
Configuration Manual

MSc Research Project
Data Analytics

Jason Payne
Student ID: 2018543

School of Computing
National College of Ireland

Supervisor: Muhammad Zahid Iqbal

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Jason Payne
Student ID: 2018543
Programme: Data Analytics
Year: 2022
Module: MSc Research Project
Supervisor: Muhammad Zahid Iqbal
Submission Due Date: 15/12/2022
Project Title: Configuration Manual
Word Count: 2,062
Page Count: 6

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 13th December 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). ⇤
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

⇤

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not su�cient to keep
a copy on computer.

⇤

Assignments that are submitted to the Programme Coordinator o�ce must be placed
into the assignment box located outside the o�ce.

O�ce Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Jason Payne
2018543

1 Introduction

This configuration manual describes the required software tools and settings to success-
fully replicate the experimental setup of this project. High-level information is also
provided for the codebase structure to assist with reproducing results.

2 Abbreviations

Abbreviation used in this configuration manual are as follows:

BDA Baseline Data Augmentation

GloVe Global Vectors for Word Representation

GPT Generative Pre-trained Transformer

KWIC Keyword in Context

LM Language Model

LSTM Long Short Term Memory

MRB Manual Rule Book

OSHA Occupational Safety and Health Administration

SME Subject Matter Expert

TC Topic Classification

TrDA Transformer-based Data Augmentation

3 Environment Configuration

The research was implemented using Python 3.8. To reproduce the research experiments,
the development environments must be recreated. For script-based code, the ‘srtc’ en-
vironment used for the experiments can be recreated using Conda1 (for Python version
install) and pip (for package dependencies) as follows:

Create conda environment from yml file:

conda env create -n projectcodename -f environment.yml

Install depedencies from requirements.txt (on windows):

1https://docs.conda.io

1

pip install -r requirements.txt

Install depedencies from requirements.txt (on MacOS or Linux)

cat requirements.txt | xargs -n 1 pip install

The environment.yml and requirements.txt are located in the code repository.

For notebook code, Google Colab2 was used for all experiments. No specific setup steps
are required for Google Colab other than some package/resource installs as defined in
the applicable notebooks. For completeness, and to assist with reproduction of results at
a future date, a separate requirements file (requirements colab.txt) for the Google
Colab environment is provided in the project repository.

4 Reproduction Steps

The main steps of this project are summarised as follows:

1. Combine source data free-text description of incidents (remove other columns).

• Dataset is three columns (row ID, free-text description, and dataset ID).

2. Iterate by randomly selected samples of 100 incidents (rows) and build rules.

• Rules are added and adjusted during each iteration.

• In parallel, build domain-specific synonym dictionary.

3. Stop iterating when coverage is above target (e.g., 70%).

• Coverage is % of sample classified by the rule-book method.

4. Evaluate quality of rule book classifications (i.e., create scored samples).

• Give classified narratives a score of 1, 2 or 3 by human/SME review.

• 1: Good, 2: Fair and 3: Bad.

• Scoring is performed using a scoring script.

• A detailed output file is created for traceability.

5. Confirm quality is acceptable (target greater than 70% good and less than 5% bad).

6. Loop through rule-by-rule and create a binary dataset for each group/category.

7. Decide on focus (safety leading indicator) groups.

• Selected groups for the research were minority groups (relatively scarce).

8. For each focus group, fine-tune a GPT-2(Radford et al., 2019) decoder model.

9. For each focus group, create a set of tailored prompt rules.

10. Use prompt rules and fine-tuned LM to create fake data (for augmentation).

• Each prompt rule is used to create n fake narratives.

11. Use baseline text augmentation techniques to create modified data.

12. Normalise and denoise data in preparation for TC model development.

13. Train Bi-directional LSTM (Bi-LSTM) model as binary classifier for each group.
2https://colab.research.google.com

2

• Begin with no treatment for class imbalance.

• Then train base + BDA, base + TrDA and finally base + BDA + TrDA.

14. Evaluate and document performance on hold-out test data.

• Calculate precision, recall and F1-score using rule-book hits as ground truth.

• Adjust precision and F1-score by manual correction of false positives.

15. Compare performance of Bi-LSTM and MRB methods on new unseen dataset.

• New ‘unseen’ dataset was obtained at the end of the project.

• The new dataset was unseen by both MRB and Bi-LSTM methods.

