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1 Introduction

The motive of this paper is to outline the software requirements and provide an overview
of the code artifacts implemented to achieve the objective of the research, in developing
traditional machine learning, Ensemble Learning, and deep learning models with feature
transformation and hyperparameter tuning to classify the gene variants using the clinical
literature.

2 System Specifications

The project was implemented on a cloud platform Google Colab, which is well known for
coding and executing machine learning and deep learning models by integrating tensor
flow and Keras. The execution speed is increased compared to the CPU as it utilizes the
GPU and TPU when required.

Google Colab: Intel Xeon CPU @2.20 GHz
RAM: 13 GB

Disk Space: 78 GB

e Processor: Intel R Core (i5)

System RAM: 16 GB

Operating System: Windows 11 64 bit

2.1 Software Requirements

The programming language used to implement the classification approach is Python, as
it is free and open source and has various integrated libraries which can be utilized for
implementing NLP techniques, Word Embedding techniques, and Tenser flow and Keras
versions for deep learning models.

3 Importing Python Libraries

One of the main advantages of the collab is, it is not required to install all the libraries
during every session, it has multiple pre-installed libraries which can be directly imported
such as numpy, panda, matplotlib,scikit-plot,gensim,nltk, and model building libraries.
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#importing the libraries
%matplotlib inline
import pandas as pd
import numpy as np

#import libraries for ML models

from sklearn.model_selection import cross_val_predict
from sklearn.model selection import StratifiedkFold
from sklearn.model_ selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import log_loss, accuracy_score
from sklearn.svm import svc

from sklearn.ensemble import RandomForestClassifier

#import libraries for EDA
Ipip install scikit-plot
import scikitplot.plotters as skplt

#import libraries for Text processing and Word2vVec
import nltk

import os

import gensim

#Import libraries for LSTM

from keras.preprocessing.text import Tokenizer

from keras_preprocessing.sequence import pad_sequences
from keras.models import Sequential

from keras.layers import Dense, Embedding, LSTM

from keras.utils.np_utils import to_categorical

from keras.callbacks import ModelCheckpoint

from keras.models import load model

# Visualization Libraries

import matplotlib.pyplot as plt

from matplotlib.patches import Patch

from matplotlib.markers import MarkerStyle
import seaborn as sns

Figure 1: Import Libraries

4 Loading the data

The data is categorized into different CSV files as Training and Testing Variants and
Text files. As the text file is unstructured data, to reduce the time taken to load in the
collab, have imported it from Google drive.

o #Importing data from google drive to colab
import pandas as pd
from google.colab import drive

drive.mount("/content/gdrive’,force_remount=True)

A -

df train = pd.read_csv("/content/gdrive/MyDrive/Genetic Data/training variants.csv")
df text = pd.read_csv("/content/gdrive/MyDrive/Genetic Data/training text.csv”, sep="\|\|", engine="python", names=["ID","TEXT"], skiprows=[0])

Mounted at /content/gdrive

#Importing the test set

df_test = pd.read csv("/content/gdrive/MyDrive/Genetic Data/test variants.csv")
df_testtext = pd.read_csv("/content/gdrive/MyDrive/Genetic Data/test_text.csv”, sep="\|\|", engine="python", names=["ID","TEXT"], skiprows=[@])

df_testtext.head()

Figure 2: Loading the train and test data

4.1 Merging the Data

As the training set comprises gene variants and text files, it is required to merge it as a
single data frame and proceed with the further process.



finaldf_train = df_train.merge(df_text, how="inner"”, left_on="ID", right_on="ID")
finaldf_train[finaldf_train["Class"]==1].head()

Figure 3: Merging the data

5 Exploratory Data Analysis

To understand Text Length distribution for each class

© rlt.figure(figsize=(15,9))
gene_count_grp = finaldf_train.groupby(’Gene")["Text_Count™].sum().reset_index()
sns.violinplot(x="Class", y="Text Count", data=finaldf_train, inner=None, color = 'blue')
sns.swarmplot(x="Class", y="Text Count", data=finaldf_train, color="w", alpha=.5);
plt.ylabel('Text Count®, fontsize=14)
plt.xlabel('Class’, fontsize=14)
plt.title("Text length distribution"”, fontsize=18)
plt.show()

