

Configuration Manual

MSc Research Project Data Analytics

Chethan Marigowda StudentID:x21145377

School of Computing National College of Ireland

Supervisor: Dr. Paul Stynes

National College of Ireland Project Submission Sheet School of Computing

Student Name:	Chethan Marigowda
Student ID:	x21145377
Programme:	Data Analytics
Year:	2022
Module:	MSc Research Project
Supervisor:	Dr. Paul Stynes
Submission Due Date:	15/12/2022
Project Title:	Configuration Manual
Word Count:	1309
Page Count:	15

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	Chethan Marigowda
Date:	15th December 2022
DI EASE DEAD THE FOI	LOWING INSTRUCTIONS AND CHECKLIST:

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).				
Attach a Moodle submission receipt of the online project submission, to each				
project (including multiple copies).				
You must ensure that you retain a HARD COPY of the project, both for your own				
reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on				
computer.				

Assignments that are submitted to the Programme Coordinator office must be placed into the assignment box located outside the office.

Configuration Manual

Chethan Marigowda x21145377

1 Introduction

This research experiment followed a specific implementation configuration, and the objective of this guide is to describe how that configuration was set up. This documentation provides comprehensive details of the software, hardware and library configurations utilized in the development of this project. In addition to this, it details the method of programming as well as the procedure that should be carried out in order to execute the code.

2 Local Computing Machine System Configuration

The Figure 1 shows system configuration used in this project.

Device specifications

Yoga 7 14ITL	5
Device name	DESKTOP-THA8E1A
Processor	11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz 2.80 GHz
Installed RAM	16.0 GB (15.8 GB usable)
Device ID	C65A0108-CB2E-40E6-BAF0-71B54D7597E1
Product ID	00327-35938-59332-AAOEM
System type	64-bit operating system, x64-based processor

Fig. 1. System Configuration

3 Software, Packages and Library.

Hybrid Machine Learning Framework to Recommend E-Commerce Products is implemented in open-source freeware python programming language on Google Colaboratory notebook. Following Fig 1 in the fig details important packages/libraries used for this project. In the first step, all the necessary libraries and modules are installed and imported in the notebook. Some of the major libraries that were imported include Keras, Pandas, NumPy among, genism and others. With help of these libraries, necessary functions to carry out data manipulation and machine learning related computations can be carried out

[]	#import libraries
	import json
	import numpy as np
	from collections import defaultdict
	import warnings
	import gensim
	import pandas as pd
	from gensim.models.doc2vec import Doc2Vec
	import numpy as np
	import keras
	import math
	import gzip
	from keras import backend as K
	from keras.models import Model
	from keras.layers import Embedding, Input, Dense, Flatten, Concatenate, Multiply, Lambda, Reshape
	from keras.layers.core import Dropout
	import scipy.sparse as sp
	import matplotlib.pyplot as plt
	from sklearn.metrics import mean_squared_error, mean_absolute_error
	from tensorflow.keras.callbacks import EarlyStopping , ModelCheckpoint
	import math as mt

Fig. 2. Libraries used

4 Notebook Execution Guidance.

The research was conducted using free software provided by Google called Colaboratory notebook, which does not require any static setup settings to be entered. The modest addition of this project is extensive code that enables it to execute by sourcing files directly from the source destination. This is the minor contribution of this research and useful in generating required product categories files.

The standard steps to be followed to execute the code from the fig 3 to 4 for the end-toend execution.

