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Abstract 

 

This paper proposes using the YOLOv7 algorithm to identify defects on Printed Circuit 

Boards (PCBs) during the manufacturing process. Traditional methods for defect 

identification are costly and often result in false alarms. YOLOv7 is the fastest known object 

detection algorithm, making it well-suited for the high-demand environment of PCB 

manufacturing. The paper also discusses data augmentation techniques performed and 

performance improvements compared to current state-of-the-art object detection methods. 

The model building towards building a robust model was performed in five stages which 

included various levels of data augmentation and multi-stage fine tuning on the model. After 

considerable iterations the model built was performing well and the mAP @ 0.5 was 

recorded to be 95.8% with overall precision of the model at 98% percent and recall at 92%. 
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1. Introduction 

PCBs, or printed circuit boards, are crucial components of electronic circuits. They serve 

as foundation to establish connections between other electronic components. PCBs are 

manufactured with multiple layers of copper sheets on which the other components such as 

ICs, resistors, capacitors, relay switches are soldered. PCB manufacturing requires high 

precision and must be detail oriented, as any defects can cause serious problems at the 

product level (Zhang, et al., 2021). 

There are three major challenges in detecting defects in PCBs (Ding, et al., 2019). The 

first is the variety of different PCB designs and wiring rules. The second major challenge is 

the involvement of large range of categories and characteristics of PCB defects. The third 

major challenge is the issue of class imbalance, as gathering samples for each type of defect 

is a tedious process. 

PCB defects can be divided into functional defects, which affect performance, and 

cosmetic defects, which affect appearance. Cosmetic defects can also cause long-term 

problems with performance due to abnormal current distribution and heat dissipation. (Indera 

Putera & Ibrahim, 2010). 

Some common defects within these categories include bad soldering, missing solder 

masks between pads, mouse bites, plating voids or missing holes, open circuits, shorts, 

electromagnetic issues, spurs, acid traps, starved thermals, and environmental factors. It is 

important to identify and fix faulty products at their source1. 

This study focuses on identifying six common defects that occur in industrial settings: 

missing holes or plating voids, mouse bites, open circuits, shorts, bad soldering, and spurs. 

Figure 1 shows examples of these defects. It is crucial to identify and fix these defects at their 

source. 

Figure 2 shows the current industry-standard system for identifying defects in PCBs. The 

process starts with the PCBs being scanned by an automatic optical inspection (AOI) system. 

The AOI system examines images to identify those that may have defects or issues, but it can 

produce a high number of false alarms because of the strict parameters it uses for 

classification. After being scanned by the AOI, the suspected PCBs are sent to a verify and 

repair station (VRS), where a human operator verifies the defective board. The cost of this 

process can be high because of its importance. In recent years, there have been several 
 

 

1 https://www.mclpcb.com/pcb-guide/ 

Figure 1 Common Defects in PCBs 

http://www.mclpcb.com/pcb-guide/
http://www.mclpcb.com/pcb-guide/
http://www.mclpcb.com/pcb-guide/
http://www.mclpcb.com/pcb-guide/
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attempts to use computer methods, including traditional machine learning and deep learning, 

to improve the process (Zhang, et al., 2021). 

 
Figure 2 Traditional industry practice for defect detection in PCBs 

Transfer learning is a machine learning technique where a model trained on one task is 

reused as the starting point for a model on a second related task. This can be useful when the 

second task has a smaller amount of training data, or when the second task is similar to the 

first but not identical. In the context of the problem statement in this paper, transfer learning 

would involve taking a pre-trained object detection algorithm and adapting it for use in defect 

detection. This could involve retraining the model on a new dataset of defective images, fine- 

tuning the model's hyperparameters, or both. By using transfer learning, the model can 

leverage the knowledge gained from the original task to learn the new task more quickly and 

effectively. This can save time and resources and can often lead to improved performance. 

Object detection algorithms can be divided into two categories: two-stage approaches and 

single-stage approaches. The two-stage approach breaks down the problem into two steps: 

first, identifying potential object regions, and second, classifying the objects within those 

regions into their corresponding classes2. 

The One Stage approach uses a neural network that predicts bounding boxes and class 

probabilities in a single step. This contrasts with the two-stage approach, which typically 

involves two separate stages for predicting bounding boxes and class probabilities. 