Analyse the class distribution

[ 1 plt.figure(figsize=(12,8))
sns.countplot(x="Class", data=finaldf train, palette="copper")
plt.ylabel('Frequency’', fontsize=14)
plt.xlabel('Class', fontsize=14)
plt.title("Distribution of genetic mutation classes"”, fontsize=18)
plt.show()

Analyse genes that has highest number of occurrences in each class.
[ 1 finaldf train=finaldf train.reset_index()

fig, axs = plt.subplots(ncols=3, nrows=3, figsize=(15,15))
for i in range(3):
for j in range(3):
gene_count_grp = finaldf train[finaldf_train["class"]==((i*3+j)+1)].groupby( 'Gene")["ID"].count().reset_index()
sorted_gene group = gene_count_grp.sort_values('ID', ascending=False)

sorted_gene group _top 7 = sorted_gene_group[:7]
sns.barplot(x="Gene", y="ID", data=sorted gene group top 7, ax=axs[i][]])

Figure 4: Visualisation of data

Exploratory Data Analysis (EDA) was implemented to analyze the data and get
pertinent knowledge about the gene variations and clinical text correlations.EDA is per-
formed for the Text column to get insights about the distribution of text for every class,
for the Gene column and assume which gene affects the individual and categorizes to
more number cancer classes, for the class column to understand the number of samples
available for each class and get insights about the data linearity.

6 Text Data Pre-processing

As the data chosen is in textual format, it is required to apply natural language processing
techniques along with the handling of missing values which would upheld the model-
building process and performance.



° import nltk
import re
nltk.download( ' stopwords")
from nltk.corpus import stopwords
stop_words = set(stopwords.words('english"))

[> [nltk data] Downloading package stopwords to /root/nltk data...
[nltk_data] Package stopwords is already up-to-date!

° def data_text preprocess(total text, ind, col):
# Remove numeric values from text data
if type(total text) is not int:

string = ""
# replace all special characters with space
total _text = re.sub('[*a-zA-ze-9\n]", ' ', str(total text))

# replace multiple spaces with single space
total_text = re.sub('\s+'," ', str(total_text))
# convert whole text to same lower-case scale to make it consistent
total_text = total_text.lower()
for word in total_text.split():
# if the word is a not a stop word then it retains that word from text
if not word in stop words:
string += word + " "

finaldf_train[col][ind] = string

Figure 5: Pre-processing using NLP
Removal of Missing Values

[ 1 finaldf_train[finaldf_train.isnull().any(axis=1)]
Replace the missing text values with corresponding Gene and Variation values

finaldf_train.loc[finaldf_train[ 'TEXT'].isnull(), 'TEXT'] = finaldf_train['Gene'] +' '+finaldf_train[ 'variation']
finaldf_train[finaldf_train.isnull().any(axis=1)]

7 Tranformation of Data using Embedding Technique

The word embedding technique utilized to transform the text into a numerical vector
is Word2Vec by importing the genism library. This technique is applied for Gene and
Variation column and visualization was performed with t-SNE and K means clustering
to understand how the words are related and embedding has been performed.

To convert a document of multiple words into a single vector using our trained
word2vec, we take the average or mean of the vectors of that sentence. A transformer
(with a sklearn interface) is defined to convert a document into its corresponding vector.

8 Machine Learning and Deep Learning Models

Initially, The dataset was split into Train and Test split with an 80 to 20 ratio. For the
purpose of model evaluation, the train set split is performed and with the best-performed
model, the prediction was done on the test set provided. Following to that nine different
models were built and compared before and after applying hyperparameter tuning where
ever it was required. The models built are Logistic Regression, Random Forest, Support
Vector Machine, K nearest neighbor, Gradient Boosting, Majority Voting Classifier, and
Long Short Term memory (LSTM).



