, MS. PowerPoint and MS.
Word.

Programing Language used Python.

Data storage Google Drive, GitHub, Local system

2.2 Hardware required
Table 2: Hardware used

System Specification
Operating System Windows 10 pro
Processor Intel core i5-7" Gen
RAM 8GB
System type 64-bit OS, x64-based processor
Graphic card NVidia GeForce




3 Software installation

3.1 Steps to install Anaconda navigator and Jupyter Notebook On windows.
1) Go to the downloads page for Anaconda.. Visit the following website: Anaconda.com/downloads

{O ANACONDA Whatfs Anoconda? Products  Supy smmanty About Resources [

Download Anaconda Distribution

Version 5.01 | Release Date: Octobes 25, 2017

Figure 1: The Anaconda Downloads Page will look something like this
2) Choose Windows. The three operating systems are offered when you choose Windows, as

seen in figure 2 below.

= Windows ' macOS 'f} Linux

Figure 2: Select window option

3) Then the .Exe file gets downloaded.
4) After downloading the .exe file, we need to install the anaconda in the system. To do this
we follow the below step

1 https://problemsolvingwithpython.com/01-Orientation/01.03-Installing-Anaconda-on-Windows/


https://www.anaconda.com/download/

D Anaconda3 2022.05 (64-bit) Setup - X

Welcome to Anaconda3 2022 .05
(64-bit) Setup

Setup will guide you through the installation of Anaconda3
2022.05 (64-bit).

Itis recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer.

Click Next to continue.

) ANACONDA.

.

o
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Figure 3: Installation window

O Anaconda3 2022.05 (64-bit) Setup —

o License Agreement
u_) ANACONDA. Please review the license terms before installing Anaconda3
2022.05 (64-bit).

Press Page Down to see the rest of the agreement.

End User License Agreement - Anaconda Distribution

Copyright 2015-2022, Anaconda, Inc.
All rights reserved under the 3-clause BSD License:
This End User License Agreement (the "Agreement”) is a legal agreement between you

and Anaconda, Inc. ("Anaconda”) and governs your use of Anaconda Distribution (which
was formerly known as Anaconda Individual Edition). v

If you accept the terms of the agreement, click I Agree to continue. You must accept the
agreement to install Anaconda3 2022.05 (64-bit).

fnaconda, Inc

<Back [ IAgee | | cancel

Figure 4: License agreement window



D Anaconda3 2022.05 (64-bit) Setup - X

Select Installation Type

_) ANACONDA Please select the type of installation you would like to perform for
Anaconda3 2022.05 (64-bit).

Install for:

(® Just Me (recommended)

(O All Users (requires admin privileges)

< Back Cancel

Figure 5: Selection of installing type window

5) After choosing the user in the aforementioned figure, click next and wait for Anaconda to
fully install on your machine.

6) After the installation is finished, run the program from the Start menu to see a screen
similar to the one in the accompanying image. By default, JupyterLab and Jupyter
Notebook are installed.



Application on - noce =t

Figure 6: Anaconda interface

3.2 Installation of GitHub desktop
i.  Click on this link https://desktop.github.com/ and Select Windows Download?.

Download for Windows (64bit)

Figure 6: GitHub download page

ii.  After downloading the setup file, we must install the setup.

») GitHubDesktopSetup

iii.  Following the successful installation of GitHub. launch of the application. We also
need to create a repository where we can store all of the files and share them with
everyone.

3.3 Google colaboratory

2 https://www.techrepublic.com/article/how-to-install-github-desktop/


https://desktop.github.com/
http://www.techrepublic.com/article/how-to-install-github-desktop/

Google Colab has being utilized for additional programming-related parts.
Considering its advantages, including a free GPU, keep notebooks on Google
Drive. Additionally, it can work with Github and local memory, which is helpful
while utilizing it. Additionally, the programming notebook may be stored straight to
without having to install it on the PC.

