~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Taher Abbas Poonawala
Student ID: x21118043

School of Computing
National College of Ireland

Supervisor: Professor Jorge Basilio

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Taher Abbas Poonawala
Student ID: x21118043
Programme: Data Analytics
Year: 2022
Module: MSc Research Project
Supervisor: Professor Jorge Basilio
Submission Due Date: 15/12/2022
Project Title: Configuration Manual
Word Count: 878
Page Count: [10]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Taher Abbas Poonawala

Date: 30th January 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Taher Abbas Poonawala
x21118043

1 Introduction

This document will walk you through the procedure to execute the code, the steps include
setting up the AWS cloud infrastructure, creating an EC2 instance that will enable the
GPUs with high-end configuration, visual studio code as the IDE, WinSCP to copy the
files to and fro the systems. once the IDE is set up the next steps are placing the dataset
in the required directory followed by code execution to train and test the models.

2 Amazon Web Services and Amazon Elastic Com-
pute Cloud Setup

Because the code comprises a large volume dataset and conducts a sophisticated com-
putation, it need not only a large number of CPUs but also a high memory connected
GPU-enabled hardware. As a result, Amazon Web Services (AWS) and Amazon Elastic
Compute Cloud (EC2) are suitable tools to consider. Below are the steps to configure
AWS and EC2:

e Navigate tohttps://cloud.ncirl.ie/ and click on the highlighted banner to login
into the AWS account, as shown in [I]

_ NI Crosof
"msramazon I openstack. == [A\Ldre |

click here Amazon Web Services SSO NCI OpenStack Azure for Students

Simply verify your student status through
s are

you

turn off virtual machines when you are not

using them

OnTheHu . oncims

NCI Azure Lab Services NCI Software Webstore IBM Cloud

Azure Lab Services enables you to quickly Students and Faculty can download 1BM Cloud is the cloud platform that offers
set up an environment for your team (for Microsoft Windows 10 and Office (note: all a choice of scalable and flexible resources

Figure 1: AWS Login

e Once the login is successful navigate to the search bar and type EC2, an EC2
dashboard will open refer to figure

https://cloud.ncirl.ie/

B 4 @ rendv | MSCOATA/X21118043@studentacirlie v

© NewEC2 Bxperience o

EC2 Dashboard

02 Global View You are using the following Amazon EC2 resources in the Europe (Ireland) Region: Supported platforms [4
. Ve
Events Instances (running) 45 Dedicated Hosts 0 ElasticIPs 10
Default VPC [2
Tags
Instances 888 Key pairs 759 Load balancers 16 VPC-0c735787€3623c094
Limits
Settings
Placement groups 0 Security groups 1248 Snapshots 18
v Instances aroue v oroup " €8S encryption
Instances Volumes 925 Zones
Instance Types EC2 Serial Console
Launch Templates @ Easily size, configure, and deploy Microsoft SQL Server Always On availability groups on AWS using X Default credit specification
Spot Requests the AWS Launch Wizard for SQL Server. Learn more Console experiments
Savings Plans
Reserved Instances
Launch instance Service health Explore AWS X

Dedicated Hosts

Scheduled Instances c AWS Health Dashboard [4 ‘

GPU Powered ML Inference with Gadn
Capacity Reservations

) Amazon EC2 G4 instances are the industry’s most
v Images esnchlinstncelv Region cost-effective GPU instance for Machine Learning
; Europe (ireland) inference. Learn more [
Amis Migrate a server [4

Status

AMI Catalog Save Inference Costs on Hugging Face BERT
© This service is operating normally
) Note: Your instances will aunch n the Europe (ireland) Models
v Elastic Block Store B Region Learn how a customer reduced ML Inference costs

Figure 2: EC2 Dashboard

e (Click on "Launch instances” to create an instance, once the launch an instance
page opens up enter the required details such as instance name, select Ubuntu as
OS image just below that select ” Deep Learning AMI” with PyTorch version 1.13.0,
select the instance type as shown in figure [3