This paper presents a study on using YOLOv7, a single-stage approach, for detecting 

defects in printed circuit boards (PCBs). The study aims to record the performance of 

YOLOv7 in identifying PCB defects and compare it with state-of-the-art methods currently 

being used. 

Research Question: “How well does the YOLOv7 Object detection algorithm perform in 

detecting defects on PCBs compared to state-of-the-art methodology?” 

The remainder of this paper is structured as follows: Section 2 discusses the work carried 

out by fellow scholars and experts in the field of computer vision. Section 3 introduces to the 

methodology implemented in detail. Section 5 discusses the results obtained on the study 

performed. Section 6 concludes the study conducted and provides potential future work that 

can be carried out. Section 7 documents the references utilized in this paper. 
 

2. Literature Review 
There have been several approaches to solve the problem discussed in this paper, 

including using conventional image processing techniques, as well as machine learning and 

deep learning methods. Transfer learning is one way in which this problem can be addressed, 

and researchers in this field have explored various techniques to do so. Some of these 

techniques involve using deep learning approaches. 

2.1. Using Autoencoders 

The authors (Mujeeb, et al., 2019) have proposed a solution which uses an auto encoder 

for feature extraction. The authors assert that their method allows for the detection of various 

defects without requiring the training of a model using defective samples. The authors of this 

 

2 https://www.v7labs.com/blog/yolo-object-detection 

http://www.v7labs.com/blog/yolo-object-detection
http://www.v7labs.com/blog/yolo-object-detection
http://www.v7labs.com/blog/yolo-object-detection
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study employed data augmentation to generate a replicated sample of a reference image. They 

then used this data to select a feature descriptor for the input image and repeated this process 

with a test image. The similarity of the two descriptors was then checked using a SIFT 

similarity matching technique. However, this method has the disadvantage of not being able 

to classify defects, as there are many ways that a PCB can be defective. 

The authors (Khalilian, et al., 2020) employed denoising convolutional autoencoders for 

defect detection. The autoencoders were trained on corrupted PCB images, and the aim was 

to receive denoised images as output. By comparing the output image to the input image, 

defects could be identified. The authors (Kaviyasri & Binu, 2022) have also followed a 

similar approach using denoising convolutional autoencoders. However, this method has the 

disadvantage that as the network depth increases, a degradation problem can arise, which can 

lead to a decrease in the accuracy of the results. 

The authors (Kim, et al., 2021) also examined a type of convolutional autoencoder called 

skip-connected autoencoders. In this method, the encoder and decoder layers are skip- 

connected, which helps to avoid the saturation problem that can occur when the network 

depth is increased. These skip connections allow the encoder and decoder layers to better 

handle image prediction tasks. However, this method may be vulnerable to input datasets 

with class imbalances. 

The authors (Tsai & Jen, 2021) employed unsupervised autoencoder learning for defect 

detection. The convolutional autoencoder (CAE) they used to include a regularization 

technique to improve the feature distribution of defect-free samples by limiting it within tight 

margins. This allows the representative feature vector of all samples and the mean feature 

vector to be as close as possible, enabling the distinctive identification of defective samples 

during the evaluation stage. However, this approach can also be vulnerable to class 

imbalanced datasets. 

2.2. Using ResNet 

Multi-scale feature maps to build boundary boxes within a particular range was a method 

proposed by (Ran, et al., 2020). The authors applied small convolutional kernel to perform 

the predictions. Non-maximum suppression was used to optimize the results. 

In a separate study, the authors (Tang, et al., 2019) extracted features from input images 

by using a convolutional backbone with max pooling. The authors calculated the differences 

between the features of the template and the tested images post feature extraction. A group 

pyramid pooling module was used by the authors to obtain features from different resolutions 

of the input. The authors made predictions using a backbone architecture (either VGG16 or 

ResNet 18) using the feature maps obtained from different scales. 

The authors (Wu, et al., 2021) use a VGGNet-based SSD model with a FPN layer for 

multi-scale feature map prediction. The FPN layer uses a deconvolution layer and a lower 

sampling layer. They use a ResNet101 model as the backbone network, but their approach 

does not effectively handle class imbalance in the dataset, even when tested on two different 

datasets. 

