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Using Self-Supervised Learning Models to Predict
Invasive Ductal Carcinoma from Histopathological
Images

Taher Abbas Poonawala
X21118043

Abstract

The process of learning representations without annotated data is called self-
supervised learning (SSL). SSL has found most of its applications and proof of
concept in the field of natural images since its debut. These strategies have a lot
of potential, especially in situations when data is scarce. While these algorithms
would almost certainly benefit immensely from being researched and benchmarked
on sparse medical datasets such as microscope images, they have gotten little at-
tention so far. This research focuses on creating a framework for applying the SSL
approach to low-data-regime scientific datasets. The dataset consisted of histopath-
ological scans of invasive ductal carcinoma (IDC) with 96-pixel resolution images.
Methods for adapting SSL protocols to operate with this data collection were thor-
oughly investigated. Employing the SimCLR framework, which uses a contrastive
approach, to learn data representations with a focus on cropping algorithms. The
fascinating structure of the dataset allows for significant changes. After training on
an unlabeled dataset, the SImCLR achieved 84% accuracy as a prelude to logistic
regression for image classification. The ResNet18 model, considered the baseline,
could only properly predict 75% of the images. It outperformed a model trained
only from supervision with 500 images per label by 8% using just a tenth of the
labeled data.

1 Introduction

Most women over the age of 40 who are diagnosed with advanced breast cancer have
infiltrating ductal carcinoma (IDC), (Samala et al.; [2019). The milk ducts serve as the
initial staging area for lymphocytes before they spread to other areas of the breast and
the body. Malignancies may be diagnosed using a variety of clinical modalities, including
biopsies, MRI, US, and mammography. Tissue samples acquired from a patient and
examined by a board-certified pathologist are the gold standard in diagnostics. The
pathologist’s ability to detect cancer and foresee its development is also taken for granted.

The effectiveness of Machine Learning(ML) relies on the models’ capacity to acquire
knowledge from data that has not been explicitly labeled. ML techniques were created
with a specific emphasis on labeled data. ImageNet, cifar, MNSIT, and the fashion
version of MNIST are just a few of the well-curated datasets that have been developed.
Data labeling, however, is a time-consuming process. Identifying 14 million images in
the ImageNet collection, required 22 human years of effort (Benbrahim and Behloul;



2021). Slowly but surely, difficulties began to emerge, such as "how to scale learning
from unlabelled data?" While unlabeled data is readily accessible, it is impossible to
identify everything in sight.

Given a dataset of 327,680 colored histopathological images of IDC, and using a super-
vised Convolutional Neural Network(CNN) model termed ResNet18 as a baseline, how
effectively can a self-supervised deep learning SimCLR identify IDC using histopatho-
logy data in the field of medical imaging? How do hyper-parameters influence these
representations?

The fundamental objective is to create a novel method for predicting the IDC by using
a SSL model. When it comes to IDC forecasting, there has not been a lot of research
on self-supervised systems. The IDC may be predicted quickly using this approach. It is
not necessary to have specialized expertise to assess the data and draw conclusions. In
this research, IDC is evaluated at a low cost and the appropriate moment, meaning that
patients do not have to spend time and energy attempting to predict what will happen
or postpone obtaining the therapy they need. The majority of the data set comes from
multiple-angle micro-graphs of biopsy analyses. A potentially disastrous outcome might
occur if pathologists examining the images fail to see the labels and thereby misinterpret
the results. Input labels, a magnification setting, and user-guided cropping are required
to train a model in the present study’s CNN.

This study uses SimCLR, an SSL framework that leverages logistic regression as a
binary classifier, and ResNet18, a baseline for comparison of SSL with supervised learning,
for evaluating and verifying the efficacy of the contrastive learning technique. Methods
that rely on SSL to maximize the learning, which enables quick tailoring for a specific
classification issue. With SSL, a large dataset is usually not a problem. However, to train
a model, it would be essential to manually identify each of those images using supervised
learning. A manual process to identify the same amount of data would take a couple of
months and would cost an arm and a leg. Therefore, using an SSL. model with either
no or limited labeled data can predict the output with ease. In a similar vein, just raw
histopathological images of a patient are needed to predict IDC for that patient.

The roadmap for the paper is arranged as follows: Section [2] covers the state of
the art in SSL, deep learning, and supervised ML techniques for IDC prediction using
histopathology images. This section has been divided further into subheadings depending
on the different ML techniques. Section [3| describes in detail the general methods used
to acquire the findings. It has multiple subsections, one for each stage in the overall
technique, that describe and justify the process used for that step. Section [4] discusses
the architecture of the proposed SimCLR method that uses a contrastive approach for
learning representations of the data and a supervised ML model. Section [5| will go into
the specifics of putting the recommended solution into action. It focuses on the steps
right from data loading to modeling. Section [f] refers to the methodology and outcomes
of the testing will be discussed here. The components of an experiment vary from one
to the next. Moreover, each experiment’s overall findings are discussed at length in the
paper’s discussion section. Section [7] contains concluding thoughts and prospects for
future research in the field are presented here.



2 Related Work

The potential to predict IDC using histopathological scans has been the primary focus
of the research investigations and tests that have been conducted. SSL, ensemble ap-
proaches, deep learning, and transfer learning were the subjects of the research. The
research was conducted with great caution and attention to detail, and a short summary
of those findings is provided below.

