
Novel Text and Image Based Approach to
Android Malware Detection

MSc Research Project

Data Analytics

Agnideep Pal
Student ID: x21141631

School of Computing

National College of Ireland

Supervisor: Prof. Anderson Simiscuka

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Agnideep Pal

Student ID: x21141631

Programme: Data Analytics

Year: 2022

Module: MSc Research Project

Supervisor: Prof. Anderson Simiscuka

Submission Due Date: 15/12/2022

Project Title: Novel Text and Image Based Approach to Android Malware
Detection

Word Count: 1475

Page Count: 12

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Agnideep Pal

Date: 1st February 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Novel Text and Image Based Approach to Android
Malware Detection

Agnideep Pal
x21141631

1 Introduction

This manual will act as a guide to setup all the experiments exactly as it was performed
during the research. It will detail the information related to source of dataset, ways
to fetch it, necessary software tools, system requirements to run them, code segments
explaining the experiments, model implementation and evaluation.

2 System Configuration

This section lists all the system wide configuration during the research.

2.1 Hardware Requirements

• OS : Windows 11 Home Single Language

• Processor : Intel(R) Core(TM) i5-10300H CPU @ 2.50GHz 2.50 GHz

• Installed Ram : 8.00 GB (7.84 GB usable)

2.2 Software Requirements

• Jupyter Notebook : This is an interactive web-based python development en-
vironment suitable for carrying out experiments proposed in this research project.
This tool is used in the project for writing and validating most of the code as
discussed in the Section 3.

• AndroGuard : A popular interactive python tool which provides valuables APIs
to analyze and decompile Android executable files dynamically.

• Open CV : This ia a popular image processing library , widely used in computer
vision applications.

• Google Colab : This is a cloud based google platform that provides both free
and paid computing resources like CPU, GPU and TPU for carrying out resource
intensive operations like training a large neural network. This platform is extens-
ively used in this research project to carry out multiple experiments and training
different models.

1



• Google Drive : This is a popular cloud-based storage platform provided by
Google. This is used in the project to store important data files (like Numpy and
Text ) as an input for the different Image and Text based neural network models
employed in the experiments

• TensorFlow : It is a versatile platform that provides many APIs for building,
validating , tuning and evaluating complex neural network models. These APIs are
extensively used in the project to build proposed models.

3 Project Structure

The folder structure of the source code is provided below in Figure 1 to give a clarity on
how the research code is organized.

Figure 1: Github Master Branch

Among the files visible in the above figure, apk data.csv holds all the meta inform-
ation of the APKs used in the project. The notebooks have been divided into three
separate files based on their roles in the project. Data collection.ipynb handles the
data collection strategies. Whereas other two notebooks are used for image and text
based analysis. The environment.yml lists all the required libraries.

4 Project Setup Steps

Two distinct strategies are used in this research project to perform accurate classific-
ations of the android malwares. These are respectively Image and Text based. The
experimental setup for each of them can be collectively categorized under several broad
steps, as discussed in detail in the following sub-sections.

4.1 Creating a GitHub Repo

A repository is created in the college Github Account and is cloned into local file system
at the beginning of the project. The link to the GitHub repository is given below.

2



https://github.com/AgniNci/Android-Malware-Detection.git

4.2 Setting up Conda Environment:

4.2.1 Step 1 : Creating config file

An “environment.yml” file is created in the project directory. The purpose of this file
is to maintain a dedicated “conda” environment named “Research” for the research
project. It holds the list of all the important 3 rd party libraries that needs to be installed.
The file details are provided below in the Figure 2

Figure 2: Environment File

4.2.2 Step 2 : Installing libraries

Next navigating to the project directory and running the below commands, the environ-
ment is created and updated conveniently from a “Anaconda Prompt” terminal.

• Create Environment

• Update Environment

3

https://github.com/AgniNci/Android-Malware-Detection.git


4.2.3 Step 3 : Create Jupyter Kernel

In this step a Jupyter Kernel with the same name as conda env i.e.. “Research” is
created by running the commands below within the conda terminal. The kernel created
here helps in switching to the appropriate runtime environment from the notebook.

• Installing Ipykernel

• Creating Kernel

5 Data Pre-processing

This section details the implementation steps as follows:

5.1 Extracting Data :

• This step begins with the downloading of zip files containing all APKs from the
official website of University of New Brunswick, Canada. The url is provided below.
https://www.unb.ca/cic/datasets/invesandmal2019.html (Taheri et al. (2019))

• Using the code as displayed in the Figure 3 below, the APK files in the downloaded
dataset is extracted from the zip files into their respective folders.

Figure 3: Extract APK from zip files

• The file names for the benign applications in the dataset are named after their
packages and needs to be renamed using their MD5 digest. This must be done to
uniquely identify each APK file during the experiments. As far as the malwares are
concerned, they are already named accordingly and do not need further correction.
The code for generating md5 and renaming the files is provided in the Figure 4
below.

4

https://www.unb.ca/cic/datasets/invesandmal2019.html


Figure 4: Generating MD5 Hash & Renaming APKs

• Using the available information of the APK files, a panda dataframe is created
for organizing in training, testing and validation data along with performing basic
exploratory analysis. The data frame created is shown in the Figure 5.

Figure 5: Generated Data frame

5.2 Preparing Data for Image Based Malware Detection

• The Data frame created in the previous step is then traversed to fetch the individual
APK files from the file system and decompiled them using “AndroGuard” using
the code in the Figure 6.