Go to https://colab.research.google.com/ to create a new notebook on Colab. It will
automatically display your previous notebooks and offer you the option to start a
new one>.
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Figure 6: google colab interface to for new working notebook

The fact that Colab provides free GPU and TPU support is its greatest perk. You
may choose GPU or TPU for your software by selecting Runtime > Change runtime
type. may contribute to accelerating the runtime.

3 https://www.kdnuggets.com/2020/06/google-colab-deep-learning.html


http://www.kdnuggets.com/2020/06/google-colab-deep-learning.html

Runtime  Tools Help

Run &l Carl+Fg ¢

Factory reset runtime
Change runtime type

Manzage sessions

Figure 7: Changing runtime

3.4 Microsoft Word, Microsoft PowerPoint, Microsoft excel
The report is put together using Microsoft Word, Microsoft PowerPoint, and
Microsoft Excel, which also help with the production of graphs and the
presentation of the research project. All of these programs, which assist with the
writing portion of the research, are convenient to use and simple to comprehend.

W X

Figure 8: Microsoft tool used for report building

4 Python Libraries used

For the deep learning and Machine learning task and for the Exploratory data
Analysis different libraries are used in python that are showed in figure 9
below.



import nltk

nltk.download( ' stopwords")

nltk.download( ‘wordnet"} #{uncomment and rum this line when running the code for first time)
nltk.download( "omw-1.4")

from nltk.corpus import stopwords

import string

from nltk.tokenize import word_tokenize

from nltk.stem import worddetLemmatizer

from nltk.corpus import wordnet

from nltk.stem.lancaster import Lancasterstemmer
from nltk.corpus import stopwords

from nltk.stem.snowball import SnowballsStemmer
from nltk.stem import wWordNetLemmatizer
lemmatizer = wWordnetLemmatizer()}

from bs4 import BeautifulSoup

stops = set{stopwords.words("engliszh"})
stemmer = SnowballStemmer(®english'}

!pip install wvaderSentiment
from wadersemtiment.vadersentiment import sentimentIntensityvamalyzer

!pip install transformers

import transformers

from transformers import AautoTokenizer, TFBertModel
tokenizer = AautoTokenizer.from_pretrained{'bert-base-cased")
bert = TFBeridodel.from pretrained( "bert-base-cased")

import tensorflow as tf

from tensorflow.keras.optimizers import Adam

from tensorflow.keras.callbacks imp Earlystopping

from tenscrflow.keras.initializers import TruncatedMormal
from tensorflow.keras.losses import Cateporicalcrossentropy
from tensorflow.keras.metrics import CategoricalAccuracy
from tensorflow.keras.utils import to categorical

from tensorflow.keras.layers import Input, Dense

from sklearm.metrics import classification_report
from sklearn.model selecticn import train_test split

Figure 9: Python libraries used

Libraries Version
Sklearn 1.0.2
Pandas 1.41

Matplotlib 3.5.1

Tensorflow 2.8.0
Numpy 1.12.2
matplotl 3.0.0

ib

Table 3. Python Libraries Version

5 Data Understanding and Pre-processing Step

The dataset is obtained by scraping tweets directly from twitter

Nature of dataset is raw with multiple anomalies.

Technique used to scrape data is my using @mentions (@GooglePay, @Phonepe, @Paytm,
@AmazonPay, @PayPal)

The shape of dataset is Row=30000,Columns=17

6000 records present for each brand



Scraping Twitter Data using snscrape

tweet.user. displaynase,

eet, tweet.hashtags]

df - pd.Datafrome(tweets, col

slg', Index-False)

Figure 10. Twitter Data Extraction

def clean_text(review):
cleaning_text = remove_URL(review)
# cleaning_text = BeautifulSoup(review, 'html.parser').get text()
cleaning_text = re.sub('[~a-zA-Z]', " ", cleaning_text)
cleaning_text = emoji.demojize(cleaning_text)
cleaning_text = cleaning_text.lower().split()
punctuations = '""1()-[1{};: " "\ <> S 2@HERNEF "
cleaning text = [w for w in cleaning text if not w in punctuations]
cleaning_text = [w for w in cleaning_text if not w in stops]
cleaning text = [lemmatizer.lemmatize(w) for w in cleaning_text]
return{ ' '.join(cleaning_text))