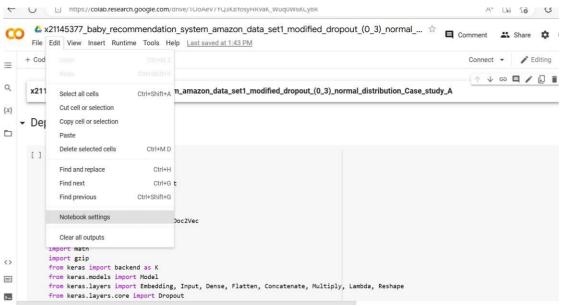


Fig. 3. Execution step1

File Edit View Insert	Runtime Tools Help Last	saved at 1:43 PM	Set Comment ♣ Share ♦
+ Code + Text	Run all	Ctrl+F9	Connect 👻 🧨 Editing
	Run before	Ctrl+F8	
x21145377_baby_reco	Run the focused cell Run selection	Ctrl+Enter	ified_dropout_(0_3)_normal_distribution_Case_study_A
Dependencies	Run after	Ctrl+F10	
<pre>[] #import librarie: import json import numpy as i from collections</pre>	Restart runtime Restart and run all Disconnect and delete runtim	Ctrl+M .	
import warnings import gensim	Change runtime type		
<pre>import pandas as from gensim.mode: import numpy as i</pre>	Manage sessions		
import keras import math	, agained gran bern nammagi (1995-1996)		
import gzip			

Fig. 4. Execution step2

iles 🗖 🗙	+ Code + Text	Reconne
onnecting to a runtime to enable file rowsing.	<pre>[] # Nake the data ready fro training # Konvert it to numpy array as we extract the labels def gat_instance(trainMatrix, usen_review_fea); user_input, user_fea, item_input, item_fea, labels = [], [], [], [], [], [] num_users - trainfutrix.skps(0] for (u, 1) in trainMatrix.keys(1) and in item_review_fea.keys(1):</pre>	<u>↑↓</u>

Fig. 5. Execution step3

5 Data Acquisition

The dataset collected from public open-source web server, after decompression contains 915445 consumer reviews and metadata of various baby products up to 71316 in semi structured json format for Data set 1[1]. Data set 2[2] contains 836005 consumer reviews and metadata of various digital music products up to 279898 in semi structured json format. Wget is a networking command-line tool that lets you download files and interact with REST APIs.

- Display the dataset

```
[ ] ## Convert data from gz to DataFrame
def parse(path):
    g = gzip.open(path, 'rb')
    for 1 in g:
        yield eval(1)
def getDF(path):
    i = 0
    df = {}
    for d in parse(path):
        df[i] = d
        i += 1
    return pd.DataFrame.from_dict(df, orient='index')
```


Download The Review and Meta Data

```
[ ] # Download Review Data
!wget http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/reviews_Baby.json.gz
--2022-12-14 18:05:23-- http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/reviews_Baby.json.gz
Resolving snap.stanford.edu (snap.stanford.edu)... 171.64.75.80
Connecting to snap.stanford.edu (snap.stanford.edu)[171.64.75.80]:80... connected.
HTTP request sent, awaiting response... 200 0K
Length: 191601185 (183M) [application/x-gzip]
Saving to: 'reviews_Baby.json.gz.3'
```

2022-12-14 18:05:57 (5.42 MB/s) - 'reviews_Baby.json.gz.3' saved [191601185/191601185]

Fig. 7. Data acquisition illustration 2

[] # Download Meta Data

!wget http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/meta_Baby.json.gz

--2022-12-14 18:05:57-- http://snap.stanford.edu (snap.stanford.edu)... 171.64.75.80 Connecting to snap.stanford.edu (snap.stanford.edu)|171.64.75.80|:80... connected. HTTP request sent, awaiting response... 200 OK Length: 31328004 (30M) [application/x-gzip] Saving to: 'meta_Baby.json.gz.3'

meta_Baby.json.gz.3 100%[======>] 29.88M 2.11MB/s in 13s

2022-12-14 18:06:10 (2.30 MB/s) - 'meta_Baby.json.gz.3' saved [31328004/31328004]