Training the word2vec model for Text column

[} w2vec = get word2vec(
MySentences(
finaldf train[ 'TEXT'].values,

)s

‘w2vmodel

[ Found w2vmodel

def get word2vec(sentences, location):
"""Returns trained word2vec

Args:
sentences: iterator for sentences

location (str): Path to save/load word2vec

win

if os.path.exists(location):
print('Found {}'.format(location))
model = gensim.models.kord2vec. load(location)
return model

print('{} not found. training model'.format(location))

model = gensim.models.kiord2vec(sentences, size=100, window=5, min_count=1, workers=4)
print('Model done training. Saving to disk")

model. save(Location)

return model

To visualise the list of vocabs learned by the model

[ 1 #return the list of words learned
learned_words = list(w2vec.wv.vocab)
#print the learned words
print(learned_words)

° #visualise the similar words learned by the model
w2vec.wv.similar_by word('mutation’)

# Apply t-SHE to WordIvec embeddings, reducing to 2 dims
tsne = TSHE()
tsne_e = tsne.fit_transform(word_vecs)

# Plot t-SNE result
plt.figure(figsize=(15, 15))
plt.scatter(tsne_e[:, @], tsne_e[:, 1], marker='x', c=range(len(random_w)), cmap=plt.get_cmap('Spectral’)}
plt.ylabel('Comp-2', fontsize=10)
plt.xlabel(Comp-1', fontsize=10)
for label, x, y, in zip(random_w, tsne_e[:, @], tsne_e[:, 1]):
plt.annatate(label,
xy=(x, y), xytext=(g, 15),
textcoords="offset points', ha="right’, va='bottem’,
bboxedict (boxstyles'round, pads6.2’, fce'yellow', alphasa.1))

° # Clustering library
from sklearn.cluster import KMeans
kmeans = kMeans(n_clusters=9).fit(vecs)
¢_labels = kmeans.labels_

fig, ax - plt.subplots()
om = plt.get_cmap('jet’, 9)

colors = [cm(ifg) for i in range(9)]

ax.scatter(reduced_vecs[:,0], reduced vecs(:,1], c=[colors[c-1] for ¢ in c_labels], cmap='jet’, s=8)
plt.ylabel(‘Comp-2°, fontsize=1a)

plt.xlabel( Comp-1", fontsize=1a)

plt.legend(handless[Patch(colorscolors[i], labels'class [}'.format(i+1)) for i in range(9)])

plt.show()

o mean_enbedding vectorizer = MeantmbeddingVectorizer(wavec)
liean enbedded text = mean enbedding vectorizer.fit transforn(finaldf train[ TEXT'])



~ Logistic Regression - .
v Logistic Regression Hypemarameter

[ 1 from sklearn.linear model import LogisticRegression
#from sklearn.linear_model import LogisticRegression
i#tlog_model = LogisticRegression(solver="1bfgs", max_iter=106e)

[ ] #logistic Reapession with hyperparaneter

from sklearn.metrics import accuracy_score

from sklearn.metrics import precision_score,recall score,fl_score 105h|]=|.DgISUCR€gF€SSIDH(( =10, penalty = 10, solwr - reifor-3, mAX_ltEF:l@D)

log=LogisticRegression(max_iter=1000) IOUhp.ﬁt()( tfﬂiﬂ,‘/ train)
o - .

log.fit(X_train,y train)

i i ¥ oredict_Irip=loshy,predict (X test)
Y_predict_lr=log.predict(X_test) - - -

Figure 6: Logistic Regression

~ K nearest neighbour (KNN)

° from sklearn import neighbors, datasets, preprocessing
from sklearn.model selection import train test split
from sklearn.metrics import accuracy score
from sklearn.metrics import classification report
from sklearn.metrics import confusion matrix
from sklearn.metrics import precision score
from sklearn.metrics import recall score
knn = neighbors.KNeighborsClassifier()
knn.fit(X_train, y_train)
y_pred_knn = knn.predict(X_test)

~ KNN - Hyperparameter

o #KNN Hyper parameter
from sklearn import neighbors, datasets, preprocessing
from sklearn.model selection import train_test split

['] fron skleamn mde]selection famort Grdesrehcy W) I TRAES AR iy Saiie
} from sklearn.metrics import classification report
kon = felgthF Elgth‘FSClaSSl'le“() from sklearn.metrics import confusion matrix
ki m(x tram ytram) from sklearn.metrics import cohen_kappa_score
. L . R from sklearn.metrics import precision_score
paral | grl “ WElg b’ SWME (3 )/J & gomtw ( ilto ) ball_tree ) kd_TFGE ) brute ) } from sklearn.metrics import recall score
LE Gridseanc W(kﬂn paral | g“ Al ) knnhp = neighbors.KNeighborsClassifier(algorithm = 'auto’, n_neighbors= 3)
knnhp, fit(X train, y train)
ES» (X trad M Vtr‘am) y_pred_knnhp = knnhp. predict (X_test)