2.1 Review of Work Based on Unsupervised Machine Learning
Techniques

In order to accurately diagnose skin tumors high resolution images are required. When
training the model with unlabeled data, the authors of the (Azizi et al.; 2021) study
utilized a Multi-Instance Contrastive Learning (MICLe) that was self-supervised. In
order to categorize the tissues, a variety of approaches are used, with semi-supervised
algorithms serving as the major way. The model performs better when shown images
at varying magnifications by 6.7% with top-1 accuracy and 1.1% in area under curve.
The model’s performance and accuracy were respectable when compared to those of
conventional semi-supervised and supervised machine learning models. The author has
laid up plans for the next studies that will use high-resolution images to make inferences
about tumors at various magnifications.

The authors of the (Ghesu et al.; 2022) article have conducted research with the ob-
jective to train the model with over 100 million medical images, which has traditionally
proven challenging. The author used a CNN that had been pre-trained in addition to
an ML method. A small number of studies have investigated where SSL is evaluated on
10 million unlabeled images from various datasets including radiography, CT, MR ima-
ging, and ultrasonography. Low-regime datasets nonetheless provide difficulties; without
millions of data points, they are less dense than the other datasets and have unique dif-
ficulties. Typically, these datasets have been curated by professionals. The model has a
sensitivity of 84.6 percent, which means that it can identify a significant portion of false
positives. The pre-trained model has been less trained and on applying the multi-layer
perceptron the scalability of the model has reduced.

A group of researchers have developed a model to determine if a person has the cancer-
causing BRCA1 or BRCA2 gene mutations (Khaliliboroujeni et al.; [2022)) centered on WSI
of breast excision specimens and patients” BRCA gene status. Dimensionality reduction
methods and combining good classification findings with tile-based classification may
help provide reliable predictions. The magnification levels used for sorting range from
10x to 40x, with 50x being the most common. The authors could have employed an ML
technique for selecting features.

2.2 Review of Work Based on Deep Learning Methods

The authors (Spanhol et al.; 2016) created a neural network that is divided into two
phases. Because of the microscopic examination, learning may occur on several levels,
from the level of breast cancer patches all the way down to the pixel level. The CNN
network enables automatic resizing in terms of the dimensions of the input image, res-
ulting in improved performance. This improves the model’s retention of imperfect data.
The model’s findings were double-checked against the radiologist’s. More than 100,000



images were used for training. This means that the condition might be diagnosed early
on and treated successfully. Some restrictions exist on the idea, such as the authors not
providing a mechanism for multiclass categorization and the lack of work at the cellular
level.

(Samala et al. [2019)) did more research on breast cancer subgroups. When working
with SE-ResNet, when squeeze-and-excitation is used in conjunction with residual models,
only the bare minimum of hyperparameter adjustment is needed as a learning rate. Cell
overlap and unstable color images generated by different methods are two examples of
current areas of use. On the other hand, the author has hit a pinpoint target. The author
could have focused on batch size, since it could influence the model performance.

Research by (Roth et al.; 2016) used CNN to provide forecasts regarding breast cancer
metastasis to the lymph nodes. Before using the images to train the model, they were
transformed to greyscale. A possible downside is that it may be difficult to detect whether
or not lymph nodes have metastasized after clinical surgery.

Data storage constraints make it difficult to train a CNN model on full-size whole-
slide images. High-throughput Adaptive Sampling of Histopathological Images provides
a vital paradigm for overcoming huge volume dataset(HASHI), (Cruz-Roa et al.; 2018).
The algorithm predicts that during the next 24 hours, almost 6 million images will be
shot. The biggest problem is that it can not predict the tumor at stage zero, the earliest
potential stage.

The authors (Siegel et al.; |2017) have constructed a neural network that consists of
two steps. Learning from breast cancer patch level to pixel level under microscopic ob-
servation. Auto adjustment in terms of image dimension is achieved through the ResNet
network to get high performance. This helps the model adhere to noisy input. The
output of the model was verified and tested against the radiologist’s output. More than
100,000 images were used to train. Hence, the identification of breast cancer is possible
at an early stage. There are a few drawbacks of the model, which are that the authors
have not laid down how multiclass classification can be achieved, and very little work has
been performed at the microscopic level.

The prediction of high-resolution images of cells is accomplished using CNN by the
author (Diao et al; |2021)). Feature extraction is carried out using the random forest
approach. After each iteration, the model was supplied with labels, and a 95% con-
fidence interval was obtained. To increase the model’s performance, the author used
the Benjamin-Hochberg approach to merge the P-value from the current step with the
previously constructed decision tree.

Predictions of cancer outcomes are made using patient-reported clinical data, gen-
omic data, and histological images. The outputs of a CNN using a Sigmoid optimizer
are fed into a random forest classifier, as described by the research group referenced in
(Arya and Saha; 2021). Researchers may employ a number of different pieces of inform-
ation gleaned from histopathological scans to enhance the precision of forecasts and the
chances of survival. Although the authors do employ CNN, it is possible that a recurrent
neural combined with a CNN or feed-forward approach might be more effective for tumor
prediction.

2.3 Review of Work Based on Supervised Machine Learning

The authors of (Islam et al.; [2017) employed ML techniques such as K-nearest neigh-
bors(KNN), and a support vector machine (SVM). It was at the tissue level that the



tumor was primarily classified. The authors state that a large number of tests were
run, and the findings of several different models were taken into account when determ-
ining the level of accuracy achieved. When comparing SVM with random forest for data
classification, logistic regression and decision trees could have been compared as well.

The authors (Singh et al.; 2021)) used supervised ML classifiers like random forest
and XGBoost on IDC data. To smooth out the information flow and get rid of outliers,
the standard deviation was lowered during preprocessing. Classifiers were trained on a
dataset consisting of 2,178 occurrences and 12 predictors. The fact that the model was
applied without first identifying the most important traits is one criticism.