Fig. 8. Data acquisition illustration 3

9	+ Text							Connect 👻 🧨 Ec	diting ^
				+	Code	+ Text			
met			dataframe aby.json.gz')						
	asin	categories	description	title	price	imUrl	brand	related	salesRar
0	0188399313	[[Baby]]	Wee-Go Glass baby bottles by LifeFactory (Baby	Lifefactory 4oz BPA Free Glass Baby Bottles	69.99	http://ecx.images- amazon.com/images/I/41Swthpd	Lifefactory	{'also_bought': ['B002SG7K7A', 'B003CJSXW8', '	Na
1	0188399518	[[Baby]]	The Planet Wise Flannel Wipes are 10 super sof	Planetwise Flannel Wipes	15.95	http://ecx.images- amazon.com/images/l/41otjnA4	Planet Wise	{'also_bought': ['B00G96N3YY', 'B003XSEV2O', '	Na
2	0188399399	[[Baby]]	The Planet Wise Wipe PouchTM features our pate	Planetwise Wipe Pouch	10.95	http://ecx.images- amazon.com/images/I/61x8h9u6	NaN	{'also_bought': ['B005WWI0DA', 'B005WWIMGA', '	Na
3	0316967297	[[Baby]]	Hand crafted set includes 1 full quilt (76x86	Annas Dream Full Quilt with 2 Shams	109.95	http://ecx.images- amazon.com/images/l/51%2BZ1%	NaN	{'also_viewed': ['B009LTER3W', 'B00575TI5Q', '	Na
4	0615447279	[[Baby]]	Thumbuddy To Love- The Binky Fairy helps child	Stop Pacifier Sucking without tears with Thumb	16.95	http://ecx.images- amazon.com/images/I/51RKKENI		{'also_bought': ['0979670004', '1601310234', '	N

Fig. 9. Data acquisition illustration 4

	views = getDF('./re views.head()	eviews_Baby.j	son.gz')						
	reviewerID	asin	reviewerName	helpful	reviewText	overall	summary	unixReviewTime	reviewTim
0	A28O3NP6WR5517	0188399313	Jennifer gymer	[0, 0]	They work very well. Easy to clean, we wash th	5.0	These bottles are great!	1369612800	05 27, 201
1	AX0M1Z6ZWO52J	0188399399	Ash M.	[1, 1]	it came early and was not disappointed. i love	5.0	perfect	1365465600	04 9, 201
2	A1KD7N84L7NIUT	0188399518	Buffy Fan	[0, 0]	I ended up with a variety of different brands	4.0	Good cotton wipes	1392336000	02 14, 201
3	A29CUDEIF4X1UO	0188399518	J. D. Solbach	[1, 1]	These flannel wipes are OK, but in my opinion	3.0	Sending them back.	1373241600	07 8, 201
4	A32592TYN6C9EM	0316967297	Amazon Customer	[0, 0]	Cute quilt, the colors are perfect and my litt	4.0	Very cute	1378425600	09 6, 201

Fig. 10. Data acquisition illustration 5

6 Symbols and Notations

The important symbols used in the coding are shown in Table 1. For the convenience, consumer and product are used in programming as user and item for easier notation respectively and same is commented in code as shown in fig 11.

Symbols	Meaning
vector_size	vector size of review text and item description
epoch_num	number of epochs to train for paragraph vectors.
num_ui_link	Min. no. of reviews required for a reviewer to be filtered
num_iu_link	Min. no. of reviews required for a product
max_num_item	max number of item
max_num_user	max number of users
split_ratio	80-20 split of train and test data
dataname	Name of the product eg: baby, digital music

Table 1: Parameter conventions used with their function

```
#Parameters
dataName = "Baby"# name of your product
 vector_size = 100 # vector size of reviewtext and item description
 epoch_num = 100 # number of vector
 reviews_data = [] # review list to insert review data inside
meta_data = [] # meta list to insert meta data inside
num_ui_link = 20 # the number of each user link to items
 num_iu_link = 0 # the number of each item link to user
 # user -> item -> for text
 ui_dict = defaultdict(list)
 #item -> user - > for text
 iu_dict = defaultdict(list)
 #rating training data list
 reviews_train_data = []
 #rating testing data list
 reviews_test_data = []
 # max number of item
 max num item = 1
 # max number of users
 max_num_user = 1
 #item -> user -> for rating
 iu_dict2 = defaultdict(list)
```

Fig 11: Example of symbols

2 Implementation framework Specs

The input data pre-processing algorithm is described in Algorithm 1. The algorithm is capable of being trained in the same manner as other keras-based deep learning networks. On top of the recommendation model, this research add a regression layer, whose output serves as our loss function. This permits us to accomplish our rating prediction target. Figure 4 depicts the training procedure using the Python keras package. The dense network of consumer sentiment analysis model and product content model is shown by Algorithm

