~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

John Maruthukunnel Jacob
Student ID: 21138494

School of Computing
National College of Ireland

Supervisor: Dr Cristina Muntean

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: John Maruthukunnel Jacob
Student ID: 21138494
Programme: Data Analytics
Year: 2022
Module: MSc Research Project
Supervisor: Dr Cristina Muntean
Submission Due Date: 15/12/2022
Project Title: Configuration Manual
Word Count: XXX
Page Count: B

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 15th December 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

John Maruthukunnel Jacob
21138494

1 Introduction

This configuration manual is created to replicate the research project 'Binary Gender
Classification of African Fingerprints using CNN’. In order to reproduce the research, the
hardware and software listed in this configuration manual is required. From configuring
the execution environment to viewing the model results, the coding procedures required
to replicate this study, will be easily done with the aid of this manual. For ease of use, a
step-by-step manual is organized into various sections below.

2 Hardware Requirement

The research was done on a MacBook air m1 with 8-core CPU (central process- ing unit)
with 4 performance cores and 4 efficiency cores and 8-core integrated GPU (graphics
processing unit).

Hardware Overview:

Model Name: MacBook Air

Model Identifier: MacBookAir10,1

Chip: Apple M1

Total Number of Cores: 8 (4 performance and 4 efficiency)
Memory: 8 GB

Figure 1: System Configuration

3 GPU Configuration

The code is implemented using Google Colab Pro. The Colab Pro is a paid subscription
with a price of 9.95 euros.The Colab Pro GPU configuration used for this research is
shown in Figure

| NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version:

[-=—————— e me— e e e e e B +
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |

00000000:00:04.0 Off
OMiB / 40536MiB Default |
Disabled |

Figure 2: GPU Configuration

4 Software Requirement

For the use of Google Colab Pro, Brave web browser was used. The Brave browser version
details are shown in Figure

2 Brave

Nearly up to date! Relaunch Brave to finish updating.

&

Version 1.42.88 Chromium: 104.0.5112.81 (Official Build) (arm&4)

Figure 3: Brave browser version

5 Package Installation

The packages necessary for data augmentation,pre-processing and modelling installed
using pip command is shown below in [4] and

!pip install cv2
!pip install glob
!pip install shutil
!pip install os

!pip install ntpath

!pip install matplotlib

!pip install numpy==1.21.6
!pip install Augmentor==0.2.10

Figure 4: Data augmentation and pre-proccessing packages

install tensorflow==2.9.2
install numpy==1.21.6
install matplotlib

install sscikit-learn==1.0.2

install keras==2.9.0

Figure 5: Modelling packages

6 Data Collection

The data was sourced from Kaggle data repository[[] The dataset can be downloaded by
pressing on the button as shown in Figure [6]

Y RUIZGARA - UPDATED 4 YEARS AGO - 224 New Notebook &, Download (878 MB) @

Sokoto Coventry Fingerprint
Dataset (SOCOFing)

Sokoto Coventry Fingerprint Dataset (SOCOFing)

Figure 6: Kaggle Repository

7 Data Pre-processing

The python file 'Data_pre_process.ipynb’ is used for data preparation. From the original
dataset available in Kaggle, only the folder named 'Real’ is chosen for the research. The
folder named ’Real’ is zipped and uploaded to google drive under a new folder created
named 'Research Project’. The google drive is mounted in Colab notebook and the zip
file is unzipped. The data is then converted to jpg format and split into male and female
classes.

Dhttps:/ /www.kaggle.com /datasets/ruizgara/socofing’

import drive

drive.mount('/content/drive')

Mounted at /content/drive

#unzip the data i

lunzip /content/drive/MyDrive/Research\ project/Real.zip

Figure 7: Mounting drive to Google Colab

8 Data Augmentation

The data augmentation techniques such as rotate, zoom and flip is performed on the
dataset using Augmentor function. 2000 images from male class is selected and 1230
images from female class. The female class size is increased to 2000 using Augmentor
function.Then the data is split into training and testing data and saved into a folder
‘data’. The 'data’ folder tree structure is created using code.

° #Dat ugmentation function
def augMent(nImageToGenerate, input_path):
p = Augmentor.Pipeline(source_directory=input_path)
p.set_save_ format(save_format="auto")
p.rotate(probability=0.5, max left rotation=10, max_right_rotation=10)
p.zoom(probability=0.4, min_factor=1.1, max_factor=1.3)

p.flip left right(probability=0.3)
p.flip top bottom(probability=0.3)
p.sample(nImageToGenerate)

os.system('mv '+input_path+'output/*.* '+input_path)
os.system('rm -r '+input_path+'output')

Figure 8: Augmentation function

9 Modelling

The python files 'Resnet50.ipynb’, 'vggl9.ipynb’, 'vggl6.ipynb’, ’inceptionv3.ipynb’ is
used to implement the models ResNet-50, VGG-19, VGG-16 and InceptionV3 respect-
ively. The final dataset named ’data.zip’ is unzipped into Colab notebook.The necessary
packages are installed using pip command.The necessary libraries are then imported.The
four models implemented in this research are pre-trained using 'imagenet’ dataset with
the last layer frozen. The parameter values for each model is shown in below sections.