The authors (Ding, et al., 2019) have modified the Faster R-CNN network (FR-CNN) by 

making three key changes in the ResNet101 which was used as the backbone network. First, 

they trained the model on the PCB dataset and fine-tuned it by designing suitable anchors and 

using data augmentation. Second, they used a multi-scale feature fusion strategy to improve 

detection performance. Third, they employed online hard example mining during training to 

improve the quality of the regions of interest (RoIs). 
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The authors (Hu & Wang, 2020) have created a new Faster R-CNN-based network for 

detecting defects on printed circuit boards (PCBs). The backbone architecture is a 

combination of ResNet50 and Feature Pyramid Networks (FPN), which the authors say 

improves feature extraction and defect detection. They use GARPN for anchor prediction and 

combine ShuffleNetV2 residual units to reduce the load on the network. Finally, they use 

ROI pooling to generate object proposals and a fully connected layer to classify and produce 

the final defect detection results. 

The authors (Zhang, et al., 2021) have developed a method for detecting cosmetic defects 

on PCBs that considers the issue of class imbalance in the data. They use a ResNet to extract 

features from the input images, which are then used by a cost-sensitive adjustment layer to 

calculate a weighted loss, update network parameters, and classify the images. While this 

approach can handle class imbalance, the large number of weight parameters (25.5 million) 

can make the process slow. 

2.3. Using SSD 

The authors (Shi, et al., 2020)   use a Single Shot object Detector (SSD) for detecting 

small irregularities on PCBs. They enhance the SSD by adding a semantic ascending module 

that reduces the depth of semantic properties between deep and shallow layers by fusing 

features at different levels. To enable the model to learn the relationship between the fused 

features, they use an attention mechanism. In addition to the attention mechanism, they also 

use a shuffle module to eliminate the aliasing effect after fusion. 

The authors (Li, et al., 2021) perform semantic labelling on their PCB dataset and then 

use a traditional SSD neural network for PCB defect detection. However, this method has 

been known to sometimes ignore important features in the image. 

The authors (Tang, et al., 2019) (Jiang, et al., 2022) have used SSD by improving it. Their 

model uses a coordinate attention mechanism module to address the issue of ignoring 

important features. This modification is intended to improve the performance of the SSD 

network for PCB defect detection. 

While SSD is a single-stage algorithm like other single-stage algorithms, it is known to be 

slower than some of them. In the PCB industry, speed is important because it can affect 

production and lead to mismatches between supply and demand. Therefore, using a slower 

algorithm like SSD may not be ideal in this context. 

2.4. Using YOLO 

The authors (Li, et al., 2020) have experimented with a combination of different models, 

including ResNet101, YOLOv2, and Faster RCNN with ResNet101 and FPN. They used 

YOLOv2 with a VGG16 backbone and ResNet101 was used as the backbone for the Faster 

RCNN setup. They set up the models with low threshold values in an attempt to reduce False 

Alarm Rates (FAR). While they were able to achieve reasonable performance, the design of 

the circuit seems complex and newer, faster algorithms have been developed since then. 

(Adibhatla, et al., 2020) made use of the Tiny-YOLO-v2 architecture. The authors 

managed to obtain data from an AOI and were able to label the defective PCBs. This data 

was then used to train the YOLO network with around 5.7 billion operations using 12M 

weights. 

The authors (Lan, et al., 2021) have brought in four changes to the YOLO v3 model to 

enhance its performance for detecting defects on PCBs. First, they combined the batch 

normalization and convolutional layers to improve on the training speed of the model. 

Second, they used the GIoU performance metric to improve the detection of small and 

medium targets. Third, they used K-means++ to determine the anchor boxes. Finally, they 

used multi-scale training to enable detection of images at different resolutions efficient. 
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The authors (Xin, et al., 2021) have improvised on the YOLOv4 network by replacing the 

Darknet53 backbone with five CSPDarknet53 modules. This change is intended to reduce 

memory cost, alleviate computing bottlenecks, and improve the learning ability of the 

convolutional neural network (CNN). Additionally, they perform downsampling several 

times, which produces a feature map that is the FPN layer then takes these feature maps as 

input. This is then passed through the PAN structure twice to output the predicted feature 

map. These modifications are intended to improve the performance of the YOLOv4 network 

for detecting defects on PCBs. 

The authors (Xie, et al., 2021) have used YOLOv4 architecture that incorporates three 

key modifications. First, they use a multistage residual hybrid attention module (MRHAM). 

The MRHAM assists in enhancing feature learning by focusing on relevant features and 

ignoring irrelevant ones. Second, they use K-means clustering to determine the anchor boxes 

values. This aids in improving the accuracy of small object defect positioning. Finally, they 

employ data augmentation, transfer learning, and multi-scale training methods to improve the 

generalization of the model. These modifications are intended to enhance the performance of 

the YOLOv4 network for detecting defects on PCBs. 