2. The Rating Predictor is shown by Algorithm 3 in Fig. The Model Summary is depicted in the fig 13

Algorithm 1 Preprocessing of Amazon Review Data							
Input: Reviewers data set							
Output: Preprocessed data for data transformation							
1: Preprocess()							
2: Initialize hyperparameters:							
3: vector_size \leftarrow 100							
4: epoch_num ← 100							
5: num_ui_link ← 20							
6: $num_iu_link \leftarrow 0$							
7: $max_num_item \leftarrow 1$							
8: $max_num_user \leftarrow 1$							
9: split_ratio ← 4							
10: Batch_size $\leftarrow 64$							
11: for each data_row, $i \in review_data do$							
12: user_id ← i["reviewerID"]							
13: $item_id \leftarrow i["asin"]$							
14: ui_dict[user_id] ← append(item_id)							
15: iu_dict[item_id] ← append(user_id)							
16: If ((num_ui_link < 20) (num_iu_link < 1))							
17: delete i							
18: end for							
19: Covert review_data.json to review_data.txt							
20: for each data_row, i ∈ meta_data do							
21: $item_id \leftarrow i["asin"]$							
22: if (iu_num != len(iu_dict[item_id]))							
23: if (iu_num < num_iu_link)							
24: delete i							

25: end for 26: Covert meta_data.json to meta_data.txt 27: Gensim doc2vec() 28: Use pretrained model from Gensim with parameters: 29: min count←1 window←3 30: 31: vector size←vector size 32: sample←10-3 33: negative ← 5 34: workers←4 35:Convert data.txt to vector format 36: Extract_rating() 37:for each data_row, $i \in review_data do$ 38: user_id ←i["reviewerID"] item_id ←i["asin"] 39: 40: if (user id $! \in ui$ dict) 41: ui dict[user id] ← user id 42: if (user_id > max_num_user) 43: max num user ← user id 44: ui dict[user id] ← item_id 46: if (item_id $! \in iu_dict2$) 47: iu dict[item id] \leftarrow item id 48: if (item id > max num item) 49: max num item ← item id 50: iu_dict[item_id] ← user_id 51: 52: Test_Train_Split() 53: num \leftarrow 0 54: for each data_row, $i \in reviews_data$ do if (num % (split_ratio + 1) < split ratio) 55: 56: reviews_train_data.append(i) 57: num \leftarrow num + 1 58: else 59: reviews test data.append(i) 60: num ← num+1

Algorithm 2 User Sentiment and Item Content Dense Network Input: User_Data, User_Latent, Item_vector, item_latent Output: Users_Sentiment, Item_Content 1: User Sentiment(User data, User Latent) 2: Initialize hyperparameters: 3: input ← User data 4: activation() \leftarrow relu() 5: Lamda() \leftarrow softmax() 6: User Sentiment ← Multiply(User data, Lamda(activation(User Latent), input) 7: Item_Content(Item_vector, item_Latent) 8: Initialize hyperparameters: 9: input ← Item vector 10: activation ← relu 11: Lamda \leftarrow softmax() 12: Item_Content ← Multiply(Item_vector, Lamda(activation(item_latent), input) Algorithm 3 Recommender Model Input: User_Sentiment, Item_Content **Output: Prediction, Results**

1: Recommender(User_Sentiment, Item_Content)2: Initialize hyperparameters:3: optimizer() \leftarrow adam4: loss() \leftarrow MAE()5: metrics() \leftarrow RMSE6: model() \leftarrow Compile(optimizer(), loss(), metrics())7: Prediction, Results \leftarrow Compute(model())

