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Arpita Mitra
x21116211

1 Introduction

The scripts employed in this study have certain instructions that must be followed, which
are outlined in the configuration manual. You will find that following the instructions
in this tutorial will help you successfully execute the code. In addition to that, this
documentation includes information on the hardware design of the machine on which
the code was implemented. In addition to this, the system’s most basic configuration
requirements are also listed.

2 System Specification

The below table [I] and [2] are listed with all the hardware and software specifications for
the platform upon which the research work is being carried out.

2.1 Hardware Specification

H Hardware used H Specification
Processor Intel(R) Core(TM) i7 8th generation
RAM 16 GB
Hard Drive 1TB

Table 1: Hardware Specification

2.2 Software Specification

H Software used H Version
Operating System Windows-10 Home, 64 bit Operating
System
Anaconda Navigator 2022.05
Python 3.9.12
Power Bi 2.100.1401.0

Table 2: Software Specification



3 Environment Set Up

The entire research was done by writing Python code in Jupyter Notebook on Anaconda
Navigator. First, Anaconda Navigator needs to be installed.
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Figure 1: Anaconda Navigator Installation

The Anaconda Navigator can be accessed through Start, then select Anaconda Nav-
igator after the installation has been completed successfully. Then Jupyter notebook can
be launched from Anaconda Navigator.
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Figure 2: Jupyter Access

4 Data Source

Dataset has been collected from Kaggle. This research project has been carried out using
the dataset[[] created by|Ali et al.|(2022) which was made publicly available by the authors
for future research.

'https://wuw.kaggle.com/datasets/nafin59/monkeypox-skin-lesion-dataset?datasetId=
2308447


https://www.kaggle.com/datasets/nafin59/monkeypox-skin-lesion-dataset?datasetId=2308447
https://www.kaggle.com/datasets/nafin59/monkeypox-skin-lesion-dataset?datasetId=2308447
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Figure 3: Monkeypox Dataset

The dataset has been downloaded in a zip format. Further, it was unzipped in the
local drive and then the entire research was performed using the same dataset.
5 Implementation

The design of this study, as well as its execution, makes use of the following libraries
mentioned in table |3 that has to be installed to conduct this research study.

H Libraries used H Version ‘
Numpy 1.21.5
Pandas 1.4.2
Scikit-learn 1.0.2
Keras 2.11.0
TensorFlow 2.11.0
Matplotlib 3.5.1

Table 3: Libraries used in this study

The study procedure, along with its methodology, will be broken down into its com-
ponent parts in the following sections.

5.1 Blocks of Code:

Import Libraries

The below screenshot depicts all the necessary libraries that are used in this study.



# Import relevant libraries and packages

import glob

import os

from PIL import Image

from PIL import ImageFilter

import pandas as pd

import numpy as np

import shutil

import matplotlib.pyplot as plt

import matplotlib.image as mpimg

import scikitpleot as skplt

import matplotlib.pyplot as plt

from tensorflow import ker‘as‘

from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential, load_model

from keras.callbacks import EarlyStopping

from keras.layers import Conv2D, MaxPooling2D

from keras.layers import Activation, Dropout, Flatten, Dense
from keras import optimizers

from keras.applications.vggl9 import VGG19

from sklearn.metrics import confusion_matrix, precision_score, recall_score
import matplotlib.pyplot as plt

np.random.seed(123)

import itertools

from sklearn.metrics import f1l_score

Figure 4: Import Libraries

Data Pre-processing

The below block of code creates the train, validation and test folders inside the root
directory of each class of images and then data was shuffled randomly and split into
70:15:15 ratio, and then it was stored in its respective directories.

#Funtion to shuffle and split the data, and then store them in respective directories
def get_value_split():

