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Abstract

Safety Leading Indicators (SLIs) are incident traits, sometimes referred to as
weak signals, that, when tracked, enable organisations to proactively plan actions to
mitigate significant incident occurrences. This research presents an implementation
method for SLIs based on topic classification of safety reports. Rather than impos-
ing a mandatory reporting format, indirect implementation based on text/content
analysis significantly reduces implementation complexity and potential for KPI ex-
ploitation/manipulation. The method works in low and unlabelled data regimes and
is independent of reporting systems, formats and taxonomies. A new multi-label
rule-based approach was developed to assign crafted SLI categories to unlabeled
safety reports. This labelled data was then used to fine-tune pre-trained Language
Models (LMs) for advanced Transformer-based Data Augmentation (TrDA). TrDA
was combined with conventional text augmentation techniques to train perform-
ant supervised topic classifiers using Bidirectional LSTM (Bi-LSTM) models. The
Bi-LSTM models were shown to outperform the upstream rule-based methods on
new/unseen data. The proposed methodology is organisation and process agnostic,
and the solution is practically deployable via commonly available cloud services.

1 Introduction

In the construction industry, safety/incident reports are formal records of HSE-related
accidents, incidents or near-misses in the workplace. Reports aim to capture the pertinent
aspects of incidents so that root cause analysis can be performed and the organisation’s
safety performance can be documented per relevant regulatory requirements. Reports are
collected digitally, either using proprietary software applications or spreadsheets. While
format varies, and no standard categories are applied, common elements of each report
include incident contextual information plus short and long text descriptions.

Due to regulatory requirements, organisations put significant e↵ort into collecting and
reporting on these data. However, much of the reporting revolves around lagging indicator
statistics (Oswald, 2020; Xu et al., 2023). For predictive risk modelling, patterns must
be detected that correlate with the risk of particular types of incidents occurring. For
example, construction sites recording regular incidents involving site compliance or bad
practice issues are likely at a higher risk of a major incident occurring. Site compliance
or practice issues are examples of ‘weak signals’ or ‘safety leading indicators’. SLIs are
relatively scare but powerful predictors of future safety performance (Xu et al., 2021).
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1.1 Research Question, Objectives and Contributions

The goal of this project was to develop methods to improve the detection of SLIs in
free-text data and in doing so, help tackle the construction industry problem of SLI
implementation (Xu et al., 2023). The project’s research question was as follows:

Research question: “To what extent can text-based data augmentation improve topic

classification of safety incident reports to enable e↵ective leading indicator detection and

improve construction safety.”

While the work delivers important contributions to stakeholders in the construction
industry, it also benefits stakeholders in software and NLP research domains. Contribu-
tions include a new rule-based classification method for SLIs, bespoke synonym dictionar-
ies for SLI rule development, a solution methodology for creating performant supervised
topic classification models (where contextual understanding is important and data is unla-
belled), and fine-tuned language models for SLI narrative generation. These contributions
provide stakeholders with a toolkit to detect the occurrence of SLIs in safety reports at
a free-text (content) level, hence are agnostic to local processes and systems. The abil-
ity to track leading indicators without having to change local reporting systems gives
contractors the ability to improve safety performance and circumvent future incidents.

2 Related Work

Aligned with the main elements of the research question (Section 1.1), the review of
related-work focused on SLI research, supervised topic classification methods and recently
published data augmentation techniques for text in low-data regimes.

2.1 Safety Leading Indicators

Xu et al. (2021) performed a systematic review of SLIs in the construction industry as
part of the Discovering Safety (DS) programme1. The research proposes leading indic-
ator categories based on a comprehensive literature review and industry engagement.
The categories range from ‘organisation commitment’ to ‘competence’ and are presen-
ted alongside quantitative measures and typical attributes. Building on this research,
Xu et al. (2023) take the SLI categories and rank them in terms of importance using
systematic survey and voting methods. The research also discusses the barriers to imple-
mentation of SLIs in the industry. While general discussion is given to various high-level
barriers, no clear solutions are proposed to resolve the implementation problem. Quantit-
ative metrics used in the industry are tentatively proposed but with the caveat that they
can often become ‘box-ticking’ exercises (Xu et al., 2023). Oswald (2020) makes a similar
point, stating that simply counting interaction numbers as KPIs, rather than assessing
the quality/content of the interactions, is ine↵ective. Similar to accident precursors (Tix-
ier et al., 2016a), SLI occurrences are obvious domain concepts for a predictive safety
solution. This project proposes the automatic detection of SLIs in routine accident and
observation reports as a solution to the implementation problem. In the proposed solu-
tion, the content (text) of routine reports can be continually analysed and there is no
dependency on implementation of a common industry taxonomy or reporting method.

1https://www.discoveringsafety.com
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2.2 Rule-based Topic Classification

Topic classification is a method used to programmatically label free-text with target cat-
egories. Topic classification is either performed using a rule-based system or by machine
learning. Rule-based systems are developed manually by programming hand-made rules
based on document content and can outperform other classification algorithms (Aggarwal,
2015). Tixier et al. (2016b) present such an approach for accident precursor classification
in safety reports. Where accident precursors are typically objects, such as ‘sca↵old’ or
‘ladder’. The method uses regular expression patterns in conjunction with a synonym
dictionary and word span constraints to record excellent performance measures (above
90%) albeit for a small dataset (2,200 reports) and simple classification challenge. The
use of rule-based systems on construction data is also demonstrated by Marucci-Wellman
et al. (2017) where NLP rules are used to augment injury classification alongside tradi-
tional machine learning methods. Marucci-Wellman et al. (2017) propose that the manual
development of rules is essential for classification of ‘noisy’ free-text incident narratives,
especially where there is limited data. Liu and Beldona (2021) demonstrate the use of
rule-based methods on social media data. The developed method uses regular expression
rules incorporating domain-specific ‘intent phrase’ synonyms, and is combined with a
ML-based method in final deployment. A limitation of the methodology is that it relies
on manual labelling to build and test both rule and ML-based models.