A framework driven by XGBoost and random forest has been developed by the authors
(Thongkam et al.; 2008) to identify breast cancer survivability. The model performance is
measured in terms of the Area Under the Curve (AUC) in order to facilitate the process
of disease progression forecasting. In order to offer the most accurate approximation
that is practically possible, the framework makes use of the Efron approximation for the
learning functions and gradient equations. According to understanding from the authors’
work, there does not seem to be any clear indication of when the rate of loss will reach a
constant.

AdaBoost ultrasound images were utilized to differentiate between cancerous and
benign breast cancers by the team of researchers in (Yang et al.; 2022)). The authors used
bi-clustering mining to determine the image’s recurrent theme. Research revealed the PC-
DF'S problem, which was fixed by using the FSDND technique for gauging distance. The
study is not perfect; for example, many cases of cancer are misdiagnosed, and mistakes
are still made when it comes to detecting very tough tumors.

To conclude the literature review, previous studies have shown that the choice of
which attributes to include in a model may significantly affect the model’s final results.
To boost the model’s accuracy and precision, it may be necessary to experiment with the
model with different image augmentations techniques. The study’s novel component is
its classification of IDC based on histopathological images of patients using 327,680 color
images taken from a range of angles. In order to combine a wide range of augmentation
activities, a projection head, a large batch size, and various training strategies, it is
proposed to build a contrastive learning SimCLR model based on SSL and baseline fully
supervised learning such as ResNet18 to compare the results.

3 Methodology

To carry out a machine learning activity that involves inspecting a dataset and extracting
relevant patterns from it, a certain architecture must be employed. Sequential iterative
techniques are shown in figure [Il The first stage involves an unlabeled dataset being
loaded into a pre-processing and transformation pipeline. The model must first be trained
and tuned before moving on to the evaluation and its monitoring.

3.1 Dataset Description

To better learn prominent features, the contrastive technique takes use of differences in
visual characteristics across image patches When examining images at a high resolution, it
might be challenging to obtain visually distinguishable patches for digital histopathology.
Selecting image patches from the same WSI or sampling images from the same dataset
will result in a less diverse dataset than selecting images with different resolutions, tissue
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Figure 1: Methodology

types, and varied staining. Figure [2| depicts the dataset, which contains 327,680 breast
histopathological colored images(96 x 96px) of patients, all of which are obtained from
an open-source repositoryEl during the data collecting phase.
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Figure 2: Dataset Overview

3.2 Data Pre-processing and Transformation

For a batch size of 2N in each pretraining step, there is corresponding two images gen-
erated that are one positive image and negative image 2(N-1), which corresponds to the
transformation step. As studied in the research given by (He et al.; 2020)), the research
will use the negative instance of the images from the batch instead of generating negative
samples additionally, as this will not only cut the model cost but also optimize the 4 /N2
feature vectors in each batch during the pretraining step. The main parts of the SimCLR
framework are, in brief,

e The formation of a pretext task relies heavily on a composition of numerous aug-
mentation activities;

e Using a projection head, or non-linear head g¢(.), refer figure |3 for an example of
how much of an improvement in representational quality it makes;

e Important for representations are high batch sizes and extended training steps;
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Figure 3: Self Supervised Learning: Highlevel Architecture

In the natural image dataset, SImCLR uses random crop followed by resizing as a critical
transformation in the augmentation pipeline. however, in the case of histopathological
images resizing should not be considered as it will degrade the micro-structure in the
image, as per the analysis provided by (Chen, Kornblith, Swersky, Norouzi and Hinton;
. The standard augmentation pipeline used for histopathological images is as shown
in figure [
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Figure 4: Image Augmentation Pipeline

3.3 Feature Extraction

Images include a color histogram that goes from 0 to 256, but for usage with data mining
techniques, this must be transformed into a range between 0 and 1 so that different clas-
sification methods may be used. Also, the images are converted to grayscale and padded.
Both overfitting and underfitting of the model, which may occur with large datasets are
addressed by preprocessing the data to make sure the final dataset is balanced. When
compared to the surrounding healthy tissue, malignant growths seem darker and denser.
Is this something that often happens in ductal tissues or is it more prevalent in cancer
cells? Though mostly in good condition, there are a few strikingly violet areas. It would
be fascinating to hear the pathologist’s opinion on what abilities are most important.
Milk ducts might be exposed via the tissue holes. Tumors that are more likely to be
malignant are often greater in size and more numerous than those that are not. The
model is said to be able to identify even minute differences that are indicative of the

Thttps://zenodo.org/record /1494286+.Y 35QvHbPOTE
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images’ different states, despite its inability to discern the two kinds apart based on look
alone. There is a considerable standard variation when comparing the total number of
image patches created by each individual. Typically, patients have a broad range in the
average number of image patches. It’s only reasonable to question whether the resolution
of tissue cells seen in images from various patients, refer figure 5 varies at all. More than
80% of the patient’s patches have IDC in previous circumstances. Either all of the tissue
is infected with cancer or the breast slice used to analyze IDC cancer was too small to
detect significant disease in those areas.