# CREATE TRAIN/ VAL/ TEST FOLDERS INSIDE THE ROOT DIRECTORY OF EACH CLASS

root_dir = 'C:/Users/arpit/Research/Research_Dsta/Augmented Images/Augmented Images'
monkeypox = */Monkeypox_augmented®

others = '/Cthers_augmented®

os.makedirz(root_dir +'/trzin’ + monkeypox)
os.makedirs(root_dir +'/train' + others)
os.makedirs(root_dir +'/val' + monkeypox)
os.makedirs(root_dir +'/val' + others}
os.makedirs{root_dir +'/test’ + monkeypox)
os.makedirs(root_dir +'/test’ + others)

won

# DATA PARTITION AFTER SHUFFLING THE DATA RANDOMLY (inte 78, 15, 15)
for partitions in [monkeypox, others]:
src = "C:/Users/arpit/Research/Research_Data/Augmented Images/Augmented Images” + partitions

allFileMames = os.listdir(src)

np.random. shuffle(allFileNames )

train_FileNames, validation FilelNames, test FileNames = np.split(np.array(allFilelames),
[int(len(allFileNames)*@.7),
int(len(allFileNames)*8.85)])

# FOLDER NAMES

train_FileNames = [src+'/'+ name for name in train_FileNames.tolist()]
validation_FileMames = [src+'/' + name for name in validation_FileNames.tolist()]
test_FileNames = [src+'/' + name for name in test_Filelames.tolist()]

#COUNT OF IMAGES OF EACH CLASS IN RESPECTIVE FOLDERS AFTER PARTITION
print('Total images: ', len(allFileNames))

print{'Training: *, len(train_FileNames))

print{'Validation: ", len{validation FileMames})

print{'Testing: ', len({test_FileNames))

# COPYPASTE THE IMAGES
for name in train_FileMames:
chutil.cepy(name, "C:/Users/arpit/Research/Research_Data/Augmented Images/Augmented Images/train”+partitions)

for name in validation_FileNames:
shutil.copy(name, "C:/Users/arpit/Research/Research_Data/Augmented Images/Augmented Images/val"+partitions)

for name in test_FileNames:
shutil.copy(name, "C:/Users/arpit/Research/Research Data/Augmented Images/Augmented Images/test"+partitions)

get_valus_split() #RUN ONLY ONCE TO CREATE THE FOLDERS AND RANDOMLY DIVIDE THE IMAGES INTO THE FOLDERS

Figure 5: Shuffle & split the data



To create more complexity in the model, more blurry images were added to the existing
data.

#CRAETION OF MORE BLURRED AND UNSHARPENED IMAGES OF MONKEYPOX IN TRAINING DATA

os.chdir('C:/Users/arpit/Research/Research_Data/Augmented Images/Augmented Images/train/Monkeypox_augmented')
filelist = glob.glob("*.jpg")
count = @
for imagefile in filelist:
img = Image.open(imagefile)
img = img.convert("RGB")
img_blur = img.filter(ImageFilter.GaussianBlur)
img_unsharp = img.filter(ImageFilter.UnsharpMask)
img_blur.save(str(count) + 'bl " + imagefile)
img_unsharp.save(str(count) + 'un_' + imagefile)

#CRAETION OF MORE BLURRED AND UNSHARPENED IMAGES OF NON-MONKEYPOX IN TRAINING DATA
os.chdir('C:/Users/arpit/Research/Research_Data/Augmented Images/Augmented Images/train/Others_augmented')
filelist = glob.glob("*.jpg")
count = @
for imagefile in filelist:

img = Image.open(imagefile)

img = img.convert("RGB")

img_blur = img.filter(ImageFilter.GaussianBlur)

img_unsharp = img.filter(ImageFilter.UnsharpMask)

img_blur.save(str(count) + 'bl " + imagefile)

img_unsharp.save(str(count) + 'un_' + imagefile)

Figure 6: Adding blurry images to dataset

CNN Model

CNN Model building

#GET THE MODEL TO OUTPUT 3D FEATURE MAPS (HEIGHT, WIDTH, FEATURES)
model = Sequential()

# Layer 1

model.add(Conv2D(32, (3, 3), input_shape=(228, 228, 3)))
model. add (Activation('relu'))

model. add (MaxPooling2D(pool_size=(2, 2)))

# Layer 2

model.add(Conv2D(32, (3, 3)))
model.add(Activation( 'relu’))

model. add (MaxPooling2D(pool_size=(2, 2)))

# Layer 3

model.add(Conv2D(64, (3, 3)))
model.add(Activation( 'relu’))

model. add (MaxPooling2D(pool_size=(2, 2)))