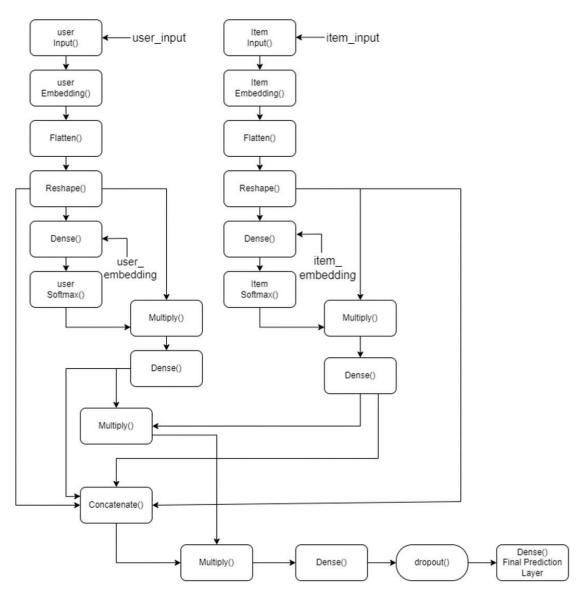


Fig. 12. Keras Training Flowchart

+ Text			
odel.summary()			
user_sentiment (InputLayer)	[(None, 100)]	0	
item_embedding (Embedding)	(None, 1, 100)	1045900	['item_input[0][0]']
item_content (InputLayer)	[(None, 100)]	e	D D
flatten (Flatten)	(None, 100)	9	['user_embedding(0](0]']
user_attention_layer (Dense)	(None, 100)	10100	['user_sentiment[0][0]']
flatten_1 (Flatten)	(None, 100)	0	['item_embedding[0][0]']
item_attention_layer (Dense)	(None, 100)	10100	['item_content[0][0]']
reshape (Reshape)	(None, 100)	e	['flatten[0][0]']
user_Sentiment_softmax (Lambda)	(None, 100)	0	['user_sttention_layer[0][0]']
reshape_1 (Reshape)	(None, 100)	0	['flatten_1[0][0]']
item_Content_softmax (Lambda)	(None, 100)	0	['item_sttention_layer[0][0]']
multiply (Multiply)	(None, 100)	0	['reshape(0)[0]', 'user_Sentiment_softmax(0)[0]']
multiply_i (Multiply)	(None, 100)	0	['reshape_1[0][0]', 'item_Content_softmax[0][0]']
dense (Dense)	(None, 100)	10100	[,wrttbh/[6][6],]
dense_1 (Dense)	(None, 100)	10100	['mltiply_1[0][0]']
concatenate (Concatenate)	(None, 400)	9	['uer_sentemt[0][0]', 'iem_content[0][0]', 'dense[10][0]']
multiply_2 (Multiply)	(None, 100)	0	['dense[0][0]', 'dense_1[0][0]']
dense_2 (Dense)	(None, 100)	40100	['concetenate[0][0]']
multiply_3 (Multiply)	(None, 100)	0	['multiply_2(0)[0]', 'dense_2(0)[0]']
dense_3 (Dense)	(None, 100)	10100	['mltiply_3[0][0]']
dropout (Dropout)	(None, 100)	0	['dense_3[0][0]']
prediction (Dense)	(None, 1)	101	['dropout[0][0]']

Fig. 13. Model Summary

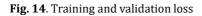
3 Evaluation and Results

In all of our experiments and case studies, this research evaluated the performance of our proposed model by using the Mean Squared Error (MSE) and Root Mean Squared Error (RMSE). This is because the Mean Squared Error is the only metric that has been utilized for assessment in the majority of the relevant works [3].

Let's say that the total number of datapoints in the test set is denoted by the letter n. The MSE may be determined using the formulas below.

$$MAE = \frac{\sum_{k=0}^{n-1} |Y(k) - y(k)|}{n}$$

In a more similar manner, RMSE () is computed by:


$$RMSE = \sqrt{\frac{\sum_{k=0}^{n-1} (Y(k) - y(k)) 2}{n}}$$

Where Y(k) and y(k) represent the actual and predicted value respectively

6.1 State of Art

State of Art-evaluation Metrics Capture are illustrated from the Fig14 to 15.