2.3 Topic Classification using Machine Learning

Although powerful, rule-based systems have certain undesirable characteristics. They
can be di�cult to formulate and require consideration of inter-dependencies and inter-
play between rule groups. Also, they are rigid and don’t have the ability to generalise and
catch semantic nuances and variations. For this reason, supervised topic classification by
machine learning methods can be more e↵ective. Baker et al. (2020) present a compar-
ison of advanced machine learning deep learning methods applied to the classification
of safety data. Focusing on the accident precursor challenge, the authors compare per-
formance of deep learning RNN and HAN approaches to more traditional TF-IDF with
SVM approach. The deep learning methods did not outperform the traditional method
for this relatively simple classification challenge. For simple text classification problems,
the presence of certain keywords and terms is often su�cient to make an accurate predic-
tion. The classification of SLIs requires a higher level of contextual understanding. For
example, PPE is commonly mentioned in accident reports, but not always in the context
of non-compliance. Detecting such nuances requires a method with an ability to pro-
cess contextuality. Jang et al. (2020) propose a Bi-directional Long Short Term Memory
(Bi-LSTM) model with an attention-based final layer to perform sentiment analysis on a
large internet movie dataset. By concatenating the outputs of two RNNs that pass the
information in forward and backward directions, the Bi-LSTM architecture (Graves and
Schmidhuber, 2005) is said to be able to process two-way context from an input sequence
(Cornegruta et al., 2016). The attention layer (Bahdanau et al., 2014) chooses which
features to focus on before making the final classification.

Another advanced method that can be applied to text classification where the target
categories are organised in a tree-shaped taxonomy is hierarchical text classification (Stein
et al., 2019). As SLI taxonomy is often presented as a hierarchical structure (Xu et al.,
2023), the use of a hierarchical method to classify safety data is interesting. The SLI
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classification problem is a multi-label problem (Stein et al., 2019) as the text can belong
to several SLI categories. As hierarchical classification inherently applies to multi-class
challenges, they require adaptation to provide multi-label output, as well as availability
of training data with hierarchical categories assigned. Ahadh et al. (2021) also proposes
a hierarchical classification strategy to deal with low-data regimes and class imbalance.
Ahadh et al. (2021) proposes a three-step methodology of keyword extraction, topic
modelling and hierarchical classification. While the method provides good accuracy for its
referenced datasets, over-reliance on keyword distribution for classification is a limitation
when applied to more demanding use-cases such as SLI detection.

2.4 Data Augmentation

In other domains, data augmentation is commonly applied to improve model performance
where data is limited (Shorten and Khoshgoftaar, 2019; Xie et al., 2017). However, in
NLP, it is a new and emerging area of research. Wei and Zou (2019) present a set of simple
data augmentation techniques based on random synonym replacement and word insertion,
swapping and deletion. The research demonstrates that simple augmentation methods
can improve classification performance of RNNs for smaller datasets. Although relatively
new to text classification, augmentation methods such as random deletion have a proven
track record in image classification (Zhong et al., 2020). Building Wei and Zou (2019),
Karimi et al. (2021) modify how random operations such as random swapping and deletion
are applied to deliver marginally improved performance on test data. Back-translation
(Sennrich et al., 2016) is another common text augmentation technique where text is
translated to an intermediate language and then translated back to create a modified
version to augment the base dataset. Kumar et al. (2020) provide a comparison of
standard text data augmentation techniques to an LM-based method for three common
LMs (namely BERT, GPT-2 and seq2seq) and three NLP tasks (namely sentiment, intent
and question classification). Focusing on low-data regime tasks, the proposed LM-based
augmentation involves prepending class labels to training sentence strings. For GPT-2
text generation, the research recommends providing additional context via prompts to
assist with preservation of label information. The research concludes that the use of DA
improves classification performance in the low-data regime setting (Kumar et al., 2020).

2.5 Summary of Findings, Identified Gaps

Table 1 provides a summary of focus research areas with related work, identified gaps
and justification for new research. Concerning SLIs, while there is clear industry direc-
tion (Xu et al., 2023) on ‘what’ to track, few practical solutions exist or have been put
forward for ‘how’ to track SLIs. E↵ectively tracking SLIs in an organisation or across
the construction industry is a complex and challenging task. Implementing a common
(enforced) industry-standard taxonomy would be massively challenging (due to its im-
pact on reporting systems) and likely ine↵ective (due to inherent KPI culture flaws). As
per Goodhart’s law (Strathern, 1997), “when a measure becomes a target, it ceases to
be a good measure”. Tracking SLIs indirectly through content analysis and not directly
through ‘tick-box’ reporting (Oswald, 2020) is proposed in this research project as a more
e↵ective approach. However, tracking SLIs indirectly requires e↵ective topic classification
of safety reports and, as such, answers to the project’s research question (Section 1.1).
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Table 1: Summary of Related-work Findings and Identified Gaps.

Focus area Main research Gaps & new research justification

Safety leading
indicators (SLIs)

Xu et al. (2021), Xu et al.
(2023), Oswald (2020)

Implementation challenge: No practical
organisationally agnostic method exists for
implementing the proposed SLI taxonomy.

Supervised topic
classification &
rule-based
methods

Tixier et al. (2016b),
Baker et al. (2020), Liu
and Beldona (2021),
Cornegruta et al. (2016)

Low-data & labelled data availability:
Potential to enhance existing rule-based methods
and combine with advanced ML-methods to
create a robust classification solution.