Cancer tissue colored red
Breast tissue slice of patient of patient

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
y-coord y-coord

Figure 5: Cancer Patches

Pathologists rely on medical images for illness detection and diagnosis, however, these
images need to be enhanced for the benefit of the pathologists. It is important for images
to be of high quality before being processed using an automated deep-learning model. The
research provided by (Zhuang and Guan; 2017)) mentioned a technique called Histogram
Equalization basically improves the brightness and contrast of an image without altering
the actual data within the image, this technique is variance and mean of the original
image. For the purpose of improving contrast and brightness, histopathology image data
is processed using the Histogram Equalization technique in this study. Because of the
tiny nature of the analysis, histopathological images are stained and might be difficult to
interpret. When an image is normalized, the contrast is enhanced. Therefore, it improves
the precision and efficiency of unsupervised learning.

3.4 Modelling

SSL also known as unsupervised learning, refers to a circumstance in which a learning
algorithm is given input data without the labels required for conventional supervised
training. Yet, there is a plethora of information that can be extracted from this data,
such as the degree to which the images differ from one another. How do different types
of patterns define various images? Can the images be grouped together? It’s important
to keep going in the same direction. A benefit of SSL is that it is often straightforward
to amass a large dataset.

As a first step in solving image identification issues, a model is trained using an
unlabeled histopathology image collection. It is standard practice to only employ a
small fraction of available images throughout each training iteration. Two versions of
each image result from using the data transformation pipeline. A 1D feature vector is
extracted from the images using a CNN-based ResNet and then fed into a single-layer
multi-layer perceptron (MLP). In the training step, the model tries to pull the similar
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feature vector of the same image while it repels the vectors belonging to different images.
. This framework is useful for supervised learning because it compels the model to focus
on visual properties, such as images, that are unaffected by the augmented data. Images
are classified as IDC using a logistic regression model built on top of the SimCLR model,
and the results are compared to those of the fully supervised ResNet18 model. Also,
to avoid overfitting the classification model and baseline model after 2 and 10 epochs
respectively the model is evaluated.

3.5 Evaluations Criteria

In machine learning, evaluation metrics are used to measure how well a model performs
on inferred data. There are several ways to measure a model’s efficacy, but one common
method is to compare its test set performance versus the training set. The effectiveness
of the model is as follows:

3.5.1 Loss Function

Loss functions are used to train the weights of the network by comparing the model’s
prediction to the label of the input data (also known as ground truth). While Mean
Squared Error (MSE) is utilized for regression, Cross Entropy is often employed for multi-
class classification. This is vital knowledge since MSE is employed as a loss function in
durability prediction evaluations. L5 loss is another name for MSE. When dealing with
a two-class situation, the cross entropy is defined by, £L = —(ylog(p) + (1 — y)log(p)).
Also, the loss is computed for each class label per image in a multi-class classification
issue, and then added together. In recognition of:

L==> yiclog(pic)

Here, y is a binary variable (0 or 1), M is the total number of categories for observation
¢+ and that has a probability prediction of p; that it belongs to class ¢ if and only if the
class label ¢ is the correct classification.

The formula of the regression MSE is:

1 n
L=- i — 0i)°
p ;(y 9:)
where §; is label predicted for the corresponding " sample, 7; is ground truth for i**
sample, and n is number of samples.
In order to compare and contrast various techniques and hyperparameters in the

classification job, the Accuracy metric is used.

. 1 N
Accuracy (y;, i) = - Z [y = 93l

n=1

where, y; and g; are the labels that really happened and the ones that were anticipated,
whereas [[]] represents the lverson bracket. 1 is returned if the expression within the
bracket evaluates to true; 0 otherwise.



For comparison of regression task, Mean Absolute Percentage Error (MAPE) is used
as a metric and defined as below;

I Yi — Ui
MAPE = — —_
L2

n=i

where g; and y; are predicted value and ground truth respectively and n is number of
samples, .
The following instances have been identified as IDC-positive predicted cases:

TruePositives

recall =
TruePositives + FalsePositives

Acquiring a positive IDC forecast with precision is the quality referred to as precision.

TruePositives

Precision =
TruePositives + FalseNegatives

The f; score is determined by calculating the harmonic mean of the recall and precision
scores:

2
flz 1 1

recall precision

4 Design Specification

In this section, the framework of the system and the major features of the investigation
are shown. As seen from the figure [6] that the model is broken down into two distinct
phases: the first deals with feature extraction and SimCLR training, while the second
focuses on classification. The unlabeled histology dataset is loaded into the model at the
commencement of the process. After the data loader step is completed the transformation
pipeline is triggered, relevant features from the dataset are extracted in preparation for
training the model using SimCLR, and the checkpoint is stored. Using the saved check-
point the logistic regression model is used to perform the classification task. ResNet18 is
used as a baseline model to evaluate the result of SSL.

4.1 Models
4.1.1 Pre-trained: SimCLR

When classifying images, a pre-trained model is fed into a logistic regression model, and
the features are obtained from the SimCLR model. In contrast, the results of the self-
supervised model, a fully supervised model ResNetl18 are also built. The contrastive
learning strategy proposed in (Chen, Kornblith, Norouzi and Hinton}; [2020)) is shown in
figure[7] and it centers on optimizing the degree to which two representations of the same
image agree with one another. The objective is to discover a way to compare and contrast
the normalized feature representations of two augmentations of the same image (i) an
encoder or neural network fy(.), (ii) an auxiliary projection layer p;(.) with parameters
, (iii)for an input image 7 the augmented images are z; and z;, and (iv)with parameters
6 a probabilistic augmentation function fa,(.): zi = pj(fo(fave(?))). Concurrently, a
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Figure 6: System Design

contrastive loss function called infoNCE loss is constructed that makes other images in a
batch distinct from the image 7 as prescribed by (Oord et al.; |2018)).