# APPLY THE FLATTENING FUNCTION TQ CONVERT 3D FEATURE MAPS INTO 1D FEATURE VECTORS
model.add(Flatten())

# ADD 2 FINAL DENSE LAYERS TO ADD A CLASSIFIER TO THE CONVOLUTIONAL BASE
model.add(Dense(54))

model.add(Activation( ' relu’))

model. add(Dropout(8.5))

model.add(Dense(1))

model.add(Activation( sigmoid®))

# COMPILE THE MODEL

model.compile(loss="binary_crossentropy’,
optimizer="rmsprop’,
metrics=["'accuracy'])

# PRINTING THE MODEL SUMMARY
print({model.summary())

Figure 7: CNN Model



Data Augmentation & Training of CNIN Model

Data Augmentation & Training of the model

# DEFINE BATCH SIZE & TARGET SIZE
batch_size = 50 # batch size defines how many images will be sent over the network at a time
target_size - (228, 228) #image size

# CONFIGURE AUGMENTATION FOR TRAINING ADVERSITY

# ImageDataGenerator rescales the pixels between zeéro and one
train_datagen = ImageDataGenerator(

rescale=1./255,

shear_range=0.2,

zoom_range=8.2,

horizontal_flip=True)

# SET AUGMENTATION FOR TESTING
test_datagen - ImageDataGenerator(rescale=1./255)

# READ PICTURES IN TRAINING DIRECTORY AND GENERATE BATCHES OF IMAGE DATA
train_generator = train_datagen.flow_from_directory(
“C:/Users/arpit/Research/Research_Data/Augmented Images/Augmented Images/train®,
target_size-target_size,
batch_size-batch_size,
class_mode="binary')

# SAME GENERATOR AS ABOVE, BUT FOR VALIDATION DATA

validation_generator = test_datagen.flow from_directory(
"C:/Users/arpit/Research/Research_Data/Augmented Images/Augmented Images/val’,
target_size=target_size,
batch_size=batch_size,
class_mode="binary")

Found 6699 images belonging to 2 classes.
Found 479 images belonging te 2 classes.

# SET STOP TO 5 EPOCHS TO PREVENT OVERFITTING OF THE MODEL
callback = EarlyStopping(

monitor="val_acc’,

restore_best_weights=True,

patience=5

# SAVE WEIGHTS AFTER IMPLEMETING CALLBACK TO LATER COMPARE MODEL

history = model.fit(
train_generator,
steps_per_epoch=6699 // batch_size, #6699 IS THE TRAIN_GENERATOR RESULT
epochs=38, # NUMBER OF EPOCH MEANS THE RUNNING SPEED OF THE MODEL
validation data=validation_generator,
validation_steps=479 // batch_size, #479 IS VALIDATION GENERATOR RESULT
callbacks=[callback]

)

# CREATE DIRECTORY TO SAVE RESULTS OF THE MODEL

os.mkdir('C:/Users/arpit/Model_Results’)

model.save( "Model_Results/model_©1.h5")

Figure 8: Training of CNN model

Training of the CNN model will take ~ 3 hours to complete.

Validation of CNN Model

Validation of CNN Model

# VALIDATION GENERATOR WITH BATCH SIZE = 1

validation_generator = test_datagen.flow_from_directory(
'C:/Users/arpit/Research/Research_Data/Augmented Images/Augmented Images/val’,
target_size=target size,
batch size=1,
class_mode="binary")

# EXAMPLES FROM WALIDATION SET AND LABELS PREDICTED FROM BASELINE CNN MODEL
for _ in range(5):
x = next(validation_generator)[@]
print('Monkeypox_augmented' if model.predict(x)[e@][e] > ©.5 else 'Others_augmented')
plt.imshow(x.reshape((228, 228, 3)))
plt.show()
print()

Figure 9: Validation of CNN model



VGG 19 Model

VGG 19 Model

# Build VGG19 structure

cnn_base = VGG19(weights="imagenet’,
include_top=False,
input_shape=(228, 228, 3))

print('VGG19 model is loaded")

print{cnn_base.summary())

Figure 10: Structure of VGG 19 Model

The bottlenecked characteristics of the model was retained after the extraction process,
and a classifier comprising final dense layers has been appended to the model. Using
the below blocks of code, features and labels had been extracted and applied to train,
validation and test set and the same was saved in a form of Numpy array for later use.