Augmentation for
text datasets

Wei and Zou (2019),
Kumar et al. (2020)

Unified implementation methodology:
Disparate research presented for augmentation
methods. Potential to integrate in a unified
solution pipeline to improve SLI detection.

3 Methodology

Figure 1 presents a process flow diagram for the main steps of the project’s research
methodology. The methodology was constructed to enable the training of topic classific-
ation models where data is unlabelled and scarce. The methodology combines a Manual
Rule-book (MRB) approach with transformer LMs and deep learning classification.

3.1 Data Sourcing and Preparation

Data sourced covered both organisation and regulatory-level reporting. Organisation-
level reporting contains incident reports for all severity levels. Regulatory-level data
captures data from diverse organisations/sectors and is publicly available. Regulatory
data tends to be more succinct than organisation-level data. Organisation-level data
tends to be diverse, noisy and can have significant variance in word count. Organisation-
level data were provided by a large multi-national energy services company specialising in
the design, construction, operation and maintenance of energy infrastructure. Regulatory
data was provided by OSHA2 and is compiled from US construction (severe) accidents.
Data from each source were combined to create one dataset. Unwanted data fields such
as assigned categories and ratings were dropped. Each row of the combined dataset
contained three fields, namely incident ID, text description and data source. The text
description was constructed by combining incident title with long description.

3.2 MRB Data Labelling

The first methodology step addressed the problem of unlabelled data. The multi-label
classification methodology developed for this project is an enhanced ‘rule-book’ methodo-
logy that builds on the basic approach of Tixier et al. (2016b) with a specific focus on SLI
detection (rather than accident precursors). The basic premise of the method proposed
by Tixier et al. (2016b) was to systematically use synonym dictionaries, regular expres-
sion patterns and word span constraints to detect categories of interest. For this project,
the methodology was enhanced by implementing ‘keyword-in-context’ (KWIC) search-
ing and context splitting. The KWIC (Luhn, 1960) methodology initialises by searching

2https://www.osha.gov
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Figure 1: Process Flow for Topic Classification using Data Augmentation.

documents for keywords associated with a particular SLI. If the keyword is found, the
context is extracted based on a defined span (i.e., a number of words before and after the
keyword). Context is extracted in three parts (i.e., pre-, post- and all-context) so that
rules can be constructed to act on the contextual part that is most e↵ective. Contextual
splitting significantly reduced the e↵ort required to reach the required classification cov-
erage. The MRB method also allows for the definition of wildcard-type rules where no
keyword is required. In the wild-card rule, no word search is performed, each rule pattern
is simply applied to each sentence.

3.3 Data Augmentation

Data augmentation is used to artificially increase the volume of SLI category training
data. Baseline Data Augmentation (BDA) and Transformer-based Data Augmentation
(TrDA) methods were used (independently and combined). BDA is an implementation of
standard text augmentation techniques based on random selection. These included word
insertion, deletion, swapping, and synonym replacement (Wei and Zou, 2019). TrDA used
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fine-tuned decoder models and topic-specific prompts to fabricate new incident reports.
Prompts were generated using a rule-based approach combined with the SLI synonym
dictionary. See Section 5 for specific details of method implementation.

3.4 Supervised Topic Classification

Binary supervised topic classifiers were created for five SLI ‘focus’ categories. Focus cat-
egories were deliberately selected to challenge model performance. The main challenges
were class imbalance and a requirement for contextual processing (not just keyword de-
tection). Supervised topic classification models were selected on the hypothesis that
ML-based models would generalise better and be more performant than the MRB. Deep
learning methods were selected as the most suitable methods due to the nature and com-
plexity of the classification challenge. However, other more straightforward classifications
methods, such as gradient-boosted decision trees were also assessed.

3.5 Performance Evaluation

Performance evaluation was carried out for each main step as follows:

Rule-book coverage and accuracy: Performance targets adopted for the MRBmethod
are summarised in Table 2. Coverage is defined as the percentage of accident reports with
at least one label assigned. Accuracy was assessed by manual review of randomly selected
samples of 100 reports. Table 12 presents scoring logic.

Supervised topic classification: Supervised classification performance was assessed
using the standard metrics of precision, recall and F1-score. Because there was no manu-
ally classified ‘ground truth’ for the dataset, the rule-book classifications were used for
base performance measure calculation. However, these metrics were then adjusted (where
practical) by manual review and false positive correction.

Table 2: MRB Performance Targets.

Measure Target

Coverage Greater than 70% of documents with at least one label assigned.

Accuracy Less than 5% of sampled documents scored as ‘poor’.

4 Design Specification

4.1 Rule-based Topic Classification

The MRB method combines standard methods (Tixier et al., 2016b) with a bespoke
search algorithm based on KWIC (Luhn, 1960). The KWIC-based algorithm initiates
with a keyword search. If the keyword is found, contextual splitting is performed on the
keyword using a predefined word span (context length). The three contextual elements
are extracted, and tailored rules along with void checks are applied to label categories.
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4.2 Augmentation for Imbalanced Datasets

Data augmentation is used to artificially increase training examples for minority classes.
A combination of conventional techniques (Wei and Zou, 2019) and advanced transformer-
based techniques were adopted for this project.

4.3 Language Models

The pre-trained LM selected for this project was the auto-regressive Generative Pre-
trained Transformer 2 (GPT-2) model (Radford et al., 2019). The GPT architecture
implements a transformer model (Vaswani et al., 2017) which uses ‘attention’ (Bahdanau
et al., 2014) to focus model training on input text segments that it predicts to be the
most important. GPT-2 was selected over larger and more recent LMs due to its open
source availability (via Hugging face3), manageable size and proven NLP track-record.