The authors (Adibhatla, et al., 2021) used the traditional YOLOv5 model. The author has 

cited advantages of YOLOv5 over other YOLO algorithms to justify their choice. Their 

results proved that they were able to take full advantage of the architecture to build a robust 

model. However, YOLO is known for its limitations in detecting small objects that occur in 

groups. 

The authors (Bhattacharya & Cloutier, 2022) used YOLOv5 model that combines 

transformers and a convolutional neural network (CNN). The work of the CNN, in this 

architecture, is used to extract underlying geometrical features. The transformer is used to 

directly process the feature maps produced by the CNN. Around 7 million weight parameters 

were used to build the model. This is a low number, and this results in faster model 

processing. This modified YOLOv5 model is intended to improve the detection of defects on 

PCBs. 

Researchers have compared the performance of various YOLO models on different 

datasets and environments. 

The researchers (Jiang, et al., 2021) conducted a thorough comparison of various YOLO 

models, including their similarities and differences, and their performance on different 

datasets and environments. They reportedly focused on the YOLO family of algorithms up to 

version 5 and found that YOLO's grid division plays an important role in detection. In 

version 2, anchor and K-means were added, as well as a two-stage training with a full 

convolutional network. YOLOv3 added multi-scale detection using FPN (Feature Pyramid 

Network), and later versions added new activation functions and data augmentation 

techniques. Overall, it seems like the researchers found that YOLO has evolved and 

improved over time, with each new version adding new capabilities and enhancements. 

Researchers (Nepal & Eslamiat, 2022) used YOLOv3, YOLOv4, and YOLOv5l to 

identify landing spots for UAVs in urban environments. Their findings showed that 

YOLOv5l was more accurate than the other two versions, while maintaining a slower 

inference speed. This suggests that YOLOv5l may be a good choice for applications that need 

high accuracy, even if it comes at the cost of slower performance. 

Researchers (Wang, et al., 2021) used various versions of YOLOv5 to detect PPEs in 

construction sites. They found that YOLOv5x was the best performing in terms of mAP, and 

YOLOv5s was the fastest among the YOLOv5 family. This suggests that YOLOv5x may be 

good for applications that need high accuracy, while YOLOv5s may be better for applications 

that require fast performance. 
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These studies further iterates that the performance of YOLO over the years have been 

constantly improving and has set new benchmarks in terms of speed and accuracy. 
 

3. Design Specification 

Figure 3 shows the methodology being followed in this study. Dataset is sourced from 

Kaggle. The dataset contains 693 images distributed equally among the 6 classes to be 

identified in this study. The dataset is split into 70% training set and 20% test set and 10% 

valid set. Several data augmentation methods are also carried out to increase the robustness of 

the model. 

 
Figure 3 Process flow

4. Research Methodology 
This study follows CRISP-DM methodology. The steps involved in CRISP DM include 

Business understanding, Data understanding, Data Preparation, Modelling, Evaluation, 

Deployment. 

4.1. Dataset 

The dataset1 used in this research is sourced from Peking University PCB defect dataset. 

The dataset originally contains 693 images and 6 classes of defects namely mouse bite, 

missing hole, open circuit, short, spur, spurious copper. The dataset is provided with files 

labels of the defects in the XML format. This filetype does not meet the requirements of the 

experimental model and is transformed into the TXT format which is more suitable to serve 

as the input for the model. The conversion of formats was performed on a web platform 

called roboflow.com. The platform enables to annotated images into necessary format for 

processing. The platform also enables data augmentation and pre-processing with a single 

click. Figure 4 shows the various data augmentations and annotations performed on the 

images on Roboflow.com. 

 
1 https://www.kaggle.com/datasets/akhatova/pcb-defects 

Figure 4 Augmentation operations 
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4.2. Data Pre-processing 

The dataset of 693 images with almost 115 images in each class was divided into 70% 

training dataset and 20% testing and 10% validation dataset. Images were resized to 864 

pixels on each dimension. Contrast was adjusted using Histogram Equalization technique 

where the contrast is boosted using images histogram to improve normalization and line 

detection in varying lighting conditions. Grayscale was also applied to the images to help the 

algorithm differentiate the defects easier. 