Amazon macOs Ubuntu windows Red Hat ‘ F Q
Linux
> Browse more AMls
aws ubuntu® B= Microsoft & RodHat Including AMIs from
AWS, Marketplace and
the Community
Amazon Machine Image (AMI)
Deep Learning AMI GPU PyTlorch 1.13.0 (Ubuntu 20.04) 20221110
ami-0c8935afa3abcc821 (64 bit (x86)) v

Virtualization: hvm ENA enabled: true Root device type: ebs

Description

Non-supported GPU instances: P2. Release notes:
https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-relecase- notes.html. For a fully managed
experience, check: https://aws.amazon.com/sagemaker

Architecture AMI ID

64 bit (x86) ami-0c8935afa3abcc821

v Instance type info

Instance type

p3.8xlarge

Family: p3 32 vCPU 244 GiB Memory v
On-Demand Linux pricing: 13.22 USD per Hour

On Demand Windows pricing: 14.692 USD per Hour

Compare instance types

Figure 3: Launch an EC2 Instance

e Create a key pair login by clicking on create new key pair.
e Enter the network details.
e Choose the size of storage as 75 GB, since OS image takes around one-third space,

the dataset is 7.7GB in size, and additional libraries will take up some space as
well.

After clicking on launch instance, refer figure[d] page will open up and it will have the
details of IPs addresses which are important since it will be login into the instance.

EC2) Instances) i-01fa26b470c163222

Instance summary for i-01fa26b470¢163222 (x21118043-ec2) info W Connect Instancestate v || Actions ¥

Updated less thana minute ago

Instance ID Public IPv4 address Private IPv4 addresses

vl | open address [4
Pi6 address Instance state Public Py DNS
@ Running
| open address [4
Hostname type Private [P DNS name (IPé only)
1Pname

Aaswer pivae resoure DNS nae Instancetype Elastic P addresses
1Pra(3) pB8arge

Figure 4: EC2 Instance Dashboard

e Download the vscode from the official vscode pagdﬂ according to the type of OS.

e After installing the vscode click on the extensions, as highlighted in the figure
install all those extensions in vscode.

— LOCAL - INSTALLED

Figure 5: Required Extension in VSCODE

e Once the SSH extension is installed, click on open a remote window from the bottom
left corner, click on edit the configuration file and enter details as mentioned in figure
[0, save and close it, again click on open a remote window it. Click on to connect
to host enter ubuntu and click next. The hostname is Public IPv4 DNS and the
identity file is the file downloaded during the keypair generation.

S am

Host ubuntu
HostName
IdentityFile

User ubuntu

Figure 6: Editing the Configuration File

e Download WinSCP from the official website and install it as per the type of OS.
Create a new session by providing the Public IPv4 address from the EC2 instance
dashboard page, refer to figure [d] This will help to move the dataset files from the
local system to remote location.

3 Python Libraries Requirement

Before execution of the code below libraries are needed to be imported into the sys-
tem. Also, special care needs to take while installing the torchvision and torch library,
to install the foresaid library execute the command- pip install torch==1.12.1+cull6
torchvision==0.13.1+cul16 torchaudio==0.12.1 —extra-indez-url https: // download.
pytorch. org/whl/cul16. Figure [7| shows the list of libraries used for the execu-
tion. Additionally, after installing the torchvision library navigate to the /home/ubuntu/

Figure 7: List of Libraries

.local/lib/python3.8/site-packages/torchvision/datasets/pcam.pyand swap the
values test and validate md5 checksum values, this is a known issue exists within the lib-
rary. After swapping the values the finally the value will look like this, refer to figure [§]

Figure 8: TorchVision library

"https://code.visualstudio.com/download

https://download.pytorch.org/whl/cu116
https://download.pytorch.org/whl/cu116
/home/ubuntu/.local/lib/python3.8/site-packages/torchvision/datasets/pcam.py
/home/ubuntu/.local/lib/python3.8/site-packages/torchvision/datasets/pcam.py
https://code.visualstudio.com/download