5 Codebase Structure

A folder structure is used in the code repository to separate the main sections/steps of
the research and to make reproduction easier. The sub-folders used along with brief
descriptions of their purpose and content is as follows:

01 data

The ‘source’ subfolder contains the raw input datasets (OSHA, ORGP and fabricated).
All data is in CSV format. ‘ORGP’ is the reference used for data provided by the private
company (a multi-national energy services company). There are two ORGP datasets,
both (filenmaes) are tagged with ‘D1’ and date stamped (YYYYMMDD). The oldest
and largest dataset is the dataset used for training. The more recent file is the dataset
used for final model performance comparison. ‘Fabricated’ data refers to a small dataset
manually fabricated narratives to assist classifciation of the ‘competency’ category.

02 data preparation

This folder conatins scripts and notebooks used to prepare the source data for:

• Topic classification (denoise, normalise, split).

• Augmentation (implementation of random selection (BDA) methods).

• Data exploration/visualisation.

Note that data preparation (creation) using the language model was done in the
language model sub-folder (07 language models).

03 embeddings

Storage of the GloVe pre-trained embedding model (e.g., glove.6B.50d.txt). Due to its
relatively large file size (c. 170MB), this file is not stored in the final repo but can be
downloaded from here (hosted by Stanford3).

04 rule book

Rule book rules (compiled directly in CSV files by human/SME). The ‘ ’ character is
used to separate rules and the ’{}’ characters are used to denote ’synonym’ or phrase
permutation. Separate ‘rule’ files are used for rule book classification and language model

3https://nlp.stanford.edu/projects/glove/

3

https://nlp.stanford.edu/data/glove.6B.zip

prompt generation. A shared synonym.csv file (04 rule book) was used. This file was
created by human/SME review of domain data and incident reports.

The folder (04 rule book) also contains the following scripts:

• rule book functs.py (helper functions for rule book implementation).

• rule book kwic.py (script for running rule book on source data).

• rule book kwic coverage chk.py (calculates coverage using random sampling).

• rule book kwic create test sample.py (creates sample of n classified reports)

• rule book kwic score.py (manually scores the quality of MRB classifications)

05 coverage checks

Coverage refers to the percentage of narratives assigned at least one label by the MRB
method. Coverage checks are performed by running 30 randomly selected samples (each
of size 100). Running all rules on all data (over 93k narratives) would take several days
of steady connection. This folder contains coverage results for the 30 samples.

06 scored samples

This folders contains the scored files for both MRB labelled samples and Bi-LSTM false
positives. MRB labelled samples contain 100 incident narratives, the assigned MRB labels
and the human/SME assigned score (1, 2 or 3). Running rule book kwic score.py
from the ‘04 rule book’ folder creates the scored MRB files that are saved to this folder.
Running tc model score.py (09 topic classification) creates the scored false positive
files that are written to this folder. All files are datetime stamped according to run time.

07 language models

The GPT fine tuning and fake generation.ipynb notebook is used in Google Colab
to fine-tune the GPT-2 decoder model on category-focused datasets created by MRB
classification. This creates an LM that creates fake incident narratives in the context
of a selected focus group. This notebook also contains the block of code that creates
the fake narratives from input prompts. The language model prompt generation.py

script takes a ‘rule book’ style CSV input (language prompts.csv from ‘04 rule book’)

and mutates them to create an output list of prompts (prompts.csv in ‘04 rule book’).

08 output

This folder is used to store output from analysis, post-processing and modelling steps.
Tokenisers and trained models are saved to this location as datetime stamped pickle
format files. The binary labelled focus datasets created from running the rule book
classification script (rule book kwic.py) are also stored here.

09 topic classification

This folder contains notebooks for training topic classification models. The main model
selected is a bi-directional LSTM model using GloVe embeddings. Various iterations of
the model are presented:

• Base model with no treatment for class imbalance.

4

• Model with data augmentation by ‘standard’ (BDA) techniques.

• Model with data augmentation by transformer based augmentation (TrDA).

10 performance

This folder contains model output files (label predictions/assignments) used as input to
scoring scripts (rule book kwic score.py) (04 rule book) and (tc model score.py)
(09 topic classification). As performance measures for the classification models are based
on precision, recall and F1-score calculated on the basis that MRB classifications are
‘true’, there was a requirement to calculate adjusted measures by manual review of false
positives. The spreadsheet results collation.xlsx was used for the calculation of
adjusted measures, using the (rule book kwic score.py) (04 rule book) script to ex-
pedite the manual review process and generate new counts.

