

Configuration Manual

MSc Research Project Data Analytics

Taher Abbas Poonawala Student ID: x21118043

School of Computing National College of Ireland

Supervisor: Professor Jorge Basilio

National College of Ireland Project Submission Sheet School of Computing

Student Name:	Taher Abbas Poonawala
Student ID:	x21118043
Programme:	Data Analytics
Year:	2022
Module:	MSc Research Project
Supervisor:	Professor Jorge Basilio
Submission Due Date:	15/12/2022
Project Title:	Configuration Manual
Word Count:	878
Page Count:	10

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	Taher Abbas Poonawala
Date:	30th January 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).You must ensure that you retain a HARD COPY of the project, both for

your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Taher Abbas Poonawala x21118043

1 Introduction

This document will walk you through the procedure to execute the code, the steps include setting up the AWS cloud infrastructure, creating an EC2 instance that will enable the GPUs with high-end configuration, visual studio code as the IDE, WinSCP to copy the files to and fro the systems. once the IDE is set up the next steps are placing the dataset in the required directory followed by code execution to train and test the models.

2 Amazon Web Services and Amazon Elastic Compute Cloud Setup

Because the code comprises a large volume dataset and conducts a sophisticated computation, it need not only a large number of CPUs but also a high memory connected GPU-enabled hardware. As a result, Amazon Web Services (AWS) and Amazon Elastic Compute Cloud (EC2) are suitable tools to consider. Below are the steps to configure AWS and EC2:

• Navigate to https://cloud.ncirl.ie/ and click on the highlighted banner to login into the AWS account, as shown in 1.

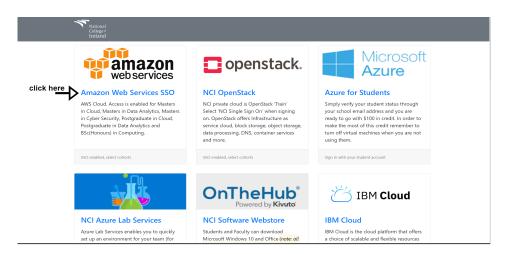


Figure 1: AWS Login

• Once the login is successful navigate to the search bar and type EC2, an EC2 dashboard will open refer to figure 2

aws Services Q Search		[Alt+S	1			¢ Ø In	land ▼ MSCDATA/x21118043@student.ncirt.le 1
New EC2 Experience Tell us what you think	Resources		EC2 (Slobal view 🛛 🖸	۲	Account at	tributes C
EC2 Dashboard EC2 Global View Events Tags	You are using the following Amazon E Instances (running) 45 Instances 888	C2 resources in the Europ Dedicated Hosts Key pairs	e (Ireland) Reg 0 759	pion: Elastic IPs Load balancers	10	Supported pla • VPC Default VPC [vpc-0c73578	2
Limits V Instances Instances New	Placement groups 0 Volumes 925	Security groups	1248	Snapshots	18	Settings EBS encryptio Zones EC2 Serial Co	
Instance Types Launch Templates Spot Requests	Easily size, configure, and depl the AWS Launch Wizard for SQ		Always On avai	lability groups on AWS using	×		t specification
Savings Plans Reserved Instances New Dedicated Hosts Scheduled Instances Capacity Reservations	Launch instance To get started, launch an Amazon EC2 insta virtual server in the cloud.		Service hea	alth WS Health Dashboard 🔀		Explore AV	VS ×
Capacity Reservations	Launch instance V Migrate a server		Region Europe (Ireland Status	d)		cost-effective inference. Lea	54 instances are the industry's most GPU instance for Machine Learning m more [2] e Costs on Hugging Face BERT
▼ Elastic Block Store	Note: Your instances will launch in the Euro Region	pe (Ireland)	This service	is operating normally	_	Models	ustomer reduced ML Inference costs

Figure 2: EC2 Dashboard

• Click on "Launch instances" to create an instance, once the launch an instance page opens up enter the required details such as instance name, select Ubuntu as OS image just below that select "Deep Learning AMI" with PyTorch version 1.13.0, select the instance type as shown in figure 3.

aws	macOS	Ubuntu	Windows	Red Hat	s >	Q Browse more AMIs Including AMIs from
	Mac	ubuntu®	Microsoft	📥 Red Hat		AWS, Marketplace and the Community
Amazon Machir	ne Image (AMI)					
	3abcc821 (64-bit (untu 20.04) 202. evice type: ebs	21110		•
Description						
Non-supported	I GPU instances	P2. Release not	tes:			
		/dlami/latest/de .amazon.com/sa		ix-ami-release	notes.ht	ml. For a fully managed
Architecture		AMI ID	-			
Architecture 64-bit (x86)		AMI ID ami-0c8935afa	a3abcc821	Verifie	d provider	
			a3abcc821	Verifie	d provider	•
			a3abcc821	Verifie	d provider	•
	pe Info		a3abcc821	Verifie	d provider	•
64-bit (x86)	pe Info		a3abcc821	Verifie	d provider	•
64-bit (x86)		ami-0c8935afa	- a3abcc821	Verifie	d provider	Compare instance types

Figure 3: Launch an EC2 Instance

- Create a key pair login by clicking on create new key pair.
- Enter the network details.
- Choose the size of storage as 75 GB, since OS image takes around one-third space, the dataset is 7.7GB in size, and additional libraries will take up some space as well.
- After clicking on launch instance, refer figure 4 page will open up and it will have the details of IPs addresses which are important since it will be login into the instance.