4.4 Embedding Model

As a Bi-LSTM model was pre-selected for the supervised learning task, a relatively simple
embedding model was chosen to convert incident report words into numerical represent-
ations and capture word similarity. A more sophisticated embedding model, such as one
considering contextuality, was not deemed necessary on the premise that the Bi-LSTM
model would be able to learn the contextual nuisances of the topic-specific categories.
Word embeddings were created using the 6-billion token (50-dimension) database of pre-
trained vectors created using Glove (Pennington et al., 2014), made available by Stanford
University4. GloVe is is a global log-bilinear regression model used for unsupervised learn-
ing of vector-based representations of words (Pennington et al., 2014). The pre-trained
database contains a dictionary of words and their 50d vectors. The narrow 50d version
was selected to minimise over-fitting and exclude unnecessary/noisy words.

4.5 Bidirectional LSTM (Bi-LSTM)

A multi-layer Bi-LSTM model was selected for the binary-classification task. The LSTM
model architecture has a special gate-type structure that helps capture both short and
long term dependencies in sequence inputs. The Bi-LSTM is an adaption of the base
LSTM model (Graves and Schmidhuber, 2005) in that is comprises both forward and
backward LSTM layers. The multi-layer Bi-LSTM has the ability to learn the forward
and backward relationships of a sequence and is specifically well suited to time-series
and other sequential data such as text (Zan et al., 2019). The multi-layer architecture
is illustrated in Figure 2. The main elements of the chosen architecture are the input
embedding layer, multiple Bi-LSTM layers, a fully connected dense layer and a softmax
classifier. The input embedding layer mutates prepared input into embeddings using
the pre-trained GloVe vector dictionary. The multi-layer Bi-LSTM block is used to learn
features from the embedding sequences. The fully connected dense layer concatenates the
last forward and backward LSTM outputs for input to the softmax classification layer.

3https://huggingface.co
4https://nlp.stanford.edu/projects/glove/
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Figure 2: Multi-layer Bi-LSTM Architecture. Layer number is denoted by L (three are
shown for illustration purposes). Sequence inputs are denoted by x.

5 Implementation

5.1 Languages, Frameworks and Tools

The research was implemented using Python (version 3.7.15). All script-based code was
developed using the Visual Studio Code5 Integrated Development Environment (IDE).
Notebook code was developed using Jupyter format. A summary of the main Python
packages used is provided in Table 3 and computing resources are outlined in Table 4.
Conda6 was used for initial virtual environment setup and subsequent package manage-
ment (installation/removal) was performed using pip7 and tracked using updates to the
project’s requirements.txt file located in the code repository.

5.2 Data Understanding and Exploratory Analysis

Data understanding and exploratory analysis was performed at di↵erent stages in the
research to determine document characteristics, verify modelling assumptions and confirm
intended output from key data processing steps.

5https://code.visualstudio.com
6https://docs.conda.io
7https://pypi.org
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Table 3: Summary of Main Python Packages.

Task Package Reference

General data wrangling Pandas https://pandas.pydata.org

NLP pre-preocessing nltk https://www.nltk.org

Pre-trained language models transformers Wolf et al. (2019)

Text tokenisers tokenizers https://huggingface.co

Deep learning for language models PyTorch https://pytorch.org

Deep learning for classification models TensorFlow https://www.tensorflow.org

Table 4: Summary of Computing Resources.

Task Compute Resources

Rule-book development & output
evaluation

Windows personal computer with 16GB RAM and
Intel Core i7 CPU

Language model fine-tuning & fake
text generation

Google Colaba (https://colab.research.google.com)
with Tesla T4 GPU (2560 CUDA Cores)

Deep learning model development Google Colaba with Intel Xeon CPU @ 2.20GHz

1https://colab.research.google.co

5.2.1 Data Summary.

Table 5 provides a breakdown of the project’s datasets. Data was sourced from both
private company and public sources (Section 3.1) and a small number of manually created
reports were created to assist rule development for the ‘competency’ SLI.

Table 5: Dataset Summary.

Source Records Description

Private company incidents (ORGPa) 27,158 Batch #1 HSE incident reportsb.

OSHA published incidents 66,699 Severe injury/accident descriptions.

Manually generated incidents 26 Fabricated short narratives.

Private company incidents (ORGPa) 2,429 Batch #2 HSE incident reportsc.

a ORGP is a generic reference used for the private company datasets.
b Batch #1 was used in all model/method development, training and testing.
c Batch #2 was received at the end of the project and was used only for method comparison.

5.2.2 Data Understanding

Data understanding and exploratory analysis was performed before model development
and after MRB labelling to determine document characteristics and sense-check labelling
e↵ectiveness. Figure 3 provides histograms of word counts for incident reports in the
two datasets. OSHA incident reports are shorter and have less variation in word count
compared to the ORGP reports. This is because OSHA are regulatory reports hence tend
to be more succinct and regular than the private ORGP dataset. The private ORGP
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dataset contains all incident types and severity levels as reported by the organisation,
hence have more variation. 95% of documents in the combined dataset have less than 309
words. Word count statistics are important as they influence GPT-2 model size selection,
e.g., the medium GPT-2 model can handle sequences of 1,024 consecutive tokens.

As described in Section 3, labelled datasets for each of the focus SLI categories were
created using the MRB method. Word cloud visualisations were created for each data
subset as a simple screening check of the e↵ectiveness of the MRB labelling

Figure 3: Distribution of document word counts (in each primary dataset). OSHA doc-
uments tend to be shorter documents with less variation in word count.