Figure 6: APK de-compilation using AndroGuard

• Consequently, they are converted to RGB images and saved in jpeg format files.
This happens in three distinct phases. In each phase a distinct characteristic feature
of the application is encoded into a colour channel. The Manifest file is encoded
into Green Channel, opcodes into blue channel and external api calls into
red channel. The process overview is depicted below in the Figure 7

• Finally, the images are converted to NumPy array and stored in local filesystem
as .npy file for training the model using the code provided in the Figure 8.

5



Figure 7: APK to RGB Image conversion

Figure 8: Numpy file creation from Image Pixels

5.3 Preparing Data for NLP based Malware Detection

• The DataFrame is again traversed to fetch the APK files and dynamically decompile
using “AndroGuard”

• The decompiled outputs were then further processed to extract the opcodes using
the code illustrated in the Figure 9

Figure 9: APK to Opcode sequence translation

• Next the opcodes sequences are subjected to unique sampling, introduced in this
research. The goal of this sampling is to extract largest sub sequences appropriate
for the optimum performance of the language models while retaining much of the

6



information and context. The overview of the whole process is illustrated in the
Figure 11. This is achieved programmatically by the code in the Figure 10

Figure 10: Opcode Sequence Sampling

Figure 11: Opcode Sequence Sampling Overview

5.4 Uploading Input Files to Colab

To make use of built-in computing resources in Colab, the appropriate input files (.npy
file for Image Based Models and .csv file for NLP based models) are uploaded to the
google drive .

6 Model Implementation & Hyperparameter Tuning

Since the research dwell arounds detecting android malwares, it is obvious that the res-
ultant model should be able to run on any handheld android device. As a result, one
pre-trained models for Image Processing, suitable for mobile devices was chosen for the
experiments. This model is EfficientNetB4. This pre-trained model uses weights de-
rived from “ImageNet” where it has been trained with millions of data points. Also,
another CNN model was proposed by me as well. Below are the implementation of the
individual models with their hyper-parameters tuning. For NLP based Malware detection
LSTM and Bi-LSTM models along with word2vec embedding was used.

7



6.1 Image Based Models

6.1.1 EfficientNetB4 Implementation & Evaluation

The code in the Figure 12 below shows the initialization of the EfficientNetB4 model with
the pre-trained “imagenet” weights. The model is then compiled with the appropriate
hyperparameters like optimizer, loss function and evaluation criteria as shown below.

Figure 12: EfficientNetB4 Initialization

6.1.2 EfficientNetB4 Hyperparameter Tuning

The following code in the Figure 13 illustrates the hyper-parameter tuning of the top
layers of the model using novel bandit-based tuning (Li et al. (2017)) algorithm. The
algorithm is available as an API in Keras.

Figure 13: HyperBand Tuning of EfficientNetB4

8



6.1.3 CNN Base Model

The Figure 14 shows the model summary of the basic CNN derived by tuning with
stateof-art hyperband algorithm.

Figure 14: Base CNN Model Summary

6.2 NLP based Models

6.2.1 Word2Vec Embedding

• Word2Vec model from Gensim is used for training the embedding space and em-
bedding the opcode sequences intelligently. This is illustrated in the Figure 15

Figure 15: Word2Vec Training

• After the training is over the generated word to vector embeddings are stored in
the local file system using the code provided in the Figure 16.

• This vector file is then used to generate an embedding matrix in the in order to
load the embeddings into the embedding layer of the sentiment analysis models.

9



Figure 16: Saving Word2Vec Embeddings

The code for generating the embedding matrix is provided in the Figure 17.Sim-
ultaneously, Keras Tokenizer is also used to tokenize the text in order to prepare
the data to pass on to the neural network. The token generation using Tokenizer
is explained in the Figure 18.

Figure 17: Generating Embedding Matrix

Figure 18: Tokenizer Initialization

• A LSTM model with max input length of 200 is designed along with one Dense
layer as shown in the Figure 19. Also, visible in the figure is the number of LSTM
units used and which is 128.

• A Bi-LSTM model with same input length is designed as described in the Figure 20.
Similar to the previous model 128 Bi-LSTM units were used in the Bi-LSTM model.

10



Figure 19: Summary of one of the LSTM model used

Figure 20: Summary of one of the Bi-LSTM model used

11



References

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A. and Talwalkar, A. (2017). Hyperb-
and: a novel bandit-based approach to hyperparameter optimization, The Journal of
Machine Learning Research 18(1): 6765–6816.

Taheri, L., Kadir, A. F. A. and Lashkari, A. H. (2019). Extensible Android Malware
Detection and Family Classification Using Network-Flows and API-Calls, 2019 In-
ternational Carnahan Conference on Security Technology (ICCST), pp. 1–8. ISSN:
2153-0742.

12


	Introduction
	System Configuration
	Hardware Requirements
	Software Requirements

	Project Structure
	Project Setup Steps
	Creating a GitHub Repo
	Setting up Conda Environment:
	Step 1 : Creating config file
	Step 2 : Installing libraries
	Step 3 : Create Jupyter Kernel


	Data Pre-processing
	Extracting Data : 
	Preparing Data for Image Based Malware Detection
	Preparing Data for NLP based Malware Detection
	Uploading Input Files to Colab

	Model Implementation & Hyperparameter Tuning
	Image Based Models
	EfficientNetB4 Implementation & Evaluation
	EfficientNetB4 Hyperparameter Tuning
	CNN Base Model

	NLP based Models
	Word2Vec Embedding