Instance summary for i-01fa26b47 Updated less than a minute ago	70c163222 (x21118043-ec2) տ	C Connect Instance state Actions
Instance ID	Public IPv4 address	Private IPv4 addresses
ð	🗇 🔤 open address 🗹	đ
IPv6 address	Instance state	Public IPv4 DNS
-	⊘ Running	đ
		open address 🔀
Hostname type	Private IP DNS name (IPv4 only)	
IP name:	đ	

Figure 4: EC2 Instance Dashboard

- Download the vscode from the official vscode page¹ according to the type of OS.
- After installing the vscode click on the extensions, as highlighted in the figure 5 install all those extensions in vscode.

>					Terminal F
c)					··· = 3
\sim					
\sim		NSTALLED			15
ge		Jinja Jinja template la wholroyd			ial Studio C
*	iupyter	Jupyter Keyma Jupyter keymap			
B		Microsoft	s for note		۲
		Python Indent			🕲 61ms
<u>_</u> 0		Correct Python Kevin Rose			۲
		Remote - SSH			🕲 262ms
四		Open any folde Open any folde			sing SSH a «⊡ 《ऄ
		Remote - SSH: Edit SSH config		ration	Files 🕲 59ms
aws		Microsoft			
		Remote Explor	er		3 148ms
		View remote ma			l and Remo K 🖸 🎲

Figure 5: Required Extension in VSCODE

• Once the SSH extension is installed, click on open a remote window from the bottom left corner, click on edit the configuration file and enter details as mentioned in figure 6, save and close it, again click on open a remote window it. Click on to connect to host enter ubuntu and click next. The hostname is Public IPv4 DNS and the identity file is the file downloaded during the keypair generation.

≡ config	•
C: > Users	> Admin > Documents > .ssh > ≣ config
1	Host ubuntu
2	HostName
3	IdentityFile
4	User ubuntu

Figure 6: Editing the Configuration File

• Download WinSCP from the official website and install it as per the type of OS. Create a new session by providing the Public IPv4 address from the EC2 instance dashboard page, refer to figure 4. This will help to move the dataset files from the local system to remote location.

3 Python Libraries Requirement

Before execution of the code below libraries are needed to be imported into the system. Also, special care needs to take while installing the torchvision and torch library, to install the foresaid library execute the command- *pip install torch=1.12.1+cu116 torchvision=0.13.1+cu116 torchaudio==0.12.1 -extra-index-url https://download.pytorch.org/whl/cu116*. Figure 7 shows the list of libraries used for the execution. Additionally, after installing the torchvision library navigate to the /home/ubuntu/

Figure 7: List of Libraries

.local/lib/python3.8/site-packages/torchvision/datasets/pcam.py and swap the values test and validate md5 checksum values, this is a known issue exists within the lib-rary. After swapping the values the finally the value will look like this, refer to figure 8.

Figure 8: TorchVision library

¹https://code.visualstudio.com/download

4 SimCLR Modeling

4.1 Augmentation Pipelines

The augmentation pipeline is set up into two cells according to the experiments. As per the SimCLR architecture, two different augmented images need to be generated that will be fed into the SimCLR model, this has been implemented in class *TransformationConstrastive* refer figure 9. The list of transformations applied is mentioned in figure 10.

Figure 9: contrastive Transformation

Expirement No-1 without using augmentation	pipeline
#TransformationConstrastive = transforms 1.65</th <td></td>	
Expirement No- 2 Using augmentation pipeling	e
TransformationConstrastive = transforms.	Compose([transforms.RandomHorizontalFlip(),
	transforms.RandomResizedCrop(size=90),
	transforms.RandomApply([
	transforms.ColorJitter(brightness=0.5,
	contrast=0.5,
	saturation=0.5, hue=0.1)
	nue=0.1)
], p=0.07, transforms.RandomGrayscale(p=0.2),
	transforms.GaussianBlur(kernel_size=9),
	<pre>transforms.Normalize((0.5,), (0.5,))</pre>
✓ 0.1s	

Figure 10: Augmentation pipeline

Figure 11 shows the dataset² import and visualization few examples of applying the transformation. Copy the dataset from the local machine to the EC2 instance using $WinSCP^3$ to the location /home/ubuntu/dataset/.

Figure 11: Dataset Visualization

4.2 SimCLR Training

Once the dataset and augmentation pipeline is set up, the next step is to start with the SimCLR implementation. To enhance the readability of the code the modeling is divided into two cells. Figure 12 shows the architecture of the SimCLR model.