5.3 Data Preparation

5.3.1 General

The main data preparation/handling steps are summarised in the following sub-sections.
Note that test data were fully separated in the development pipeline to avoid leakage.
Only training examples of focus categories were used as input to data augmentation.

5.3.2 Data Transformation

Before data were used in model training they were transformed using standard text denois-
ing and normalisation techniques. Denoising involved removal of stop sentences, HTML
and contradictions. Normalisation involved converting text to lower case, removal of
punctuation and non-ASCII characters and replacement of numbers with words. During
data preparation, experiments were performed with other denoising and normalisation
techniques such as lemmatisation, stemming and Americanisation (i.e., harmonising Brit-
ish and American spelling). These were not found to improve model performance and as
such were not carried forward to the final model. Also, stop words were not removed as
removing them could impact report semantics and change the classification.

5.3.3 Tokenisation and Padding

Tokenisation was used in both Bi-LSTM development and LM fine-tuning as follows:
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Bi-LSTM development: A standard keras8 tokensier was created using the training
data. This tokeniser was used to convert training and test data into sequences of integers
up to a maximum sequence length of 500. The integer sequences where then padded
out with zeroes (where applicable) so that all sequences had 500 entries. The maximum
sequence length of 500 was selected based data understanding (Section 5.2.2).

Language model fine-tuning: Each string in the training ‘trues’ data were encoded by
the GPT2 tokenizer (from the tokeniser library) to a list of numerical values (one value
per word). As GPT-2 model version used for the project could only handle up to 1,024
tokens, some trimming of report word-count was required to meet the model token limit.

5.3.4 Embedding Sequences

As stated in Section 4.4 an embedding dictionary was created using pre-trained vectors
from GloVe9. This dictionary was used to convert the tokenised word sequences into
sequences of 50d vector embeddings (as part of the embedding layer of the Bi-LSTM).
Vectors for words not found in the embedding dictionary were set to all zeroes.

5.4 Data Augmentation

5.4.1 General

Data augmentation was performed using BDA (Wei and Zou, 2019) and TrDA techniques.
In each technique, SLI focus data from the training ‘trues’ data were used to create
approximately 8,000 modified (BDA) and new/fake (TrDA) training observations.

5.4.2 Base-line Data Augmentation (BDA)

The BDA method implemented uses a pipeline of the following augmentation techniques
based on random selection (Wei and Zou, 2019). In each technique, the integer n is
calculated as 10% of the word count in the document. The target number of modified
reports (8,000) was achieved by running the BDA pipeline m times (calculated based on
the number of available reports for the focus category).

Random Insertion: Randomly insert n words into the document. Inserted words are
generated from randomly selecting a synonym from a randomly selected word.

Random Deletion: Step through each word in the document drawing a sample from a
uniform distribution (with interval bounds of 0 and 1). If the drawn sample is less than
0.1, randomly delete the word from the document.

Random Synonym Replacement: Randomly select and replace n words (that are not
stop words) with synonyms randomly selected from WordNet (Miller, 1998).

Random Swap: Randomly swap two words n times in each document.

5.4.3 Transformer-based Data Augmentation (TrDA)

TrDA used fine-tuned LMs and category specific prompts to fabricate new incident nar-
ratives. The GPT-2 (small) model from the huggingface transformer (Wolf et al., 2019)

8https://keras.io
9https://nlp.stanford.edu/projects/glove/
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package was used for all TrDA models with default training parameters. For text fabric-
ation, Top-k sampling (Fan et al., 2018) was used in combination with Top-p Holtzman
et al. (2019) sampling. According to huggingface documentation (Tunstall et al., 2022),
combining the two methods can reduce occurrence of very low ranked words while re-
taining a level of dynamic selection. Parameter values for Top-k = 0.50, and Top-p =
0.95 were adopted (Tunstall et al., 2022). LM prompts were created in a similar way
to MRB rules using the same synonym dictionary. An example prompt rule (for ‘line
strike’) is ‘{vehicleexcavate} {vehiclestruck} {linestruck}’. This prompt expands based
on each permutation of the ‘excavation vehicle’, ‘vehicle striking’ and ‘line’ synonyms.

5.5 MRB Method

As stated in Section 3.2, a target minimum percentage (70%) of the accident reports were
labelled by iterative rule development. This was implemented by randomly sampling 100
reports, crafting regular expression rules and aligning to categories until target coverage
was achieved. Once target coverage was achieved (for the sample), a new random sample
was selected and the rule development process was continued. The process was stopped
when coverage for new randomly drawn samples was consistently above 70%.

Each SLI category had several rules, and the most common rule type was the KWIC-
based rule. The implemented method used up to two synonyms per rule. Experimentation
with up to three synonyms was performed but found to significantly increase classification
time without significantly improving performance. A selection of example rules is given
in Table 6. Word/term references enclosed in curly braces denote synonyms taken from
the project’s SLI synonym dictionary. Example synonyms are presented in Table 7.

Table 6: Example MRB Rulesa,b.

Category Keyword Rule Contextc Voids

Line strike strike {linestruck} Post {head}
PPE non-conformance - {worker}*.not wear*.{ppe} All -

hydraulic fluid or oil leak leak.* {fuel} Pre -

mechanical or equipment issue - failure.*{mechcomponent} All -

a The complete rule-book is compiled in CSV file format.
b Wildcard token .* denotes any combination of characters is possible.
c Denotes the contextual part that the rule applies to.

Table 7: Example Synonyms.