exp (similarity (z;, z;) /7)

Zii[l Lz exp (similarity (z;, 2x) /7)

,Cm' = — log

where the similarity function is a distance metric between two [, representations, 1 is
an indicator function that outputs 0 when k£ = i else 1, and 7 is a temperature parameter
that assists in the weighting of dissimilar situations to complete hard negative mining and
for this study, it is set to 0.07. In a single hidden layer of multi-level perceptron(MLP)
refer figure 3| the lower embedding space is fed pre-activation layer

z; depicts the pre-activation layer output of the function f4(.), and the MLP output
as the result of the function p;(.) in figure m The pre-activation layer’s output is pro-
jected into a lower embedding space using an auxiliary projection layer, which is a single
hidden layer Multi-Layer Perceptron (MLP) refer figure[3] It was discovered that simply
comparing the outputs of the pre-activation layer wasn’t the most efficient method for
learning representations. Instead, it was found that comparing z; and z; was more bene-
ficial. Using the cosine similarity measure for the experiments, which can be expressed as
similarity(z,9) = 2¥y/ |z| |y|. The authors of the study (He et al.; 2015) experimented
and found that using infoNCE was more effective in teaching better representations than
using other loss functions such as margin or logistic losses. NT-XENT was proven to be
effective for the natural dataset as per the analysis
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4.1.2 Classification: Logistic Regression

Logistic Regression (LR) is a well-liked option for binary classifiers. It is a very effective
learning model that can estimate the probability that a given piece of input data belongs
to class X or Y. LR employs a linear function to weighted-blend input data to predict
an output. The sigmoid function is then utilized to transform the LR’s results to a
value between 0 and 1. The training of an LR binary classifier consists of improving
the weights of the LR function applied to the input data by undertaking a maximum-
likelihood estimate that minimizes the error in probabilities predicted by the LR model
(Hirra et alj; [2021). It is expected that the optimum weights will get the network’s
prediction very close to being exactly 0 or 1. If a classification job returns a yes or no,
and a threshold value is set to 0.5. It means the prediction is for class Y if the probability
is less than 0.5 and class X if it’s higher than 0.5.

4.2 Baseline Model: ResNetl8

(He et al.; 2015), created a series of models in 2016 that included the deep residual network
(or ResNet for short). For the most part, training a deep neural network is a time-
consuming process that can only go so many layers deep; this architecture was created to
circumvent these challenges. The baseline model is based on the ResNet18 conventionally-
supervised learning model. Training data undergoes image augmentation, and resnet
incorporates more factors than the data points itself to guarantee a fair comparison. In
addition, the ResNet model is trained entirely from scratch, without the use of any pre-
existing models. As demonstrated by (He et al.; 2015), models with several hidden layers
may be trained via residual learning. The following describes what a ResNet residual
block is, y=F(xz, W + z). For a given layer representation (z, y), a residual map function
F may be calculated. The residual block on ResNet may be finished if the input and
output data dimensions are the same. ResNet-18 networks also include multiple levels
inside each ResNet block, with the first two layers using the convolution of size 77 and
max-pooling of size 33 with a stride of 227, much like GoogleNet, (Aljuaid et al.; [2022)).
This investigation is focused on a single model that downscales images to a 96x96 grid
and is built on ResNet18 architecture. ResNet’s weights are initially set using ADAM
and the default momentum values.
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5 Implementation

The below section consists of the details of the implementation:

5.1 Computational Details

The thesis implementation code may be accessed at the following address: https://
github.com/taherpoonawala/self-supervised-learning. PyTorc}ﬂ, Torchvision EI is
used during the construction of the model, to plot the graphs matplotlib library is used,
while TensorBoard is the tool that is utilized for logging purposes. Each and every
experiment is carried out using a collection of machines known as the Elastic Compute
Cloud(EC2) Resource, which is offered by Amazon Web Service(AWS). The overview of
the AWS-EC2 configuration is 48 vCPUs and 4 x NVIDIA V100-SXM2 GPUs of 16 GB
memory each per compute node.

5.2 Contrastive Learning Data Augmentation

A data loading strategy is developed, wherein random augmentations are introduced to
each sample in the dataset, to assist efficient training. The quickest and easiest method
to produce this effect is the augmentation pipeline which generates two distinct views of
the same image. However, for the most effective instruction, just two are often required.
The next stage is to decide which changes will be implemented. Refer to figure |8| for
an illustration of the many types of augmentation that may be given to an image. The
human brain can distinguish or differentiate between the foreground and background of an
image on the fly. It is also possible to identify a given object in any orientation. Similarly,
Augmentation is critical in making an SSL model robust in generalizing properties of
input images. The authors (Chen, Kornblith, Norouzi and Hinton; 2020) demonstrated
the use of augmentation using the dog image refer figure[§ and its benefits in assisting the
system in learning more about the image. When the image is cropped and resized, only
the tail is visible, necessitating a flip to comprehend the entire image. If this image is
fed into the system, the background color has more influence than the object in question,
so color distortion is required. Adding noise and blur to make the model more resistant
to such images. Additionally, rotating the image at a random angle improves model
learning.

(j) Sobel filtering

Figure 8: Augmentation Pipeline Output: figure by (Chen, Kornblith, Norouzi and Hin-|

fton} [2020)

While they may all be beneficial, the ability to resize and crop images, as well as
alter their colors, stands out as especially powerful tools. However, as per (Chen, Korn-

https://aws.amazon.com/pytorch/
https://pytorch.org/vision/stable/index.html
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blith, Norouzi and Hinton; [2020)), they are only effective when used together. One can
distinguish between

1. an image A that has been randomly cropped and resized to display a nearby area
of (b) an image B that has also been randomly cropped and scaled,

2. two images C and D that have been arbitrarily cropped and enlarged to display
surrounding areas of the same image, refer figure [J)

—————

(a) Global and local views. (b) Adjacent views.