Figure 12: SimCLR Architecture

Finally figure 13 shows the SimCLR training function definition and calls the SimCLR training function with batch size as 256, learning rate as 5e⁻⁴, the temperature is set as 0.07, max_epoch is 500.

Figure 13: SimCLR Training

³https://zenodo.org/record/2546921#.Y5nN2XbP07E

³https://winscp.net/eng/download.php

4.3 Launching the TensorBoard to View SimCLR Accuracy and Loss

To understand the SimCLR model behavior TensorBoard functionality is implemented to view the accuracy and loss over the datasets, refer to figure 14.

Figure 14: Tensor Board

5 Classification: Logistic Regression

After training the SimCLR model and saving the checkpoint also known as model weight. The next step is to implement a single-layer classifier, for this task Logistic Regression(LR) is been implemented in the class *LogisticRegression*, refer to figure 15.

Figure 15: Class Logistic Regression

5.1 Dataset Encoding

After implementing the logistic regression class, the next task is to encode the images from the train and test images which will be the input classifier, refer figure 16 and 17.

Figure 16: Training and Test Data Encoding

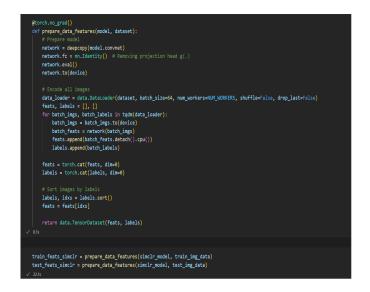


Figure 17: Encoding Function

5.2 Training Logistic Regression

The next step is training the logistic regression, refer to figure 18 and evaluating the results over a different number of images per label, here 10, 20, 50, 100, 200, 500 images per label are used also the batch_size is set as 64, max_epoch is 100 and learning_rate is $1e^{-3}$.

def train logreg(batch size, train feats data, test feats data, model suffix, max epochs=100, **kwargs):
v trainer = pl.Trainer(default root dir=os.path.join(CHECKPOINT PATH, "LogisticRegression"),
accelerator="gou" if str(device).startswith("cuda") else "cou".
devices=1,
max_epochs=max_epochs,
<pre>callbacks=[NodelCheckpoint(save_weights only=True, node='max', monitor='val_acc'), LearningRateHonitor('epoch')],</pre>
enable_progress_bar=False,
check_val_every_n_epoch=10)
trainer.loggerdefault_hp_metric = None
Data loaders
<pre>train_loader = data.DataLoader(train_feats_data, batch_size=batch_size, shuffle=True,</pre>
drop_last=False, pin_memory=True, num_workers=0)
test loader = data.DataLoader(test feats data, batch size=batch size, shuffle=False,
drop_last=False, pin_memory=True, num_workers=8)
Check whether pretrained model exists. If yes, load it and skip training
pretrained_filename = os.path.join(CHECKPOINT_PATH, f"LogisticRegression_(model_suffix).ckpt")
if os.path.isfile(pretrained_filename):
print(f"Found pretrained model at (pretrained_filename), loading")
<pre>model = LogisticRegression.load_from_checkpoint(pretrained_filename)</pre>
<pre>pl.seed_everything(42) # To be reproducable</pre>
<pre>model = LogisticRegression(**kwargs)</pre>
<pre>trainer.fit(model, train_loader, test_loader)</pre>
<pre>model = LogisticRegression.load_from_checkpoint(trainer.checkpoint_callback.best_model_path)</pre>
<pre>train_result = trainer.test(model, train_loader, verbose=False)</pre>
<pre>test_result = trainer.test(model, test_loader, verbose=False)</pre>
_ = LogisticRegression.evaluate(test_loader, model)
<pre>result = {"truin": train_result[0]["test_acc"], "test": test_result[0]["test_acc"], "test_mape":test_result[0]["test_loss"]} return model, result</pre>

Figure 18: Training Logistic Regression

5.3 Logistic Regression Results

Figure 19 cell shows the graph of accuracy versus the number of images and MAPE values, additionally, the confusion matrix with the model classification report is also implemented. Also, the model is evaluated after every 10 epochs so that the model does not overfit the dataset refer to figure 20.

Figure 19: Calling the LR Train function

Figure 20: Results

6 Baseline: ResNet18

Once the SimCLR based on self-supervised contrastive learning and logistic regression are implemented, the next step is to implement the baseline model, hence ResNet18 as a fully supervised learning is used. Figure 21 shows the implementation of the ResNet18 under class *ResNet*.

Figure 21: ResNet18 Class

6.1 Augmentation Pipeline

To evaluate the result on a fair basis the augmentation pipeline is implemented for the baseline model as well, and it has been sectioned as per the experiments, refer figure 22.

Figure 22: Image Augmentations

6.2 Training ResNet18

The training function is similar to the logistic regression and validation is performed after every 2 epochs so that the model does not overfit during the training step refer figure 23.

Figure 23: Training Function

6.3 Model Training and Result

The last cell calls the training function and the confusion matrix, classification report, and accuracy of the model are printed, refer figure 24.

Figure 24: Baseline Results