4.3. Data augmentation 

The image data was augmented post annotation. 5 levels of augmentation were performed 

on the images namely 1:1, 1:2, 1:3, 1:5 and 1:7. In 1:1 data augmentation, each image is 

augmented exactly in 1:1 ratio, which means that post data augmentation, the number of 

images obtained remains the same as original. In 1:2, each image is augmented twice, which 

means that the number of images obtained post augmentation is 2 times the original set of 

images and so on. For the purpose of this research the following data augmentation steps 

were followed: i) Horizontal flip, ii) Clockwise rotate 90 degrees, iii) Counter-clockwise 

rotate 90 degrees, iv) upside down rotate, v) Crop – 0% minimum to 20% maximum, vi) 

Rotation – between 15 degrees to -15 degrees, vii) Hue – between -91 degrees to 91 degrees, 

viii) brightness – between 0% and 25%, ix) Bounding box brightness – between -20 degrees 

and +20 degrees. 

 
Figure 5 Augmentations performed in YOLOv7. 

Apart from these data augmentations YOLOv7 also performs few unique augmentations 

on the data called Mixup, Mosaic augmentation, etc. In Mixup random parts of few images 

are mixed up with each other and are overlapped upon one another. In Mosaic data 

augmentation, 4 different images from are formed into a grid and these images are then 

trained by the model. 

4.4. Model Building 

YOLOv7 is the model proposed to be used for training and predicting the PCB defects. 

YOLOv7 is the latest of the YOLO family and is claimed to be the fastest yet YOLO 
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algorithm in the YOLO family and among other object detection algorithm. YOLOv7 is 

claimed to set new state-of-the-art for real-time object detectors. (Wang, et al., 2022) claims 

the model to predict video inputs ranging from 5 FPS to 160 FPS. YOLOv7 has the highest 

Average Precision at 56.8%. YOLOv7 outperforms both transformer-based object detectors 

and convolutional based object detectors such as the previous versions of the YOLO. 

4.4.1. YOLO Architecture 

YOLO is designed based on a Fully Connected Neural Network (FCNN). In recent times, 

a notable change in the architecture is the addition of transformer-based version in the YOLO 

family. The YOLO framework has three main components namely the Backbone, Head and 

Neck. The feature of an image is extracted by the backbone and is fed to the head through the 

neck. The feature maps extracted by the head are collected in the Neck and feature pyramids 

are created. The output collected is displayed in the head. 

Several architectural reforms are introduced to improve speed and accuracy of YOLOv7. 

Some of the notable architectural reforms is the addition of E-ELAN (Extended Efficient 

Layer Aggregation Network) and model scaling for concatenation-based models. 

E-ELAN, or the Extended Efficient Layer Aggregation Network, is a deep learning 

architecture for object detection developed by researchers at the Chinese Academy of 

Sciences. The E-ELAN architecture is designed to improve the efficiency and accuracy of 

object detection algorithms, while also reducing the amount of computation and memory 

required. The E-ELAN architecture is based on a multi-scale feature aggregation approach, 

which allows it to capture rich, detailed information about the objects in an image, while also 

reducing the computational complexity of the network. The E-ELAN architecture consists of 

multiple layers of neurons, which are organized into a hierarchical structure. 

The first layers of the E-ELAN network extract low-level features from the input data, 

such as edges, colors, and textures. These features are then passed through the next layers of 

the network, which combine and transform them into higher-level features, such as shapes 

and objects. The higher-level features are then aggregated across multiple scales, allowing the 

network to capture detailed information about the objects in the input data. 

One key advantage of the E-ELAN architecture is its ability to adapt to the size and scale 

of the objects in the input data. This allows the network to make more accurate predictions 

and to reduce the number of false positives. The E-ELAN architecture also uses a multi-task 

learning approach, which allows it to make predictions about multiple object classes and 

attributes simultaneously. 

Another major addition introduced in the YOLOv7 is the concept of Trainable BoF. 

Trainable BoF, or Trainable Bag-of-Features, is a technique for unsupervised learning and 

representation learning in computer vision. The Trainable BoF approach uses a set of local 

features, such as SIFT or SURF, to represent an image, and then clusters these features into a 

fixed-size bag-of-features (BoF) vector. 

The Trainable BoF approach allows the clustering of the local features to be performed in 

a supervised manner, using a training set of labelled images. This allows the BoF vector to be 

trained to capture the relevant visual information for a specific task, such as object 

classification or image retrieval. 