Figure 9: Cropping and Resizing: figure by (Chen, Kornblith, Norouzi and Hinton; 2020))

In case 1, the model just has to learn how to make crops to make them identical. In
case 2, on the other hand, the model needs to learn how to understand the image which
has been cropped out is the most difficult task. On the other hand, the model could make
advantage of a defect without causing any color distortion. This imperfection is the fact
that diverse image cropping tends to seem quite similar in terms of color space. It is not
easy to discern that the two patches are from the same image just by looking at how
close the colors of the fur and the background are to one another. The backdrop has a
greenish tone, refer to figure [§ In such a case, the model may wind up paying too much
attention to the color histograms of the images while paying too little attention to other
parameters that may be used in a broader sense. Any change in the cut out of any image
is isolated with the transformation the model will not be able to learn the representation.
As a result, the model can only match two patches since it must first acquire generalizable
representations before it can do so. This is produced by a procedure that mixes random
cropping with color distortions.

The images used in this research were randomly rotated 90 degrees, cropped, their
colors distorted, converted to grayscale, and blurred using a gaussian filter. The research
used a dataset with substantial fluctuations in brightness and showed that using this
design led to better performance, shorter training time, and higher stability.

5.3 Importing the Dataset

According to the criteria described in the section [3, the dataset consists of both car-
cinogenic and non-carcinogenic examples of image data types. The collection has 500
annotated images for each class and the images themselves are of a higher resolution
(in terms of pixels). Additionally, it includes an augmented collection of tagged IDC
histopathology images that are visually comparable to the training images. Thus, the
dataset is ideal for illustrating the merits of SSL. Note that additional space is needed to
store this dataset since it is larger and has a somewhat higher resolution (7.7 GB). This
study generates two data loaders using the aforementioned contrastive transformations
for use in the first discussion of SSL and SimCLR; one will be used to train the model on
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unlabeled data using contrastive learning, and the other will be used as a validation set
for that model. After importing the dataset, the outcomes of data augmentation, such
as arbitrary cropping, grayscaling, gaussian blur, and color distortion is demonstrated in
the snapshot, as shown in figure [I0] As a result, the model continues to struggle with
the task of matching two independently enhanced parts of the same image.

Augmented image examples from the dataset
T gt

Figure 10: Augmented Cancer Patches

5.4 SimCLR Implementation

Now that the data-loading pipeline is in place, the next step is to build SimCLR. For each
input image z, the data loader generates two output images, z; and w;, as shown in figure
B, which are changed differently with each iteration. The objective is to maximize the
similarity between these two images and the rest of the batch, which has been represented
by a one-dimensional feature vector. The encoder system is made up of a base encoder
network, which is denoted by f(.), and a projection head, which is denoted by g¢(.). The
output of ResNet-18, a well-known neural network design, and is used as the basis for
the subsequent tests, and its equation f(Z;) = h; will serve as the guiding principle. In
order to determine the degree of similarity between two vectors by use of the contrastive
loss, it projects the representation h into space by making use of the projection head g(. ).
The article (Chen, Kornblith, Norouzi and Hinton} 2020)), is consistent with the study’s
definition of SImCLR as a ReLLU activation with two-layer MLP in the hidden layer. After
the contrastive learning training is complete, the projection head g(.) may be taken off
and the system can be used as a pre-trained feature extractor f(.). It has been proven
that representations generated by the projection head g(.) are inferior to those generated
by the base network during training. Due to the invariance of the learned representations
to factors such as hue, which may prove crucial in later challenges. Thus, ¢(.) is not
required at any point in the learning process. Cosines may have a similarity between +1
and -1, with +1 being the most common. Due to this limitation, it is expected that z;
and z; should be different as the CosSim will lead to convergence between(0,-1).

5.4.1 Training SimCLR

After integrating SimCLR and configuring the data-loading pipeline, the model must be
trained. Training will continue with the same set of training functions as before. This
measure is recommended for picking the best model since it is generally less noisy than the
top-1 metric. To have the model learn from the representations more precisely batch size
should be chosen ideally. When the batch size is increased, each image may be compared
against more negative samples, resulting in flatter loss curves. Nonetheless, 256 batch
sizes were found to be enough for this application.
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5.5 Logistic Regression

The performance of the models tends to improve with larger batch sizes in contrastive
learning. Each image may be compared to more negative samples when the batch size is
larger, which leads to flatter loss curves. However, it was discovered that a batch size of
256, with a learning rate of 5e-4, the epoch was set to 500 since the loss value showed
a consistent value. The h should be represented in such a way that it must explain
characteristics for the job if the model is to perform effectively, regardless of whether the
training strategy modifies the underlying network f(.) or not. Also, there will be only
very few factors in the training process that overfitting should not be a problem. That
being the case, it stands to reason that the model will function well with little input.
In the first step, using a Logistic Regression, which makes advantage of the fact that
assuming the image feature vectors already exist. In the event of data scarcity, at the
time of training, the task of encoding images should be performed in order to undertake
data augmentations. The method used here, however, is much more efficient and easy
to teach. Not only did data upgrades not help much in this restricted setting, but they
really hurt things. The trials will use even smaller datasets than the training dataset,
which only has 500 labeled images per class. In this research, we examine the effects
of different training dataset sizes on a Logistic Regression model (10, 20, 50, 100, 200,
and 500 samples per class). Some insight into the transferability of contrastive learning
representations to this particular classification issue in image recognition is provided by
this finding.