11 plots

Plots generated with required formatting for insertion in the project (LaTex) report.

12 general resources

General resources and tools used in certain steps, e.g., GB to US english dictionary.

13 test samples

Storage area for rule book classified test samples.

6 Manual Rulebook (MRB)

The rule-book method is run from the rule book kwic.py script (04 rule book). Three
run-mode choices must be selected to initiate the run. The first is data choice (original
or latest), the second determines if the run should be executed on all data or a randomly
selected sample, and the third defines rule group extent (all rules or just one rule group).
Running all rules on all data is not recommended, as it will take several days to com-
plete. Hence, for trial purposes, selecting either the sample or single rule group mode of
operation is recommended. When data is run for all data, the labelled output is written
to ‘08 output’. The other rule-book scripts (test sample creation, coverage check and
scoring) run similarly to the base script, with run options prompted for user input.

7 Language Model Fine-tuning

LM fine-tuning was performed using the GPT fine tuning and fake generation.ipynb

notebook in Google Colab. The main Python packages used are pytorch (deep learn-
ing) and transfromers (pre-trained models and tokenisers, Wolf et al. (2019)). A focus
category is selected by the user at the start of the notebook and this loads the appro-
priate ‘training trues’ dataset for LM fine-tuning, i.e., the subset of the main dataset
that contains narratives labelled with the focus category. After model training, the
prompts.csv (04 rule book) is loaded and used to generate approximately 8,000 fake
narratives using the fine-tuned LM. The fabricated narratives are automatically written
to the ’01 data\fabricated’ folder location.

5

8 Baseline Data Augmentation (BDA)

Base line data augmentation is performed using the baseline data augmentation.ipynb

notebook (02 data preparation). The main Python package used is nltk with the ‘stop-
words’, ‘wordnet’, ‘omw-1.4’ and ‘punkt’ resources downloaded to the environment. The
default target number of augmentations is 8,000. Once augmentations have been gener-
ated, they are written to ‘01 data\fabricated’.

9 Supervised Topic Classification

There are four variations of the safety BiLSTM.ipynb notebook located in the ‘09 topic
classification’ folder. These cover ‘no augmentation’ plus three levels of augmentation
(BDA, TrDA and BDA + TrDA). Additional identifying text is added to the filename to
identify which notebook applies to which augmentation level. The main Python packages
used are sklearn (for data pre-processing) and tensorflow (for model training). A focus
category is selected at the start of the notebook and this loads the appropriate binary clas-
sified prepared dataset. The input dataset is created initially by MRB labelling and then
cleaned by normalisation and denoising steps using the create data for model.ipynb
notebook. Datasets for augmentation are then loaded where applicable. Input datasets
for BDA augmentation are created from the baseline data augmentation.ipynb note-
book (02 data preparation). Input datasets for TrDA augmentation are created from the
GPT fine tuning and fake generation.ipynb notebook (07 language models). Both
augmenting datasets are loaded from ‘01 data\fabricated’. Trained models are written
to a pickle file in ‘08 output\models’.

10 Inference for New Data

A comparison was also performed for MRB versus Bi-LSTM performance on a new unseen
dataset. The new dataset was firstly labelled using rule book kwic.py (04 rule book)
running in ‘selected rule’ mode. This limits the rule-book to only checking for the presence
of a single defined focus category. This script outputs a binary classified dataset to
‘08 output’. This output dataset is then loaded into create data for model.ipynb

(02 data preparation) to normalise and denoise raw data in preparation for inference by
the Bi-LSTM model. The safety BiLSTM BDA trDA.ipynb is then used in ‘load model’
mode which loads the trained model from ‘08 output\models’.

References

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D. and Sutskever, I. (2019). Language
models are unsupervised multitask learners.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault,
T., Louf, R., Funtowicz, M. et al. (2019). Huggingface’s transformers: State-of-the-art
natural language processing, arXiv preprint arXiv:1910.03771 .

6

	Introduction
	Abbreviations
	Environment Configuration
	Reproduction Steps
	Codebase Structure
	Manual Rulebook (MRB)
	Language Model Fine-tuning
	Baseline Data Augmentation (BDA)
	Supervised Topic Classification
	Inference for New Data