The Trainable BoF approach has been shown to improve the performance of image 

classification and object recognition tasks, compared to unsupervised BoF approaches that do 

not use labeled data. It can also be combined with other techniques, such as spatial pyramids 

and support vector machines, to further improve the performance of the BoF vector on 

specific tasks.  
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Overall, the Trainable BoF approach is a useful technique for unsupervised learning and 

representation learning in computer vision. By using a supervised learning approach to train 

the BoF vector, the Trainable BoF approach can improve the performance of image 

classification and object recognition tasks. 

4.4.2. Model building 

Model building in this research was performed in 6 stages. Initially a baseline model was 

built on the dataset collected without performing augmentation. The baseline model was 

allowed to run for 50 epochs with a learning rate of 0.1, with a batch size of 4. The images 

were rescaled to 864 x 864 pixels for better training quality. Stochastic Gradient descent 

optimizer was used as suggested by fellow researchers as it had a better effect compared to 

Adam and Adam W optimizers. 

Stage two was performing 1:1 data augmentation, i.e., setting the output per training 

sample to be 1. This increases the size of the dataset by a factor of two. The baseline model 

was trained on the augmented data. 

Stage three was performing 1:2 data augmentation where the output per training sample 

was set at 2. This implies that the size of the dataset is increased by a factor of three. The 

weights generated from the previous model built is carried over and is trained on the newly 

augmented data. 

Stage four was reusing the previously trained model weights on 1:3 data augmentation 

configuration. It was observed that the model performed best in the 1:3 configuration. 

In stage five, the model was fine-tuned by introducing the model to noisy data. This step 

is carried out to improve robustness of the model. The model was trained only on the 

augmented dataset. The augmentations performed includes alterations in blur, hue, flip, 

rotations, brightness, bounding box brightness. 

These model weights were then trained on the original data without augmentations, and it 

was observed that the model performed exceptionally well. The results of these six stages are 

discussed in the next section. 
 

5. Evaluation and Results 
In this research, the metric used for evaluation of the model is mean Average Precision 

(mAP). Most of the object detection algorithms use mAP and IoU (Intersection over Union) 

as evaluation metrics. mAP is the measure of how well the model can identify and locate 

objects in an image. mAP is calculated by first computing the average precision for each 

class, and then taking the mean of these values. In other words, mAP is the mean of the 

average precision scores for each class. 

The model built in this study was trained with a number of changes to the dataset over a 

time period of 50 hours. The model built was evaluated for its performance at 5 different 

stages. The first stage of the model is the baseline model where the model was built on raw 

data without performing any augmentation or samplings. The model returned a mAP of 44% 

with overall Precision 74% and overall recall at 38% after a single iteration. 

Figure 6 represents the baseline model results obtained after training the model on the 

baseline dataset. X axis in Figure 6 represents the number of epochs and Y axis represents 

the headings mentioned on the top of the graph. This graph is one of the outputs obtained 

post training the YOLOv7 model. The most important graphs to be noted here are the 

Precision, Recall, mAP@0.5 and mAP@0.5:0.95 graphs. mAP@0.5 denotes mean average 

precision at 0.5 threshold. mAP@0.5:0.95 is the mean average precision recorded at 

different thresholds from 0.5 to 0.95. The threshold mentioned above is the value of 
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Intersection over Union (IoU) of the bounding boxes. The Precision graph from the figure 

shows the precision recorded for each epoch. The highest precision achieved was around 

~97% at the roughly the 25th epoch. The overall trend shows there is a steady rise in the 

precision after the 30th epoch. The graph gets even better after the 41st epoch. 

The X axis of the Recall graph represents the number of epochs, and the Y axis of the 

Recall graph represents the recall achieved over each epoch. The Recall of the model has 

gradually and steadily increased over the 50 epochs after the 25th epoch. The highest recall 

value achieved for the baseline model is around 0.44 or 44% which is a pretty low number.  

Similarly considering the mAP@0.5 and mAP@0.5:0.95 graphs over 50 epochs there 

has been a steady increase and the maximum mAP@0.5 was achieved at the 50th epoch 

which has a value around 0.44 or 44%. This is again a low number. The decrease in the rate 

of increment shows that more changes have to be incorporated for the model to learn. 

 

 
Figure 6 Baseline model results 

In Error! Reference source not found., PR curve for the baseline model is recorded, 

and it is observed that the curve lies just above the threshold line. It can be concluded that 

the model does not perform too well while being trained with baseline dataset. 
 