5.6 Baseline: ResNetl18

To compare the SSL with the ResNet18 model, a similar augmentation pipeline should
be developed and applied on the dataset. The findings will show how using contrastive
learning on unlabeled data might be more beneficial than using just supervised training.
Since the touchvision library provides the ResNet architecture, putting the model into
action is simple. ResNet overfits easily to the number of parameters allocated in the model
due to the huge metadata being generated(Aljuaid et al.; 2022). Use data augmentations
similar to what was done in the contrastive learning technique in the previous section,
so that it can be competently contrasted with contrastive learning models. The color
distribution of an image is an established factor in classification, therefore conventional
color distortions are avoided. Accordingly, it seems that augmentation does not show
any improvement in the model performance. The reason for this difference is that in
contrastive learning, it was sufficient to establish whether two patches were from the
same image, but in classification, the model had to recognize the whole object. As a
consequence, subsequent improvements sometimes prove less effective than they would
have been in a contrastive learning setting. Training ResNet is quite similar to training
a standard Logistic Regression model. You may recall that initially ResNet was allowed
to check for overfitting just once every two iterations through validation.

6 Evaluation

The following experiments were conducted, and the outcomes were analyzed using the as-
sessment metrics stated in subsection [3.5] This section contains a comprehensive analysis
of all experiment outcomes.
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6.1 Experiment 1

The experiment aims to model a fully supervised ResNet18 model and a self-supervised
SimCLR model to predict the IDC on histopathological images without any image aug-
mentation.

6.1.1 Model

This experiment compares the results of the SimCLR model and contrastive learning
without any augmentation to the baseline supervised ResNet18 model, offering insight
into the relevance of augmentation in the context of image processing. In this experiment,
the SimCLR model is given an unaltered dataset to analyze, and a linear logistic regression
is used to classify the images, with the SimCLR model acting as the baseline against which
the experiment’s outcomes may be assessed.

6.1.2 Result

The SimCLR model performed at a MAPE of 0.57% and accuracy of 71.80% without
any additional features. The Mean absolute percentage error (MAPE) for the baseline

Table 1: SimCLR and ResNet18 Model Output
Model Name | Class | Precision | Recall | f1 score

SimCLR 0 0.713 0.7308 | 0.721
1 0.723 0.706 0.715
ResNet18 0 0.655 0.895 0.757
1 0.834 0.529 0.648

model is 1.50%, which corresponds to an accuracy of 75.34%. While ResNetl18 is 5%
more accurate than SSL, the confusion matrix paints a different image of the model’s
efficacy. Recall, Precision, and fI _score statistics are also shown in table [T Figure
shows a loss curve, also both graphs show a dip in the accuracy and a rise in loss which
denotes that the model is unable to grasp the unaugmented dataset. While the most
reliable projections for each coupling style are shown in figure

Figure 11: Loss Comparison: SimCLR

Figure|l3|contrasts expected and achieved values, the accuracy tends to be exponential
as the model tends to extract much information from the raw data. While confusion
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Figure 12: Accuracy Comparison: SimCLR

matrix comparison findings are shown in figure [[4] Since the precision is high for the
SimCLR model as compared with ResNet18, it denotes a low false positive rate, also
similar analytics follow for recall value.
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Figure 13: Output of Self-Supervised Model
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Figure 14: Confusion Matrix of Self-Supervised and ResNet18 Model

6.2 Experiment 2

The experiment’s goal is to train a fully trained ResNet18 model and a self-supervised
SimCLR model to predict the IDC on histopathology images without using mix augment-
ations such as random horizontal flip, random resizing crop, random color jitter, random
grayscale, and gaussian blur.

6.2.1 Model

This experiment sheds light on the necessity of augmentation in the context of image
processing by comparing the outcomes of the SimCLR model and contrastive learning
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with mixed augmentation to the baseline supervised ResNet18 model. Linear logistic
regression is utilized to categorize the images in this experiment, with the SimCLR model
serving as a reference point against which the results are evaluated.

6.2.2 Result

The SimCLR model performed at a MAPE of 0.36% and accuracy of 84.97% without any
additional features. The Mean absolute percentage error (MAPE) for the baseline model
is 1.50%, which corresponds to an accuracy of 75.34%. Recall, Precision, and fI _score
statistics are also shown in table Figure shows a loss curve, the model shows a

Table 2: SimCLR and ResNet18 Model Output
Model Name | Class | Precision | Recall | f1 score

SimCLR 0 0.819 0.898 0.857
1 0.887 0.802 0.842
ResNet18 0 0.680 0.956 0.795
1 0.926 0.551 0.691

trend of less loss value and high accuracy, which denotes that augmentation has helped
the model to learn from the unlabeled dataset. While the most reliable projections for
each coupling style are shown in figure

Tran Loss Testloss

Figure 15: Loss Comparison: SimCLR

Train Accuracy Test Accuracy

Figure 16: Accuracy Comparison: SimCLR

Figure 17| contrasts expected and achieved values. Confusion matrix comparison find-
ings are shown in figure [I§f SimCLR and logistic regression showed an improvement
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of 9.97% performing augmentation over baseline model ResNet18, the confusion matrix
displays a different image of the model’s efficacy. It’s clear that SimCLR has a low false
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Figure 17: Output of Self-Supervised Model
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Figure 18: Confusion Matrix of Self-Supervised and ResNet18 Model

positive rate since its precision is so much higher than ResNet18’s, and the same logic
applies to its recall.