9.1 VGG-19

The final parameters are loss="categorical crossentropy’, adam optimizer, dropout value
of 0.5, 512 feature selection in dense layer, and sigmoid activation as final layer. Various
parameters were modified to obtain the best results. The model consists of two completely
linked layers. The training dataset, which includes 3200 images, is used to train the
model. Using a fit generator with a batch size of 512 and 50 epochs, the model history

is produced. For each training period, the model test and training loss and accuracy are
generated. 50 epochs of the model training were completed in 8.4 minutes.

Epoch 40/50
7/7 [= 1s/step g s accuracy: 0. val_loss: 0. val_accuracy:
Epoch 41/50
7/7 [= 1s/step : 0. accuracy: 0. val_loss: 0. val_accuracy:
Epoch 42/50
7/7 [===== 1s/step ¢ 0. accuracy: 0. val_loss: 0. val_accuracy:
Epoch 43/50
7/7 [= 1s/step : 0. accuracy: 0. val loss: 0. val_accuracy:
Epoch 44/50
7/7 [= 1s/step : 0. accuracy: 0. val_loss: 0. val_accuracy:
Epoch 45/50
7/7 [= 1s/step : 0. accuracy: 0. val_loss: 0. val_accuracy:
Epoch 46/50
7/7 [= 1s/step g o accuracy: 0. val_loss: 0. val_accuracy:
Epoch 47/50
7/7 [= 1s/step g o accuracy: 0. val_loss: 0. val_accuracy:
Epoch 48/50
7/7 [= 1s/step g o accuracy: 0. val_loss: 0. val_accuracy:
Epoch 49/50
7/7 [= 1s/step g o accuracy: 0. val_loss: 0. val_accuracy:
Epoch 50/50
7/7 [= 1s/step : 0. accuracy: 0. val loss: 0. val_accuracy:

Figure 9: VGG-19 training

9.2 VGG-16

The final parameters are loss=’categorical crossentropy’, adam optimizer, dropout value
of 0.2, 512 feature selection in dense layer, and sigmoid activation as final layer. Various
parameters were modified to obtain the best results. The model consists of two completely
linked layers. The training dataset, which includes 3200 images, is used to train the
model. Using a fit generator with a batch size of 512 and 50 epochs, the model history
is produced. For each training period, the model test and training loss and accuracy are
generated. 50 epochs of the model training were completed in 8.6 minutes.

Epoch 40/50

9s ls/step - loss: 0.4795 - accuracy: 0.7547 - val_loss: 0.5781 - val_accuracy: 0.6825
Epoch 41/50
7/7 [== 9s ls/step - loss: 0.4767 - accuracy: 0.7638 - val_loss: 0.5912 - val_accuracy: 0.6837
Epoch 42/50
777 [== 9s ls/step - loss: 0.4721 - accuracy: 0.7578 - val_loss: 0.5321 - val_accuracy: 0.7150
Epoch 43/50
7/7 [== 10s 1s/step - loss: 0.4712 - accuracy: 0.7603 - val loss: 0.5594 - val_accuracy: 0.6988
Epoch 44/50
7/7 10s 1s/step loss: 0.4746 accuracy: 0.7563 val_loss: 0.5716 val_accuracy: 0.6963
Epoch 45/50
7/7 [== 10s 1s/step loss: 0.4627 accuracy: 0.7644 val_loss: 0.5395 val_accuracy: 0.7088
Epoch 46/50

10s 1s/step loss: 0.4646 accuracy: 0.7728 val _loss: 0.5220 val_accuracy: 0.7113

10s 1s/step loss: 0.4569 accuracy: 0.7816 val loss: 0.5271 val_accuracy: 0.7150

10s 1s/step - loss: 0.4709 - accuracy: 0.7644 - val loss: 0.4987 - val_accuracy: 0.7325
Epoch 49/50
777 [== 9s 2s/step - loss: 0.4742 - accuracy: 0.7666 - val_loss: 0.4919 - val_accuracy: 0.7425
Epoch 50/50
777 [== 10s 1s/step - loss: 0.4548 - accuracy: 0.7694 - val loss: 0.5287 - val_accuracy: 0.7237

Figure 10: VGG-16 training

9.3 InceptionV3

The final parameters are loss="categorical crossentropy’, adam optimizer, dropout value
of 0.2, 512 feature selection in dense layer, and sigmoid activation as final layer. Various
parameters were modified to obtain the best results. The model consists of two completely

linked layers. The training dataset, which includes 3200 images, is used to train the
model. Using a fit generator with a batch size of 512 and 50 epochs, the model history
is produced. For each training period, the model test and training loss and accuracy are
generated. 50 epochs of the model training were completed in 50 minutes.