Figure 7 PR Curve - Baseline 
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Figure 8 Confusion Matrix - Baseline 

Based on results recorded as shown in Figure 8, it can be noticed that the model is not 

performing too well as it fails to identify spur and spurious copper classes and also performs 

poorly on other classes as well. 

The model was saved and for the next iteration data augmentation was performed on the 

data with output for each example set at 1. The number of input images for training were 

doubled and the model was trained on the augmented data. The model showed an increase in 

performance. The mAP was recorded at approximately 73% which is a significant increase 

from the previous model. These results were achieved after training the model for a 

considerable amount of time with almost 250 epochs running in batches of 50 epochs each. 

The overall precision was recorded at 81% and the precision was at 70%. 

Figure 9 Results - Augmentation 1:1 
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Figure 10 records the PR curve for the model trained using 1:1 augmented data. Here, a 

drastic increase and the AUC is larger compared to the baseline model is observed. It can be 

concluded that the model trained using 1:1 augmented data performs better. 
 

 
Figure 10 PR Curve - Augmentation 1:1 

 
 

 
Figure 11 Confusion Matrix - Augmentation 1:1 
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Figure 11 represents the confusion matrix recorded while testing the model built on 1:1 

dataset. A drastic increase in model performance can be noted as the model is now able to 

predict better compared to the baseline model. The model has performed significantly better 

in terms of predicting all classes. 

The dataset size was further increased to 3 times the original size with output per example 

set at 2. The model from the previous iteration was trained on the newly augmented data. The 

model had a significant upward growth with mAP at 88%. The overall precision of the model 

was recorded at 89% and recall at 87%. 

 
Figure 13 PR Curve - Augmentation 1:2 

Figure 13 refers to the PR curve recorded when the model is trained using 1:2 augmented 

data. It can be noticed that this graph has larger AUC than compared to the PR curve 

recorded while using the 1:1 augmented dataset. 

Figure 12 Results - Augmentation 1:2 
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Figure 14 Confusion Matrix - Augmentation 1:2 

Figure 14 represents the confusion matrix recorded while testing the model built on 

1:2 dataset. It can be noticed that the model performs well on 4 classes with an accuracy of 

over 93% in each of the classes. However, the classes spur, and spurious copper still have 

room for improvement and hence the other level of data augmentation and multistage fine 

tuning have been performed. 

The same steps were repeated for data augmentation with output per example set at 3 

as well. This increased the data size to 4 times its original size. The mAP for 1:3 data 

augmentation was recorded at 92%. The overall precision and recall of the model were 

recorded at 85% and 89% respectively. 
 

Figure 15 Results - Augmentation 1:3 
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Figure 17 Confusion Matrix - Augmentation 1:3

Figure 16 PR Curve - Augmentation 1:3 
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The model trained on 1:3 data augmentation was recorded to be the best performing 

model. To further enhance the model performance and increase its robustness multi-stage fine 

tuning was performed. 

 
Figure 19 PR Curve - Multistage Fine tuning 

Figure 18 Results - Multistage Fine tuning 
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Figure 21 Sample detection results

Figure 20 Confusion Matrix - Multistage Fine tuning 



22 

 

6. Conclusion & Future Work 
This research work proposes to use the state-of-the-art model in object detection to 

identify defective PCBs at an industrial level. As mentioned earlier, YOLOv7 is the fastest 

algorithm yet in object detection. They use the least number of trainable parameters 

compared to other standard object detection models available. The model was built based on 

a five-stage approach. The five stages included various levels of data augmentation to 

increase the size of the dataset and also improve the robustness of the model. To further 

enhance the model, multistage fine tuning was performed. The model was evaluated in each 

of the five stages to record the progress. It was identified that the model that was trained on 

the multistage fine tuning with actual data performed the best out of the lot with a mAP of 

95.8% overall precision of 97.8% and recall at 91.6%. 

The future work on this topic will focus on improving the accuracy and speed of defect 

detection, as well as making the technology more accessible and user-friendly for a wider 

range of applications. This could involve the development of new machine learning 

algorithms and techniques, or the integration of YOLO v7 with other technologies such as 

computer vision or artificial intelligence. Additionally, there may be efforts to reduce the cost 

and complexity of implementing YOLO v7 in PCB defect detection systems, to make it more 

widely accessible to manufacturers and other users. 
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