#lematization

def string lemmatization(string):
raw_string = string.split()
lematize string = [lemmatizer.lemmatize{word) for word in raw_string]
return{ ' '.join(lematize_string))

#contraction word conversion

cust_data[ ‘clean_text'] = cust_data['content'].apply(lambda tx: ' '.join([contractions.fix(word) for word in tx.split()]))
cust_data[ 'clean text'] = cust data['clean text'].apply(clean_text)
cust_data[ ‘clean_text'] = cust_data['clean_text'].apply(clean_num)

# removing stop words
for stop_word in sklearn_stop:
nltk_stop.append(stop_word)

cust_data[ ‘clean_text'] = cust_data['clean_text'].apply(lambda rev: ' '.join{[text for text in rev.split() if text not in (nltk_stop)]))
cust_data[ 'clean_text'] = cust_data['clean_text'].apply(string_lemmatization)

Figure 10. Data Preprocessing

Data Preprocessing involves following:

Cleaning the text by removing Punctuations, #, @mentions
Removing contractions and emojis.

Removing the Stopwords, lemmatizing



print{cust_data.columns)
primt("""
iy

cust_data.info()

primt(""’
Rows and columns length:''",
cust_data.shape)

Index{['application®, ‘date", ‘'content’, 'wserid®, 'username', ‘displayname’,
‘followerscount®, ‘friendscount', 'locaticn”, ‘replycount', "likecount'
‘retweetcount’, "language’, 'source', ‘mentionedusers’',
'retweetedtweet’, 'hashtags'],

ditype="chject")

<class 'pandas.core.frame.DataFrame’ >
RangeIndex: 3@@0@ entries, @ to 29999
Data columns (total 17 columns):

#  Column Dtype

@ application 3egee non-null object
1 date 3ee@00 non-null object
2 content 3ee@e0 non-null object
3 userid 2eee@ non-null object
4 username 3g@e0 non-null object
5 displayname 3g200 non-null object
& followersCount 328200 non-null object
7  friendscount 2geee non-null object
g location 22888 non-null object
3 replycount 22888 non-null object
18 likecount 3ee@ee non-null object
11 retweetcount 3eeee non-null object
12 language 3ee@00 non-null object
13 source 3ee@e0 non-null object

14 mentionedusers 32@2e@ non-null object
15 retweetedtweet 320200 non-null object
15 hashtags 3g200 non-null object
dtypes: object{17)
mEmMOry usage: 3.9+ MB

Rows and columns length: (3@ees, 17)

Figure 11. EDA
®m  Exploratory data analysis is performed to see the characteristics of various attributes like username,
location, language and sentiment columns.
There are 30000 rows with 17 columns.
Languages used: 50

(’ primt("Number of dictinct langauge tweets present in datase

»len{pd.unique{cust_data[ 'language'])))
1 T

Top 18 langauge tweet coumt:

3
cust_data.groupby ([ "language ' ]).language. count( ).sort_values(ascending=False).head(18})

O+ MNumber of dictinct langauge tweets present in dataset: se

Top 1@ langzuge tweet count:

language
en 22981
qme 1681
hi 1628
und 861
qam 478
in 218
11 328
es 315
ja 384
et 183

Name: language, dtype: intes

Figure 12. Language used in Dataset
Logistic Regression:
To stay away from the gamble of over fitting the model, parameter tuning is performed by passing the value of

24 Cas [0.01, 0.05, 0.25, 0.5, 1]. By Iterating over these values during the model execution, the best-fit model
will be accomplished.