Figure 7: K Nearest Neighbour

[ ] #Hyperparameter tuning for SwM
#Hypermater tuning for oversampled dATA
from sklearn.svm import SVC
from sklearn.model_selection import RandomizedSearchcv
rs = RandomizedSearchCV(SVC(gamma="auto'), {
‘c': [1, 5, 20],

‘kernels: ['rbE ] ~ SVM-Hyperparameter

Iz

cv=2,

return_train_score=false, [ 1 from sklearn import svm

n_iter=2 swM_modelhp = swvm.svC(kernel = 'rbf', C = 20, probability = True)
) SvM_modelhp.fit(X_train, y_train)
rs.fit(X_train, y_train) y_predicted_svMhp = SvM_modelhp.predict(X_test)
print(“tuned hyperparameters :(best parameters) ",rs.best_params_) accsvmh = round(accuracy score(y_test,y predicted_svMhp),3)

Figure 8: Support Vector Machine



+ RANDOM FOREST ~ Gradient Boosting

° from sklearn.ensemble import GradientBoostingClassifier

® d e import seaborn as sns
[ 1 rf = RandonForestClassifier() gb = GradientBoostingClassifier()

rf.fit(X_train, y_train) gh.fit(x train, y train)
y predicted rf = rf.predict(X test) gb_pred = gb.predict(X_test)

Figure 9: Random Forest and Gradient Boosting

# build a RandomForestClassifier

from scipy.stats import randint as sp_randint

RF_CLF = RandomForestClassifier(n_estimators=20)

param_dist = {"max_depth": [3, None],
"max_features": sp_randint(1, 11),
"min_samples split": sp_randint(z, 11),
"min_samples_leaf": sp_randint(1, 11),
# "bootstrap”: [True, False],
“"criterion”: [“"gini", “entropy"]}

samples = 8 # number of random samples

randomCV = RandomizedSearchCV(RF_CLF, param_distributions=param dist, n_iter=samples,cv=3)
randomcv.fit(X_train, y_train)

print(randomcv.best_params_)

~ Majority Voting Classifier - Ensemble Approach (GB,RFSVM)

[] from sklearn.ensemble import VotingClassifier

clf1 = eradientBaostingClassifier()

c1f2 = RandonForestClassifier(bootstrap = Felse, critarion = 'entropy’, max depth = None, max_festures = 5, min samples leaf = 4, min samples split = 6)
clf3 = svm.SvC(C=20, probadility=True)

eclf1 = votingClassifier(estinators=[('ghc', clf1), ('rf', clf2), ("svc’, clf3)], voting="soft’)

eclf1.fit(X_train, y_train)

predictions = np.argnax(eclfl.predict_proba(X_test),axis=-1)

predictions = eclf1.predict(X_test)

Figure 10: Ensemble Classifier

~ Long Short Term Memory (LSTM)

° from keras.preprocessing.text import Tokenizer [ 1 x - tokenizer.texts_to_sequences(finaldf_train[ TcxT'].values)
from keras_preprocessing.sequence import pad_sequences #X — mean_embedded_text
¥ X X - pad_sequences(X, maxlen—MAX_SEQUENCE_LENGTH)
from keras.models import Sequential P SR O Coke Gomeers Cy SiaOEEE)
from keras.layers import Dense, Embedding, LSTM, SpatialDropoutlD
from sklearn.model_selection import train_test split
from keras.utils.np_utils import to_categorical €© Y = pd.get dummies(finaldf train[ class’]).values
from keras.callbacks import EarlyStopping print(’shape of label tensor:’, Y.shape)
from keras.layers import Dropout

shape of data tensor: (3321, 1@a)

Shape of label tensor: (2221, 9)