Reference Dictionary examples

worker apprentice, contractor, cleaner, colleague, employee, ..., woman

ppe gloves, glasses, goggles, ppe, ..., personal protective equipment

permit good practice, normal practice, site practice, ..., process

hurt abrasion, amputat.*, bang.*, break.*, ..., trauma

weather flood.*, frost, gust, lightning, rain.*, .., wind
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5.6 Supervised Topic Classification

To assess augmentation performance, four deep learning classification models were created
for each focus category. The first was trained without augmentation, the second and third
were trained using each data augmentation technique (BDA and TrDA) and the fourth
was trained with both augmentation techniques. Model hyper-parameters are summarised
in Table 8. Bi-LSTM architecture is summarised in Table 9 and visualised in Figure 2.

Table 8: Model Parameters.

Parameter Value

Number of epochs 3

Batch size 128

Learning rate 0.001 (default)

Hidden layers 4x bidirectional LSTM layers with recurrent dropout (0.2)

Table 9: Bi-LSTM Architecture.

No. Layer Shape Notes

1 Embedding 500 x 50 Embedding dictionary created from GloVe

2, 4, 6 Bidirectional LSTM 500 x 64 With return sequences & recurrent dropout (0.2)

3, 5, 7 Dropout 500 x 64 Dropout rate = 0.5

8 Bidirectional LSTM 64 With recurrent dropout (0.2)

9 Dropout 64 Dropout rate = 0.5

10 Dense 256 ReLu activation function

11 Dense (output) 2 Softmax activation function

5.7 Traceability

Scoring scripts were used to manually score model output. These scripts created output
files that were saved with unique filenames to enable independent verification. The files
contain raw data, modelling output and the score assigned by manual review.

6 Results and Evaluation

6.1 MRB Classification Counts

Table 10 and Table 11 summarise classification counts for SLI and ‘general’ categories
respectively (with categories with less than 0.2% omitted). With the exception of ‘working
at height’ and ‘dropped objects’, each SLI category relates to less than 1% of total reports
(less than 800 reports per category). Counts for general categories in Table 11 are in line
with expected values. One third (33%) of reports are labelled as ‘hand or arm injury’
and approximately 20% of incidents labelled as either ‘foot or leg injury’ or ‘slips and
trips’. 38% of incidents in the raw OSHA10 dataset have a↵ected body part labelled as

10https://www.osha.gov/severeinjury
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being an arm or hand body part. HSE (2021) report ‘slips, trips or falls on same level’
as representing 33% of all non-fatal accidents in 2021/2021. Note that both OSHA and
HSE statistics are based on regulatory requirements for reportable incidents, the ORGP
(private) dataset includes all incident types hence perfect alignment was not expected.

Table 10: SLI Categories & Counts - MRB Classification.

Categorya Reports classified % of totalb

Fall from or working at height issue 9,009 9.6

Dropped object or material 5,203 5.5

Hazardous materials or work 759 0.8

Line strike 696 0.7

Hydraulic fluid or oil leak 583 0.6

Mechanical or equipment issue 504 0.5

Site compliance or practice issue 400 0.4

Near miss 290 0.3

Line of fire 267 0.3

Fuel spill or leak 226 0.2

Environmental leak or issue 168 0.2

PPE non-compliance 144 0.2

a Highlighting denotes focus categories, i.e. those selected for supervised model training.
b Total number of rows in the ‘raw’ dataset (i.e., 93,857).

6.2 MRB Coverage

To quantify MRB coverage, 30 experiments were conducted. Each experiment calcu-
lated coverage for 100 reports selected by random proportionate sampling. This method
avoided running all rules on the entire dataset, which would have required significant
stable compute time. Figure 4 presents percentage coverage for each experiment. Target
coverage at the outset of the project was 70%, median recorded coverage was 88%.

Figure 4: MRB Percentage Coverage. 30 samples were selected by random proportionate
sampling and classified by the rule-book method. Target minimum coverage was 70%.
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Table 11: General Categories & Counts - MRB Classification.

Category Classified reportsa % of totalb

Hand or arm injury 30,468 32.5

Foot or leg injury 18,098 19.3

Slips and trips 18,070 19.3

Vehicle incident general 8,812 9.4

Lifting or moving loads 8,402 9.0

Head or face injury 7,720 8.2

General injury 6,252 7.0

Covid 5,877 6.3

Back injury 4,500 4.8

General illness or health issue 1,992 2.1

Weather related issue 1,226 1.3

Eye injury or irritation 1,207 1.3

Burns 1,016 1.1

Electric shock or issue 696 0.7

Bites (animals or insects) 516 0.5

Fire 511 0.5

Knife incident 482 0.5

Vehicle Incident involving animal 414 0.4

a Classified denotes a rule-book ‘hit’ for the category in a report/document
b Total number of rows in the ‘raw’ dataset (i.e., 93,857)

6.3 MRB Label Quality Scoring

The quality of MRB labelling (for the final model) was assessed by conducting five sep-
arate scoring experiments. Each experiment involved sampling 100 labelled reports and
manually assigning a score of ‘good’, ‘fair’ or ‘bad’, using the scoring logic in Table 12.
Sampling was conducted to yield approximately a 50:50 split of OSHA and ORGP incid-
ents in the sample. Disproportionate sampling was performed to provide a greater test
as the longer/less succinct ORGP reports pose a greater test for the model. Results of
the scoring experiments are provided in Table 13. All experiments yield less than 5%
of reports with ‘bad’ labels. The average result for ‘good’ labels is 76%. As discussed
(Section 5.5), rules were created in an iterative manner until target coverage and quality
was consistently exceeded. Once exceeded, the final evaluation was performed.

Table 12: MRB Labelling - Scoring Definitions.

Score Definition

Good All labels are accurate and no significant category is missing.

Fair At least one significant category is assigned but some applicable categories
could be missing or assigned incorrectly.