‘logistic_regressi

elif algerithm_type ==
tuning_parameter = [2.81, @.85, 8.25
for value in tuning_parameter:
log = LogisticRegression(C=value)
log.fit(X_train,y_train)
log_pred = log.predict(X_test)
key = “logistic regression with penality ' + str(velue) + ° " # °(°
value = accuracy_score(y_test, log_pred)
accuracy_list.append({'algorithm' :key, accuracy':
print("Classification report for logis

value})

+ vectorizer_type # ')’

egression model with tuning parameter”,value,”

1] # logistic regression tuning paramater is penality.

‘n{}:

Figure 13. Logistic Regression

Linear SVC:

‘\n".format(log,classification_report(y_test,log pred))})

Post Evaluating Linear SVC model, the results obtained were quite remarkable in accuracy. For Count
vectorizer the accuracy is maximum approaching at 93% for C=1 and maximum iteration set to 100. For tf—idf
also the accuracy is 91% for C=1 and for n-gram count vectorizer the accuracy is 89%

elif algorithm_type ==
tuning parameter = [2.€
for value in tuning_parameter
svm = LinearSWC{C=value,max_iter=18a)
svm.Fit(X_train, y_train)

svm_pred = svm.predict(X_test)

key = 'SVM with regularization parameter ' + sir(value) + "
value = accuracy_score(y_test, swm_pred)
accuracy_list.append({'algorithm" :key, 'accuracy’: value})
ication report for Linear SVC model with tuning parameter™,value,”- ‘n{}

print("Classi

Figure 14. Linear SVC

Random Forest:

"o+ (' + vectorizer_type +

5, 8.25, 8.5, 1, 1.5, 2, 2.5, 3] #svm tuning parameter ic penality

)

\n{}\n" . format(swm, classification_report(y_test, svm_pred)})

The values used are [5, 10, 15, 20], the values in the list signifies the number of trees the model is considering
at the time of single execution. Post evaluating the Random Forest model, the accuracy for 20 estimators is
83% for count vectorizer, 81% for tf-idf vectorizer and 81% for n-gram count vectorizer.

elif algorithm_type == ‘random_f
tuning_parameter =[5, 18, 1

for value in tuning paramester:
rf = RandomForestClassifier(n_estimators= value)

#random forest tuning parameter is number of trees.

rf.fit(X_train, y_train)
rf_pred = rf.predict(X_test)

th ' + =t

key = "Random forest “(walue) + " tress '+ (' + vectorizer_type + ')°
value = accuracy score(y_test, rf_pred)

"tkey, "accuracy’:

accuracy_list.append({'algorit value})

print("Classification report for Random forest model with tuning parameter™,value,”-

v

wn{}:

Figure 15. Random Forest

knn-algorithm:

wn{

Pwn".format(rf, classification_report(y_test, rf_pred)))

The data with comparable sort of values are isolated together and named as one, and remaining information
focuses are similarly isolated and marked. Here, in this study, the value for k is taken as [3,5,7]. The
justification for picking all the odd adjoining point is fundamentally to try not to any kind of get between two

distinct classes incorrect.

def i thm(X_train,X_test,y_train,y_test,slgorithm_type,vectorizer_type):
¥ algorithm_type == ‘knn':
tuning_parameter = [3,5,7 g paramete mbe eig
value in tuning parameter:
knn = KNeighborsClassifier(n_neighbors= value)
knn.fit(X_train, y_train
knn_pred = knn.predict(X_test)
key = ‘knn with ' + str(value) + neighbou > + vectorizer_type +

value = accuracy_score(y_te

, knn_pred)

‘tkey, ‘accuracy’:

value})

accuracy_list.append({'as

# print(“A for K-n

Figure 16. knn-algorithm

mot(knn, classification_report(y_test, knn_pred)



RoBERTa:

With the use of a dynamic masking technique called RoBERTa, the BERT pre-trained model’s next sentence
prediction is removed. The RoBERTa model, is an advance on the BERT model masking method.