4 SimCLR Modeling

4.1 Augmentation Pipelines

The augmentation pipeline is set up into two cells according to the experiments. As per
the SimCLR architecture, two different augmented images need to be generated that will
be fed into the SimCLR model, this has been implemented in class TransformationCon-
strastive refer figure 0] The list of transformations applied is mentioned in figure [10}

ContrastiveTransformations (object):

_ init_ (self, base_transforms, n_views=2):
self.base_transforms = base_transforms
self.n_views = n_viaws

call(self, x):
return [self.base_transforms(x) for i in range(self.n_vieus)]

Figure 9: contrastive Transformation

Expirement No-1 without using augmentation pipeline

v 16

Expirement No- 2 Using augmentation pipeline

TransformationConstrastive = transfor

r(brightness=e.5,
contrast=0.5,
saturation=0.5,
hue=6.1

(@.5,), (05,)

Figure 10: Augmentation pipeline

Figure |11| shows the dataseiﬂ import and visualization few examples of applying the
transformation. Copy the dataset from the local machine to the EC2 instance using
WinSCPF| to the location |/home/ubuntu/dataset/.

pl.seed_everything(18)
NUM_IMAGES = 6
rch.stack([img for idx in range(NUM_IMAGES) for img in UnlabeledData[idx][@]], dim=0)
g_gri .make_grid(ings, nrow=6, normalize=True, pad value=8.9)
img_grid = img_grid.permute(1, 2, 0)

plt.title('A i xamples from the dataset')
plt.imshow(ing_grid)

plt.axis('off')

plt.show()

plt.close()

Figure 11: Dataset Visualization

/home/ubuntu/dataset/

4.2 SimCLR Training

Once the dataset and augmentation pipeline is set up, the next step is to start with the
SimCLR implementation. To enhance the readability of the code the modeling is divided
into two cells. Figure [12] shows the architecture of the SimCLR model.

Figure 12: SimCLR Architecture

Finally figure [13|shows the SimCLR training function definition and calls the SimCLR
training function with batch size as 256, learning rate as 5e™, the temperature is set as
0.07, max_epoch is 500.

ef train s

trainer ault_root_di . join(CHECKPOINT_PATH,
e, mode="max’, monitors'val
trainer. logger._default_hp_metric =
path. joi

pretrained_filenane
(LR Load_fron_checkpoint (pretrained_filenane)

eturn model

sinclr_podel. = train_sincln(batch_size-256,
hidden_din=128,
1r=5e-4,

tenperature=0
weight_de

Figure 13: SimCLR Training

3https://zenodo.org/record/2546921# . Y5nN2XbPO7E
3https://winscp.net/eng/download.php

https://zenodo.org/record/2546921##.Y5nN2XbP07E
https://winscp.net/eng/download.php

4.3 Launching the TensorBoard to View SimCLR Accuracy and

Loss
To understand the SimCLR model behavior TensorBoard functionality is implemented
to view the accuracy and loss over the datasets, refer to figure [I4]

Figure 14: Tensor Board

5 Classification: Logistic Regression

After training the SimCLR model and saving the checkpoint also known as model weight.
The next step is to implement a single-layer classifier, for this task Logistic Regres-
sion(LR) is been implemented in the class LogisticRegression, refer to figure .