Bad None of the assigned categories are applicable to the accident description.
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Table 13: MRB Labelling - Scoringa of Samples.

No. Sample Ref.b Sample Sizec % Good % Fair % Bad

1 220801172342 100 76 22 2

2 220806193242 100 74 23 3

3 220806204123 100 79 17 4

4 220908162210 100 76 20 4

5 220908222547 100 73 27 0

a See Section 6.1 for definitions of ‘good’, ‘fair’ and ‘bad’.
b Filename references are for experiment output files containing all labels and manual scoring.
c Actual origin sample size is larger to yield greater than 100 classified docs/reports.

6.4 Supervised Topic Classification Performance

Table 14 presents a performance summary for the Bi-LSTM models. For each category,
results are presented for four model types, covering each augmentation level. The results
demonstrate that the Bi-LSTM model is a good choice for SLI detection and that data
augmentation techniques can significantly improve performance. Combining augment-
ation techniques yielded the best performance, with each model recording high recall
against rule-book hits (0.7 to 0.9) and adjusted precision (0.6 to 0.8). Based on candid-
ate’s research for this project, no published performance measures exist for SLI classific-
ation in safety reports. Elsewhere in the safety domain, Tixier et al. (2016b) reported
classification accuracies above 0.9 for safety precursors, Marucci-Wellman et al. (2017)
reported accuracies of 0.8 to 0.9 for injury and illness events, and Baker et al. (2020)
reported accuracies of 0.6 to 0.8 for standard incident report categories. Considering the
significant class imbalances associated with the chosen SLI categories, and the complex-
ity of the detection problem compared to previous classification work in the domain, the
performance measures achieved in this research are considered to be comparably strong.

Model experiments for the ‘hydraulic fluid or oil leak’ category considering other
model types yielded poor performance (see Table 15). A gradient-boosted tree using
CatBoost (Dorogush et al., 2018) yielded recall and precision accuracies of 0.58 and 0.02
respectively. Logistic regression yielded similar measures to CatBoost (recall 0.53 and
precision 0.01). For this scenario, Bi-LSTM delivered recall of 0.88 and precision of 0.52.

Table 16 presents a performance comparison for MRB and Bi-LSTM methods on a
‘new’ dataset of approximately 2,500 records. This dataset was received at the end of the
project and was unseen by both MRB and Bi-LSTM methods. The method comparison
results indicate that the Bi-LSTM performs better than the MRB on ‘new’ data. The
Bi-LSTM detects more SLIs while maintaining low false positive rates and performs
particularly well for complex and rare categories such as ‘site compliance and practice
issues. Increased detection counts were recorded for four of the five categories.

6.5 Discussion

The findings from this research project demonstrate that Bi-LSTM models can be trained
on relatively small data volumes to e↵ectively label SLIs in construction incident reports.
The classification methodology is suitable for any domain with unlabelled text, and tradi-
tional ‘bag-of-words’ type approaches are ine↵ective. It is particularly useful in use cases
where large volumes of data must be labelled according to a new labelling taxonomy, e.g.
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Table 14: Supervised Topic Classification - Bi-LSTM Performance Measuresa.

Focus group/model Precisiona New Recall F1

Base Adj. Finds Base Adj.

Hydraulic fluid or oil leak (0.62%)b

1. Bi-LSTM 0.52 0.76⇤ 43 (40%) 0.88 0.83⇤

2. Bi-LSTM + BDA 0.65 - - 0.88 0.87

3. Bi-LSTM + TrDA 0.74 - - - 0.71

4. Bi-LSTM + BDA + TrDA 0.53 0.73⇤ 36 (34%) 0.90 0.80⇤

Site compliance or practice issue (0.43%)b

1. Bi-LSTM 0.51 0.84⇤ 16 (20%) 0.31 0.45⇤

2. Bi-LSTM + BDA 0.19 - - 0.49 0.27

3. Bi-LSTM + TrDA 0.35 - - 0.27 0.30

4. Bi-LSTM + BDA + TrDA 0.21 0.71⇤ 98 (166%) 0.71 0.71⇤

Mechanical or equipment issue (0.50%)b

1. Bi-LSTM n n n n n

2. Bi-LSTM + BDA 0.34 - - 0.33 0.33

3. Bi-LSTM + TrDA 0.14 - - 0.26 0.15

4. Bi-LSTM + BDA + TrDA 0.54 0.83⇤ 53 (50%) 0.90 0.86⇤

Line strike (0.35%)b

1. Bi-LSTM 0.38 0.90⇤ 32 (49%) 0.35 0.47⇤

2. Bi-LSTM + BDA 0.42 - - 0.28 0.34

3. Bi-LSTM + TrDA 0.37 - - 0.31 0.34

4. Bi-LSTM + BDA + TrDA 0.41 0.81⇤ 58 (94%) 0.95 0.87⇤

PPE non-compliance (0.15%)b

1. Bi-LSTM n n n n n

2. Bi-LSTM + BDA 0.09 - - 0.14 0.11

3. Bi-LSTM + TrDA 0.22 - - 0.19 0.20

4. Bi-LSTM + BDA + TrDA 0.42 0.59⇤ 11 (34%)) 0.84 0.65⇤

a Adjusted measures (denoted by⇤) have been corrected by manual review of FPs.
b Test data imbalance (i.e., positive count as a percentage of negative count).

Table 15: Supervised Topic Classification - Other Model Experimentsa.