o def tokenize roberta(data,max_len=MAX_LEN) :
input_ids = []
attention_masks = []
for 1 in range(len(data)):
encoded = tokenizer roberta.encode plus(
data[i],
add_special tokens=True,
max_length=max_len,
padding="max_length’,
return_attention_mask=True
)
input_ids.append(encoded[ "input_ids'])
attention_masks.append(encoded[ 'attention_mask'])
return np.array(input_ids),np.array(attention_masks)

[ 1 train_input_ids, train_attention_masks = tokenize roberta(X_train, MAX_LEN)
val_input_ids, val_attention_masks = tokenize_roberta(X_valid, MAX_LEN}
test_input_ids, test_attention_masks = tokenize_roberta(X_test, MAX_LEN)

- RoBERTa modeling

[ 1 def create model(bert model, max_ len=MAX_LEN):

opt = tf.keras.optimizers.Adam(learning_rate=1e-5, decay=1z2-7)
loss = tf.keras.losses.CategoricalCrossentropy()
accuracy = tf.keras.metrics.CategoricalAccuracy()

input_ids = tf.keras.Input(shape=(max_len,),dtype="1int32")

attention_masks = tf.keras.Input(shape=(max_len,),dtype="1int32")

output = bert_model([input_ids,attention_masks])

output = output[1]

output = tf.keras.layers.Dense(3, activation=tf.nn.softmax)(output)

model = tf.keras.models.Model(inputs = [input_ids,attention_masks],outputs = output)
model.compile(opt, loss=loss, metrics=accuracy)

return model

Figure 17. RoBERTa



Classification Report for RoBERTa:
precision recall fl-score support

Negative 0.84 9.93 0.88 1468
Neutral 0.92 0.90 0.91 638
Positive 0.94 9.87 0.90 1969
micro avg 0.90 9.90 0.90 4075
macro avg 0.90 0.90 0.90 4075
weighted avg 0.90 0.9 0.90 4975
samples avg 0.90 .90 .90 4075

Figure 18. Classification report for RoBERTa

BERT:

After performing some tests, by using one hot encoding on the target variable we achieved higher accuracy.
For this reason, have chosen one hot encoding over label encoding and resulted in better accuracy. Then, have
created a custom function to host the pre trained BERT model, and attach to it a 3 neurons output layer,
necessary to perform the classification of the 3 different classes of the dataset (the 3 emotions). After
evaluating the BERT model it’s observed that the accuracy for the BERT validation dataset is 90%. This result is
good accurate as depicted by other machine learning models.

° def create_model(bert_model, max_len=MAX_LEN):
#Hparams#HH
opt = tf.keras.optimizers.Adam(learning_rate=le-5, decay=1e-7)
loss = tf.keras.losses.CategoricalCrossentropy()
accuracy = tf.keras.metrics.Categorikal&ccuracy()
input_ids = tf.keras.Input(shape=(max_len,),dtype="int32")
attention_masks = tf.keras.Input(shape=(max_len,),dtype="int32")
embeddings = bert_model([input_ids,attention_masks])[1]
output = tf.keras.layers.Dense(3, activation="softmax")(embeddings)

model = tf.keras.models.Model(inputs = [input_ids,attention_masks], outputs = output)

model.compile(opt, loss=loss, metrics=accuracy)

return model

Figure 19. BERT



Classification Report for BERT:

precision recall fl-score support

Negative 0.86 0.9%0 0.88 1468
Neutral 9.93 0.88 9.90 638
Positive 9.91 0.%0 9.91 1969
micro avg 0.9 0.9 .90 40875
macro avg 0.9 0.89 a8.90 40875
weighted avg 0.90 09.90 0.90 4075
samples avg 09.98 0.90 8.90 40875

Figure 20. Classification report for BERT

We can see that both the algorithms performed well on the classification task, with performance scores
around 90%

Sentiment Analysis Comparison Q)
Confusion Matrix
BERT Classifier RoBERTa Classifier
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Figure 21. Sentiment Analysis Comparison Confusion Matrix