Figure 15: Class Logistic Regression

5.1 Dataset Encoding

After implementing the logistic regression class, the next task is to encode the images
from the train and test images which will be the input classifier, refer figure [16| and

img_transforms = tra
,), (0.5,))1)

train_ing_data = dat: (roo PATH, split=trsplit, download=True,
transform=ing_transforms)

ATH, split=tesplit, download=True,
g_transforms)

test_ing_data = d

en(train_img_data))

print("Num
len(test_img_data))

print("Num

v 19

Figure 16: Training and Test Data Encoding

()
ef prepare_data_features(model, dataset):

data_loader = ataset, batch_size=64, nun_workers=NUM_WORKERS, shuffle=False, drop_last=False
feats, labels = [], []
for batch_ings, batch_labels in tqdn(data_loader):

batch_ings = batch_ings.to(device)

batch_feats = network(batch_ings)

feats.append(batch_feats.detach().cpu())
labels. append(batch_labels)

feats .cat(feats, din=0)
labels h.cat(labels, dim=0)
labels, idxs = labels.sort()

feats = feats[idxs]

eturn taset(feats, labels)

train_feats_sinclr = prepare_data_features(sinclr_model, train_ing data)
test_feats_sinclr = prepare_data_features(sinclr_nodel, test_ing_data)
2.1s

Figure 17: Encoding Function

5.2 Training Logistic Regression

The next step is training the logistic regression, refer to figure and evaluating the
results over a different number of images per label, here 10, 20, 50, 100, 200, 500 images
per label are used also the batch_size is set as 64, max_epoch is 100 and learning_rate is
les.

e, mode='nax’, monitor:

trainer.logger._default_h

train_loader

test_loader =

pretrained_filenane = os. path. join(CHECKPOINT_PATH, ssion_{nodel_suffix}

trainer. fit(nodel, train_loader, t)
nodel d_fron_checkpoint (trainer. checkpoint_callback.best_model_path)

train_result = trainer.test(nodel, train_loader, verbo;
test_result = trainer.test(model, test_loader, verl
1 odel

Figure 18: Training Logistic Regression

5.3 Logistic Regression Results

Figure cell shows the graph of accuracy versus the number of images and MAPE
values, additionally, the confusion matrix with the model classification report is also
implemented. Also, the model is evaluated after every 10 epochs so that the model does
not overfit the dataset refer to figure |20

def get_smaller dataset(original dataset, nun_ings_per label):

set
t.unflatten(d, (2, - ings_per_label].flatten(e, 1) for t in original dataset.tensors

rn new_dataset

rain_logreg(batch b
train_feats_data=

results[nun_ings_per_label] = snall set_results
v Im31.1s

Figure 20: Results

6 Baseline: ResNet18

Once the SimCLR based on self-supervised contrastive learning and logistic regression
are implemented, the next step is to implement the baseline model, hence ResNet18 as
a fully supervised learning is used. Figure [21] shows the implementation of the ResNet18
under class ResNet.

Figure 21: ResNet18 Class

6.1 Augmentation Pipeline

To evaluate the result on a fair basis the augmentation pipeline is implemented for the
baseline model as well, and it has been sectioned as per the experiments, refer figure [22

Expirement No-1 without using augmentation pipeline

Expirement No-2 using augmentation pipeline

train_transforms = ti

train_ing aug data = pCAM ATASET_PATH, split=trsplit, download=True,
forns)

Figure 22: Image Augmentations

6.2 Training ResNetl8

The training function is similar to the logistic regression and validation is performed after
every 2 epochs so that the model does not overfit during the training step refer figure [23]

int_callback.best_model_path)

Figure 23: Training Function

6.3 Model Training and Result

The last cell calls the training function and the confusion matrix, classification report,
and accuracy of the model are printed, refer figure

resnet_model, resnet_result = train_resnet(batch_:

print(on traini {100*rasnet_res
print(on t 100*resnet_result
print(of {resnet_result

Figure 24: Baseline Results

10

	Introduction
	Amazon Web Services and Amazon Elastic Compute Cloud Setup
	Python Libraries Requirement
	SimCLR Modeling
	Augmentation Pipelines
	SimCLR Training
	Launching the TensorBoard to View SimCLR Accuracy and Loss

	Classification: Logistic Regression
	Dataset Encoding
	Training Logistic Regression
	Logistic Regression Results

	Baseline: ResNet18
	Augmentation Pipeline
	Training ResNet18
	Model Training and Result