+	+ Code + Text	Disk Ec
. 1	[62] # get instance for testing data user_input_test, user_fea_test, item_input_test, item_fea_test, test_label = get_instances(testRatings, user_review_fea, item_input_test, item_input_test	↑ ↓ ⊕ 🗖 🛊 review_fea)
1	[63] #evulate the test dataset mean_absolute_error(model.predict([user_input_test, user_fea_test, item_input_test, item_fea_test]),test_label)	
	201/201 [] - 1s 2ms/step 0.81303	
1	<pre>[64] mse=mean_squared_error(model.predict([user_input_test, user_fea_test, item_input_test, item_fea_test]),test_label)</pre>	
	201/201 [=====] - 0s 2ms/step	
1	[65] print(mse)	
	1.1738272	
1	<pre>[66] rmse = math.sqrt(mse)</pre>	
1	[67] print(rmse)	
	1.0834330488432053	

Fig. 15. Baby evaluation accuracy Metrics Capture

6.2 Replicating state of Art with different product category data set- :


The accuracy evaluation Metrics Capture is illustrated from the Fig16

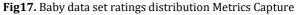


Fig. 16. Digital music dataset evaluation accuracy Metrics Capture

6.3 Sentiment analysis

Sentiment analysis accuracy evaluation Metrics Capture is illustrated from the Fig 17 to 19

K x21145377_baby_recommendation_system_amazon_data_set_1_Case_study_C_Data_analysis(1).ipynb File Edit View Insert Runtime Tools Help Last saved at 3:25 PM

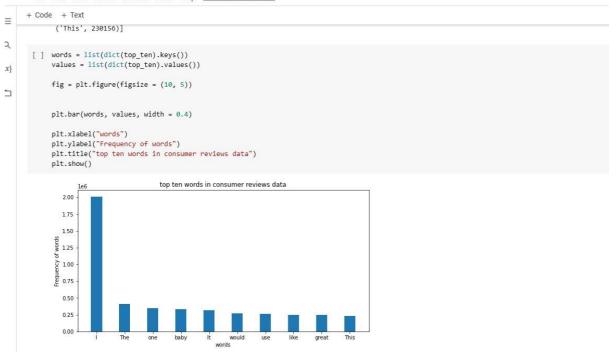


Fig. 19. Words distribution illustration

6.4 Cold Start Analysis

The Cold start accuracy Evaluation Metrics is Captured in Fig 19.

x21145377_digital_music_recommendation_system_amazon_data_set_2_Case_study_B.ipynb ☆ e Edit View Insert Runtime Tools Help <u>Last saved at 3:34 PM</u>	
ode + Text	
] cold_item_input_test = np.random.randint(100000,size = len(user_input_test))	
] #new item cold start	
<pre>mea_absolute_error(model.predict([user_input_test, user_fea_test, cold_item_input_test, item_fea_test]),test_label) 475/475 [====================================</pre>	
] mean_squared_error(model.predict([user_input_test, user_fea_test, cold_item_input_test, item_fea_test]),test_label)	
475/475 [*****************] - 1s 2m5/step 0.7281416	
] cold_user_input_test = np.random.randint(100000,size = len(user_input_test))	
<pre>mew user cold start mean.absolute_error(model.predict([cold_user_input_test, user_fea_test, item_input_test, item_fea_test]),test_label)</pre>	
475/475 [====================================	
] mean_squared_error(model.predict([cold_user_input_test, user_fea_test, item_input_test, item_fea_test]),test_label)	
475/475 [============] - 1s 2ms/step 0.6533008	
] # new user and new item cold start	
<pre>mean_absolute_error(model.predict([cold_user_input_test, user_fea_test, cold_item_input_test, item_fea_test]),test_label)</pre>	
475/475 [===================] - 1s 2ms/step 0.77722204	
] mean_squared_error(model.predict([cold_user_input_test, user_fea_test, cold_item_input_test, item_fea_test]),test_label)	

Fig. 20. Cold start Evaluation Metrics Capture

References

- [1] Dataset1 (Baby Product Dataset) Source: http://jmcauley.ucsd.edu/data/amazon/links.html,last accessed 2022/12/13.
- [2] Dataset2 (Digital Music Product Dataset) Source: http://jmcauley.ucsd.edu/data/amazon/links.html ,last accessed 2020/12/13.
- [3] Dezfouli, P. A. B., Momtazi, S. and Dehghan, M. [2020]. Deep neural review text interaction for recommendation systems, Appl. Soft Comput. 100: 106985.