Focus group/model Base Precision Recall

Hydraulic fluid or oil leak (0.62%)

1. CatBoost 0.02 0.58

2. Logistic Regression 0.01 0.52

a No data augmentation or other treatment for data imbalance applied.

when the goals/focus of an organisation change. The research scope included three de-
manding modelling tasks: MRB generation, language model fine-tuning and deep learning
model development. The demands of base model creation meant it was not feasible to
spend significant time on architecture and hyper-parameter optimisation. As such, the
selections made for this project could be sub-optimal. Also, it was not feasible to perform
several model runs (with di↵erent random seeds) to account for stochasticity. Only one
seed was used, and all results were presented for the same seed. Due to the complexity
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Table 16: Topic Classification - Method Comparison (2,429 Unseen Records).

Focus group/method Finds Gooda Gainsb Badb

Hydraulic fluid or oil leak
1. Rule-book method (RBM) 31 25 (81%) 6 (19%)
2. Bi-LSTM + BDA + TrDA 37 29 (78%) +4 8 (22%)

Mechanical or equipment issue
1. Rule-book method (RBM) 11 2 (18%) 9 (82%)
2. Bi-LSTM + BDA + TrDA 41 17 (41%) +15 24 (59%)

Site compliance or practice issue
1. Rule-book method (RBM) 6 3 (43%) 4 (57%)
2. Bi-LSTM + BDA + TrDA 21 13 (62%) +10 8 (38%)

Line strike
1. Rule-book method (RBM) 8 6 (75%) 2 (25%)
2. Bi-LSTM + BDA + TrDA 21 14 (67%) +8 7 (33%)

PPE non-compliance
1. Rule-book method (RBM) 7 5 (71%) 2 (29%)
2. Bi-LSTM + BDA + TrDA 7 4 (57%) -1 3 (43%)

a Number of labels judged to be a correctly or badly assigned by manual review.
b Increase in detection count relative to MRB method.

of the various modelling steps, maintaining repeatability, even with a consistent seed,
was challenging. Improvements to code structure and abstraction of di↵erent code blocks
could have improved this.

Rule-book development stopped when coverage metrics (greater than 70%) and qual-
ity (less than 5% ‘bad’) were achieved. With more time, adding new rules and enhancing
existing ones would improve MRB performance and the bespoke synonym dictionary. Im-
proved rules would generate higher quality (and volume) training data for LM fine-tuning
and Bi-LSTM training. Also, no significant time could be given to screening the training
‘trues’ used as input to LM fine-tuning and TC modelling. Filtering out badly labelled
documents from the training data could have improved overall performance.

In terms of embeddings for Bi-LSTM input, the 50d GloVe pre-trained vector set was
selected for both technical and practical reasons. While the selected model delivered good
performance, conducting experiments with a higher-dimension vector set to assess the im-
pact on performance would have been helpful. Alternative embedding models/approaches
could also be assessed. The good performance of the Bi-LSTM, compared to the decision
tree and logistic regression experiments, is considered to validate the decision to use an
embedding model without contextuality.

A high number of augmented data points (8,000) were selected for both augmentation
techniques. No sensitivity analyses were performed to determine if this selection was op-
timal, and the number of augmentations per piece of original text for the BDA techniques
was significantly higher than would typically be applied. However, as good performance
was observed for the base case approach, and research time was limited, no further exper-
imentation was performed. Also, concerning augmentation techniques, back-translation
was not included due to time constraints. Processing time for back-translation of c.93k
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reports would take significant time and, as such, was omitted

7 Conclusion and Future Work

The goal of this research was to determine the extent to which text-based data augment-
ation can improve topic classification of safety reports and, in doing so, enable e↵ective
SLI detection and improve construction safety. To this end, a three-part solution was
developed comprising a new rule-based multi-label classification method, fine-tuned LMs
(for enhanced data augmentation) and binary multi-layer Bi-LSTM classification mod-
els. The first step involved creating a new rule-based model to tentatively label the
construction incident report database according to target SLIs. Five relatively scarce
SLI categories were then selected and augmented using random selection techniques and
transformer-based augmentation (TrDA). For TrDA, pre-trained GPT-2 language models
were fine-tuned for each of the five selected SLI categories. These fine-tuned language
models were used with topic-specific prompts, mutated from rules using the SLI synonym
dictionary, to create fake incident narratives for each of the five selected SLIs. The final
step involved creating binary Bi-LSTM models to detect the presence of the SLI categor-
ies in text-based incident reports. The Bi-LSTM models, with augmented training data,
were shown to be e↵ective SLI detection models. Also, the Bi-LSTM models generalised
well, were more robust than the rule-based method and did not yield high/undesirable
false positive rates. The research shows that combining text augmentation techniques
improves detection performance significantly. The research delivers a methodology and
toolkit (i.e., fine-tuned language models, tailored synonym dictionaries) for SLI detection
and adaption to other uses-cases and domains. Due to time constraints and the complex-
ity of the project’s constituent parts, experimentation with di↵erent architectures and
hyper-parameters was limited. Although a performant methodology was developed and
demonstrated, some of the selected parameter values could be somewhat sub-optimal.

There is significant potential for the commercialisation of a multi-label classification
model for SLIs in the construction industry. The methodology developed is organisa-
tion and process agnostic, and could be deployed easily using standard cloud computing
services. Construction organisations (or software vendors) could pass text from reports
through an API for SLI detection. Classifications could then be used for dashboard
reporting or as features for more advanced predictive risk modelling. In terms of im-
provements, there is scope through using LM techniques such as summarisation and
SLI-specific questions/answers for novel feature engineering. Also, implementation of a
hybrid classification model and/or enhancement of the rules and synonym dictionaries.
In terms of TrDA methodology improvements, experimentation with methods where the
hard ‘prompt’ text occurs intra-narrative could be interesting. Also, the research shows
that giving more time to generating high-quality prompts improves augmentation per-
formance.
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