6.3 Discussion

In section [6.1], it was tested whether randomized augmentation techniques are preferable
to predetermined ones. The accuracy of the learned representation was evaluated using a
linear test of the classifier’s ability to sort physically-present sample classes. Random aug-
mentation strategy improved accuracy by 13% compared to using a fixed augmentation
strategy, as this was implemented by (Spanhol et al.; 2016). This is because local inform-
ation may be lost at the fixed borders while processing patches in fixed augmentation,
but the random crop in random augmentation encompasses the whole image resolution.
Next, a baseline was established, and methods for randomly cropping the image were de-
veloped. Better model performance by 15% was achieved by focusing on the importance
of understanding how uncertainty impacts the quality of the mentioned representation.
Higher the cropping level, the worse the quality of the image. A useful learning signal is
achieved by optimizing for consensus amongst viewpoints that do not overlap.

The enhancement in feature representations obtained by various cropping strategies is
compared. In addition to the upstream process of linear evaluation for physical sample-
wise classification, the downstream task of label count per class is performed. When
compared to its companion category, this one clearly shows a 15% improvement in rep-
resentational quality as compared to the accuracy achieved by (Khaliliboroujeni et al.)
2022). Even though multi-instance generally outperforms, a random cropping strategy is
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ideal in the absence of label data. With enough time and data, multiple projector heads
may be used to train the model with various cropping configurations and then evaluate
its performance.

In section [6.2] studied how different pipeline enhancement techniques affected results.
For this, it was adjusted to the range of possible augmentations from 0% to 100%, with
a 20% spread. Surprisingly, it was found that the cropping and flipping augmentation
instance technique produced the best representations as compared to when augmentations
were disabled, but the mix augmentation strategy required augmentation for optimal
performance. Formerly, it was thought that the mix augmentation method and the
standard SimCLR technique were more crucial to multi-instances than the augmentation
function itself. For this reason, it seems sensible to reevaluate the role of augmentation,
even if doing so thoroughly was out of the question for this thesis. To learn more about the
impact of hyper-parameters, researchers looked into determining the optimal projector
and crop size for pretraining in SimCLR. Important as it may be to learn a similar feature
representation for a smaller crop as the default size of (96,96). The ideal representation
for the projector’s output size may be learned with a vector size of (1,256), however, this
is only slightly better than the other options. Therefore, it is unable to ascertain whether
or not the output of a projector is significant. It has been seen that after adding the
augmentation to the images there is an improvement of 15% accuracy from the previous
experiment and also there’s an improvement of 5% accuracy compared to the output of
(Arya and Sahal; [2021)). Hence the accuracy of the SimCLR is 84.97% and the baseline
model that is ResNet18 is 75.34%. When compared to the work of (Roth et al.; 2016]),
these metrics show a 3% drop in accuracy, but a significant reduction in false positive
rates.

After carefully evaluating the developed methodologies and assessing the impact of
various augmentations and hyper-parameters, it is crucial to determine whether the
learned representations aided in predicting the regression value of weariness lifespan in
IDC’s histopathology dataset. This statement’s veracity is measured by the regression
value prediction error. Because the MAPE error is still more than the constant projec-
tion, it seems reasonable to infer that models cannot estimate the weariness value. It
may not be feasible, given the current state of representation and pretrained models, to
compare how well it performs on the physical sample categorization, or how well it per-
forms on the lifetime prediction. The two main causes are: Similar to the multi-instance
classification problem (a) the physical sample classification problem and (b) a classific-
ation scheme based on the labels is then constructed. Therefore, this assessment lacks
the objectivity necessary for serious consideration. The accuracy of the microstructure
is crucial to the prediction model’s weariness. Because the fatigue loads imposed on a
material also depend on its mechanical properties at the microscopic level.

7 Conclusion and Future Work

This thesis modified the SimCLR method to enable SSL in order to improve feature rep-
resentation in IDC histopathology images. Specifically, augmentation should be used as
it has proven advantageous. The findings demonstrate superior performance on down-
stream classification tasks and a significant increase in accuracy compared to the gold
standard technique. Using just one-tenth of the labeled data, the model outperformed
the supervised model with 500 images per label by 8%. The study not only assessed
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the uncertainty over unlabeled datasets but also analyzed the augmentation process and
hyper-parameters. Along with the described hyperparameters, model size seems to have
a role in contrastive learning. It is possible that bigger models, given a substantial
quantity of unlabeled data, may be able to provide outcomes that are very close to their
supervised baselines when the augmentations pipeline is disabled. The learned repres-
entations benefit from the stochastic component of the augmentation process, although
the augmentation effect is small when using the multi-instance approach, calling for more
investigation. Finally, the study checked whether representations gained by different
augmentation techniques may be used to forecast model weariness. Compared to the
standard supervised method, model weariness has a much lower error rate, but it’s still
rather sizable.

The future work of this research work can be to assess the effect of a more robust
model, such as ResNet34 or ResNet50. More parameters may be required for the down-
stream model’s regression result to have less room for error. The single projector head
atop the encoder used in the current research can be replaced by two alternatives: using
multiple projectors to give the positive and training the encoder jointly by averaging the
loss from multiple projector outputs. It is expected that with continuous development,
overall performance would increase. Simply said, the method described in this disser-
tation offers a significant development in the area of unsupervised learning for medical
datasets.
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