Figure 11: Import libraries and tensor data format for LSTM

[ 1 model = sequential()
model . add(Embedding(MAX_NB_WORDS, EMBEDDING_DIM, input_length=X.shape[1]))
model.add(SpatialDropout1D(@.2)) #To avoid overfitting
model.add(LSTM(1@0, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(9, activation="softmax’))
model.compile(loss="'categorical crossentropy', optimizer="adam', metrics=['accuracy’])

epochs = 10
batch_size = 64

lstmmodel = model.fit(X_trainl, Y_trainl, epochs=epochs, batch_size=batch_size,validation_split=e.2)
print(model.summary())

Figure 12: LSTM Model



9 Model Evaluation

The models which are implemented are evaluated using classification metrics such as
As shown in

Confusion Matrix, Accuracy, Precision, Recall, F1 Score and Log loss.

figure [13] and [14] it was observed that the Voting Ensemble classifier and Random Forest
gave the highest accuracy but the Ensemble has the miminal log loss and proves as best
performed model.Whereas KNN and LSTM attained the least accuracy and KNN with

the highest logloss, hence it is considered as a least performed model.

print("voting Classifier Test Set Accuracy Score is: ")

Confusion Matrix

accy = accuracy_score(y_test, predictions) 14% o o0 2% 8 1 3 1 0
print('Accuracy:’, accv)
prev = precision score(y test, predictions,average='"weighted') 2¢06-492 ¢ 5 0 0 4 0 0
print('Precision:’, prev) 312 1 4 3 1 o 7 o o
rev = recall _score(y_test, predictions,average="weighted") - 31 2—1—1 == 3I—1—4—0—0
print('Recall:’, rev) -

- 51+10—1—0 61 1 10 0
fiv = f1_score(y_test, predictions,average="weighted") = 6410 2 © 3 1 I 4 ¢ 0O
print('F1 score:’, fiv) Ip
#print("logloss Test Set: ") RS O N —9

g8{0 0 0 1 o¢ o0 2 1 0

#print(log_loss(y_test, eclfl.predict_proba(X test)))
# cm = confusion_matrix(y_test,eclfl.predict(X test)) g1 o 0 1 0 0 0 0 6
# sns.heatmap(cm,?nnotﬂm:xe,fmt:"d") . 1 2 3 4 5 6 7 B 9
skplt.plot_confusion_matrix(y_test,eclf1.predict(X_test)) Predicted label

Figure 13: Evaluation of Ensemble Classifier

© accrtrain - model.evaluate(X_trainl,¥_trainl)
print('Train set\n Loss: {:0.3f}\n Accuracy: {:0.3f}'.format(accrtrain[e],accrtrain[1])
accr = model.evaluate(X testl,Y_testl)
print('Test set\n Loss: {:0.3f}\n Accuracy: {:0.3f}".format(accr[@],accr[1]))

[ 83/83 [s=============================] - 7s 88ms/step - loss: 0.6301 - accuracy: ©.7812
Train set
Loss: 0.630
Accuracy: 0.781
21/21 [
Test set
Loss: 1.365
Accuracy: 0.547

- 2s 87ms/step - loss: 1.3649 - accuracy: 0.5474

Loss
Accurac
y 20
08
18
07 16
14
06
1
0s y
04 08
06
03
T T T T T T I T ! ¥
; ] : 0 ; 0 2 4 § 8

Figure 14: Evaluation of LSTM
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10 Resuts

By comparing the model performance as shown in the figure [15] it is evident Ensemble
classifier attained better accuracy with least mispredicted classes.

~ Model Comparison Plot

[ 1 x=['Logistic Regression’,'KNN', 'KNNHYP','SVM','SVMHYP','Random Forest','Gradient Boosting','veting Classifier’, 'LSTM']
widt=e.25
a=np.arange(len(x))
plt.figure(figsize=(15,9))

bari=plt.bar(a,df_results['Accuracy'],widt,color="brown")
plt.xticks(a+widt,x)

plt.title('Model Performance based on Accuracy')
plt.ylabel('Accuracy',fontsize=17,color="red")

plt.xlabel('mModels',fontsize=15,color="red")

KNNHYP

plt.show()

Model Performance based on Accuracy

B SVMHYP

Random Forest Gradient Boosting Voting Classifier LSTM

07

o

n

I

o
0.
0.
[}

00 ‘
KNN

[
0
Logistic Regression

Accuracy

N w

-

Models

Figure 15: Model Comparison
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