Feature Extraction

# Build extraction function to get features and labels
def feature_extraction(directory, sample_amount):
features = np.zeros(shape=(sample_amount, 7, 7, 512))
labels = np.zeros(shape=(sample_amount))
datagen = ImageDataGenerator(rescale=1./255)
generator = datagen.flow_from_directory(
directory, target_size=(228, 228),
batch_size = batch_size,
class_mode="binary")

i-a

for inputs_batch, labels_batch in generator:
features_batch = cnn_base.predict(inputs_batch)
features[i * batch_size : (i + 1) * batch_size] - features_batch
labels[i * batch_size : (i + 1) * batch_size] - labels_batch

i=-1i+1
if i * batch_size >- sample_amount:
break

return features, labels

Train the model

# Apply extraction function to 3 datasets

train_features, train_labels = feature_extraction(training_folder, train_samples)
validation_features, validation_labels = feature_extraction(validation_folder, validation_samples)
test_features, test_labels = feature_extraction(testing_folder, test_samples)

Figure 11: Feature Extraction

# Save the extracted features and Llabels in a directory

os.mkdir('C:/Users/arpit/Research/Research_Data/Augmented Images/Augmented Images/bottlenecked"’)
np.save('C:/Users/arpit/Research/Research_Data/Augmented Images/Augmented Images/bottlenecked/train_features.npy', train_feature:
np.save('C:/Users/arpit/Research/Research_Data/Augmented Images/Augmented Images/bottlenecked/train_labels.npy’, train_labels)
np.save('C:/Users/arpit/Research/Research_Data/Augmented Images/Augmented Images/bottlenecked/validation_ features.npy', validatic
np.save('C:/Users/arpit/Research/Research_Data/Augmented Images/Augmented Images/bottlenecked/validation_labels.npy’, validation,
np.save('C:/Users/arpit/Research/Research_Data/Augmented Images/Augmented Images/bottlenecked/test features.npy’, test_features)
np.save('C:/Users/arpit/Research/Research_Data/Augmented Images/Augmented Images/bottlenecked/test_labels.npy', test_labels)

n

Figure 12: Saving Extracted Features



VGG 19 Models Validation
VGG-19 Model 1

Validation

VGG-19 Model 1 ( with 2 dense layers)

# Build classifier on top of VGG19
model = Sequential()

# Add dense layers on top of VGG19

#1

model.add(Dense(256, activation="relu’, input_dim=reshape_y))
# 2

model.add(Dense(1, activation='sigmoid'))

# Compile the model

model.compile(optimizer=optimizers.RMSprop(lr=1e-4),
loss="binary crossentropy’,
metrics=["acc’])

history = model.fit(train_features, train_labels,
epochs=38,
batch_size=58,
validation_data=(validation_features, validation_labels))

# Save VGG19 results
model.save( 'Model Results/model_WGG_81.h5")

Figure 13: VGG 19 Model 1

Previously extracted saved features were reloaded to use in other models as they have
dropout layers appended to them.

VGG-19 Model 2

VGG-19 Model 2 ( 3 dense layers + 1 Dropout layer)
count = 2

# Deeper VGGI9 network

model = Sequential()

#1

model.add(Dense(256, activation="relu’, input_dim=train_features.shape[1]))
# 2

model. add(Dropout(8.2))

#3

model.add(Dense(64, activation="relu")})

# 4

model.add(Dense(1l, activation="sigmoid')})

model. compile(optimizer=optimizers.RMSprop{lr=1e-4),
loss="binary_crossentropy’,
metrics=['acc'])
history = model.fit(train_features, train_labels,
epochs=38,
batch_size=58,
validation_data=(validation_features, validation_labels}))
model.save(f 'Model Results/model VGG _8{count}.h5")
pd.DataFrame(history.history).plot(figsize=(5, 5))
plt.title(f 'Pre-Trained Training Performance: Model {count}')
plt.xlabel( Epoch")
plt.ylabel( Metric"})
count += 1
plt.show()

Figure 14: VGG 19 Model 2



VGG-19 Model 3

VGG-19 Model 3 ( Reduced learning rate 1e-2)

# Reduce Learning rate to le-2

model = Sequential()

#1

model.add(Dense(256, activation='relu’, input_dim=train_features.shape[1]))
# 2

model. add(Dropout{@.2)}

# 3

model.add(Dense(64, activation='relu’))