Epoch 40/50
9s/step loss: 0.5574 accuracy: 0.7034 val_loss: 0.5791 val_accuracy: 0.6913

9s/step loss: 0.5509 accuracy: 0.7025 val_loss: 0.5881 val_accuracy: 0.6725

9s/step loss: 0.5624 accuracy: 0.6956 val_loss: 0.5720 val_accuracy: 0.6800

Epoch 43/
7/7 [= 9s/step loss: 0.5508 accuracy: 0.7081 val_loss: 0.5839 val_accuracy: 0.6800

9s/step loss: 0.5493 accuracy: 0.7066 val_loss: 0.5716 val_accuracy: 0.6975
10s/step - loss: 0.5509 - accuracy: 0.7097 - val_loss: 0.5911 - val_accuracy: 0.6712
9s/step loss: 0.5487 accuracy: 0.7053 val_loss: 0.5893 val_accuracy: 0.6700
9s/step loss: 0.5462 accuracy: 0.7056 val_loss: 0.5857 val_accuracy: 0.6900
9s/step loss: 0.5609 accuracy: 0.6969 val_loss: 0.5844 val_accuracy: 0.6650
9s/step - loss: 0.5413 - accuracy: 0.7122 - val_loss: 0.5895 - val_accuracy: 0.6812

10s/step - loss: 0.5435 - accuracy: 0.7109 - val_loss: 0.5858 - val_accuracy: 0.6737

Figure 11: InceptionV3 training

9.4 ResNet-50

The final parameters are loss=’categorical crossentropy’, adam optimizer, dropout value
of 0.2, 512 feature selection in dense layer, and sigmoid activation as final layer. Various
parameters were modified to obtain the best results. The model consists of two completely
linked layers. The training dataset, which includes 3200 images, is used to train the
model. Using a fit generator with a batch size of 512 and 50 epochs, the model history
is produced. For each training period, the model test and training loss and accuracy are
generated. 50 epochs of the model training were completed in 7.7 minutes.

1s/step : 0. accuracy: 0. val_loss: 0. val_accuracy:
Epoch 41/50
7/7 [= 1s/step : 0. accuracy: 0. val_loss: 0. val_accuracy:
Epoch 42/50
777 [= 1s/step : 0. accuracy: 0. val_loss: 0. val_accuracy:
Epoch 43/50
7/7 [= 1s/step : 0. accuracy: 0. val_loss: 0. val_accuracy:
Epoch 44/50

1s/step : 0. accuracy: 0. val_loss: 0. val_accuracy:

1s/step : 0. accuracy: 0. val_loss: 0. val_accuracy:

1s/step : 0. accuracy: 0. val_loss: 0. val_accuracy:

Epoch 47/50
7/7 [= 1s/step : 0. accuracy: 0. val_loss: 0. val_accuracy:
Epoch 48/50
7/7 [= 1s/step : 0. accuracy: 0. val_loss: 0. val_accuracy:
Epoch 49/50
7/7 [= 1s/step ERUE accuracy: 0. val_loss: 0. val_accuracy:
Epoch 50/50
7/7 [= 1s/step : 0. accuracy: 0. val_loss: 0. val_accuracy:

Figure 12: ResNet-50 training

10 Evaluation

The model evaluation was done using testing accuracy and loss. The training and testing
accuracy is plotted along with the loss graphs. The VGG-19 and VGG-16 models obtained
the best accuracy of 72% followed by InceptionV3 (67%) and, ResNet-50(60%). The
graphs are plotted using the matplotlib as shown in

print (history.history.keys())

summarize h or

plt.
plt.
i o
plt.
[P
plt.
plt.

summariz

plt.
plt.
plt.
plt.
plt.
plt.
plt.

plot (history.history['accuracy'])
plot (history.history['val_accuracy'])
title('model accuracy')

ylabel('accuracy')

xlabel('epoch')
legend(['train', 'test'], loc='upper left')
show ()

ry for

plot (history.history['loss'])

plot (history.history['val loss'])
title('model loss')

ylabel('loss')

xlabel('epoch')

'test'], loc='upper left')

legend(['train’,
show()

Figure 13: Barplot code

model accuracy model loss
11
= {rain - frain
test Wjj/\/v\—/v\'\/\ est
0.70 v i 10 |
o W |
f
09 |
.. 065 |
® | “
Bosy |
¥ 0.60 |
[07
0.55 .
06 N4
L_(\—"'—"-—f~-w---"-.,a—___,f—~_/x/
050 1 0.5 . . . T 1
0 10 20 30 40 50 0 10 20 0 40 50
epoch epoch

Figure 14: VGG-19 accuracy and loss graph

model accuracy model loss
16 .
= frain
075
0.70
=
@ 085
2
£
060
055
050
0 10 20 0 2 50
epoch
Figure 15: VGG-16 accuracy and loss graph
model accuracy model loss
0.70
065
=
g
2 060
£
055
050
0 10 20 0 2 50 0 10 20 20 P 50
epoch epoch
Figure 16: InceptionV3 accuracy and loss graph
model accuracy model loss
0.70
065
=
&
5 060
E]
055
050
0 10 20 0 P 50 0 10 2 20 a0 50
epoch epoch

Figure 17: ResNet-50 accuracy and loss graph

	Introduction
	Hardware Requirement
	GPU Configuration
	Software Requirement
	Package Installation
	Data Collection
	Data Pre-processing
	Data Augmentation
	Modelling
	VGG-19
	VGG-16
	InceptionV3
	ResNet-50

	Evaluation