# 4

model.add(Dense(1, activation="'sigmoid'))

model.compile(optimizer-optimizers.RMSprop(lr=1e-2),
loss="binary_crossentropy’,
metrics=['acc’])
history = model.fit(train_features, train_labels,
epochs=38,
batch_size=5@,
validation_data=(validation_features, validation_labels))
model.save(f 'Model Results/model VGG @{count}.h5")
pd.DatafFrame(history.history).plot(figsize=(5, 5))
plt.title(f 'Pre-Trained Training Performance: Model {count}"')
plt.xlabel( Epoch”)
plt.ylabel( Metric")
count += 1
plt.show()

Figure 15: VGG 19 Model 3

VGG-19 Model 4

VGG-19 Model 4 ( with Adam Optimizer)

# Try adam optimizer

model = Sequential()

# 1

model.add(Dense(256, activation='relu’, input_dim=train_features.shape[1]))
# 2

model.add (Dropout(8.2))

# 3

model.add (Dense(64, activation="relu'))

# 4

model.add(Dense(1, activation="sigmoid"})

model.compile(optimizer="adam’',
loss="binary_crossentropy’,
metrics=["acc'])
history = model.fit(train_features, train_labels,
epochs=38,
batch_size=58,
validation_data=(validation_features, walidation_labels))
model.save(f 'Model Results/model VGG_8{count}.hs")
pd.DataFrame(history.history).plot(figsize=(5, 5))
plt.title(f Pre-Trained Training Performance: Model {count}')
plt.xlabel( Epoch’)
plt.ylabel( 'Metric’)
count += 1
plt.show()

Figure 16: VGG 19 Model 4



VGG-19 Model 5

VGG-19 Model 5 ( with 2 dense layers + 1 Dropout layer)

# Shal Lower network

modal = Sequential()

#1

model.add(Dense(256, activation="relu’, input_dim=train_features.shape[1]))
# 2

model . add (Dropout(8.2))

# 3

model.add(Dense(1, activation='sigmoid'})

model.compile(optimizer-optimizers.RMSprop(lr=5e-6),
loss="binary_crossentropy’,
metrics=["acc’'])
history = model.fit(train_features, train_labels,
epochs=38,
batch_size=58,
validation_data=(validation_features, validation_labels))
model.save(f'Model Results/model VGG_@{count}.h5")
pd.DataFrame(history.history).plot(figsize=(5, 5))
plt.title(f Pre-Trained Training Performance: Model {count}')
plt.xlabel( 'Epoch’)
plt.ylabel( 'Matric")
count += 1
plt.show()

Figure 17: VGG 19 Model 5

Testing the Models

# Print scores of baseline CNN model usine ImagedataGenerator
model_baseline.evaluate(test_generator,
steps=480 // 5@)

9/9 - 6s 7@3ms/step - loss: 8.2413 - accuracy: 9.900@
P ¥

[0.24123085374832153, @.8999999761581421]

# Get pretrained test features containing the weights
test_features = np.load('C:/Users/arpit/Research/Research_Data/Augmented Images/Augmented Images/bottlenecked/test_features.npy')
test_labels = np.load('C:/Users/arpit/Research/Research_Data/Augmented Images/Augmented Images/bottlenecked/test_labels.npy')

# Print model scores

for model_name, model in models_VGG.items():
print(model_name + ° Evaluation’)
print(model.evaluate(test_features, test_labels))
print()

model VGG_81.h5 Evaluation
15/15 [ ] - 1s 1lms/step - loss: @.2298 - acc: @.9187
[0.22976429760456885, @.918749988079871]

model_VGG_82.h5 Evaluation
15/15 [ ] - @s 1ems/step - loss: @.3039 - acc: ©.900@
[0.3039029836654663, ©.8999999761581421]

model_VGG_83.h5 Evaluation
15/15 [ ]-@
[0.3268074257850647, ©.8016666507720947]

Ir

7ms/step - loss: ©.2268 - acc: @.8917

model_VGG_84.h5 Evaluation
15/15 [ ] - @s oéms/step - loss: @.3645 - acc: @.5000
[0.3644777536202212, ©.8000000751581421]

model_VGG_B5.h5 Evaluation
15/15 [ ] - @s oéms/step - loss: @.290@ - acc: @.8979
[0.2900320828262329, ©.8979166746139526]

Figure 18: Model Testing
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