

Configuration Manual

MSc Research Project

Data Analytics

Sudhir Clinton Manjunath

Student ID: x20247818

School of Computing

National College of Ireland

Supervisor: Vladimir Milosavljevic

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name: Sudhir Clinton Manjunath

Student ID: x20247818

Programme: M.Sc. Data Analytics Year: 2022

Module: Research Project

Supervisor: Vladimir Milosavljevic

Submission Due Date: 1st February 2023

Project Title:

Predicting Stroke at Adulthood Using Machine Learning

Techniques

Word Count:

1555 Page Count: 22

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature: Sudhir Clinton Manjunath

Date: 31st January 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Sudhir Clinton Manjunath
x20247818

1 Introduction
In order to set up the ICT solution on any suitable system and achieve the desired
results, the user can utilize this configuration manual, which includes a complete
walkthrough of the codes for data analysis, preprocessing, and implementing the
machine learning models for stroke prediction. The necessary hardware and soft-
ware specifications are also included in this document.

2 System Configuration
The overall requirements of hardware and software used for this project is dis-
cussed in this section.

2.1 Hardware

Figure 1: Hardware Specification

A Windows 10 laptop with a 11th generation intel core i5-processor along with 8
GB RAM is used as shown in figure 1.

1

2.2 Software
2.2.1 Anaconda

Figure 2: Anaconda Navigator Window

It is a distribution of the Python and R scientific computing programming lan-
guages with the goal of streamlining package management and deployment and
figure 2 displays the anaconda navigator window. Python is the selected program-
ming language due to its large variety of libraries used for analyzing the data.

2.2.2 Jupyter Notebook

Figure 3: Jupyter Notebook launch icon

It is used as an integrated development editor (IDE) for the deployment of machine
learning models since it enables interactive browser-based code execution. The
launch icon for the Jupyter notebook which is visible in the anaconda navigator is
depicted in figure 3.

2

3 Python Libraries

Figure 4: Necessary Libraries

Figure 4 shows the necessary libraries imported using the keyword import, the
other libraries are imported later when required.

4 Data Selection/Reading the file

Figure 5: Reading the data file

The read csv() is a function in pandas used for importing the dataset 1 which is in
the comma separated values (CSV) file format into python and DF is the name of
the data frame used to store the data as shown in figure 5.

5 Age Filtering

Figure 6: Filtering the target age groups

The .between() function is used to select a specific age range from the data, inclu-
sive=’both’ means that both the numbers specified must be included in that age
range and is stored in a data frame named df as shown in figure 6.

1https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease

3

5.1 Checking for Duplicate Records

Figure 7: Checking and removing duplicated records

Figure 7 displays the code for showing the duplicate records and removing them
along with the output. The df.duplicated().sum() function displays the total num-
ber of duplicate records and df.drop duplicates() function is used to remove them.

6 Exploratory Data Analysis
6.1 Stroke Proportion

Figure 8: Code for stroke proportion pie chart

The df[‘Stroke’].value counts().plot.pie() function in figure 8 is used for the pie
chart that represents the proportion of people who have suffered from stroke and
people who have not suffered stroke.

6.2 Univariate Analysis of Numerical Features
The sns.distplot() function in figure 9 is used for plotting the histograms of the
numerical features present in the data.

4

Figure 9: Code for histograms of numerical features

6.3 Bivariate Analysis of Categorical Features

Figure 10: Code for barplots of numerical features with respect to stroke

The sns.countplot() function in figure 10 is used to plot the bar graphs with respect
to stroke. The percentage above bar relative to xgroup() function is manually
defined so that the percentage is visible on top of each bars.

6.4 Categorical Features
Figure 11 shows the code and output for displaying the categorical features in the
data frame.

5

Figure 11: Categorical features in the data frame

7 Data Preprocessing and Transformation
7.1 Coverting the Categorical Features to Numeric

Figure 12: Code for Coverting the Categorical Features to Numeric

The LabelEncoder() function in figure 12 is used for converting the categorical
features into numeric, so it becomes easy for the machine learning algorithms to
process it. The output of the encoded data is also shown in the figure.

7.2 Outliers

Figure 13: Code for outlier detection

6

Figure 13 shows the code for detecting and displaying the outliers present in the
data.

Figure 14: Removing outliers from PhysicalHealth

In figure 14, outliers of feature PhysicalHealth is detected and removed using
the inter quartile range (IQR) and stored in a data frame named data1. The same
process is followed for other numerical features such as MentalHealth, SleepTime,
and BMI, and are stored in data2, data3, and data4 respectively.

7.3 Assigning the target variable

Figure 15: Assigning the target variable

In figure 15, the target variable is assigned to y and the predictor variables are
assigned to x.

7.4 Standardizing the data with numeric features
The StandardScaler() function in figure 16 is used to convert the numerical fea-
tures with diverse range into the same scale of the categorical features. This func-
tion transforms the numerical features so that their mean is set to zero and the

7

Figure 16: Feature scaling

resulting distribution has a unit standard deviation, and this can be seen in the
figure as well. After this, again the target variable and the predictor variables are
reassigned to y and x respectively as shown in figure 15.

7.5 Feature Selection

Figure 17: Code for Generalized Linear Model

The sm.GLM() function in figure 17 is used for building a generalized linear
model (GLM) with the predictor variables and the family is set to binomial. This
indicates the GLM that the target variable is binary in nature.

In backward elimination technique, the important features are selected by elim-
inating the feature with a higher p-value. Figure 18 shows the summary of the
GLM, in which the feature BMI has the highest p-value 0.729. Hence, BMI is
removed first.

8

Figure 18: Summary of GLM

Figure 19: Removing BMI

Figure 19 shows the code to remove BMI from the list and also displays the re-
maining variables.

9

Figure 20: Code for re-running the GLM

In figure 20, the GLM is re-run with the remaining variables after removing BMI.

Figure 21: Summary of GLM

In figure 21, it can be seen that the feature Sex has the highest p-value of 0.236,
hence Sex is removed next. It is removed using the same code as in figure 19, just
that Sex is replaced in place of BMI. This process follows until all the features
have a p-value less than 0.05.

10

Figure 22: Variance inflation factor values

Figure 22 shows the code and output for checking the variance inflation factor
(VIF). Generally, features with VIF value less than 5 is considered. In the figure
it can be seen that Race has a VIF value of 6.75, hence it is removed. The GLM
is re-run, again checked for insignificant variables and then the VIF is checked
again.

Figure 23: VIF values and removing insignificant features

In figure 23, it can be seen that all the ten features have a VIF value less than
0.05, so these are the only features used for building machine learning algorithms

11

for the stroke prediction. The codes for removing the insignificant variables and
re-assigning the predictor variables is also shown.

7.6 Splitting the data into train and test sets

Figure 24: Data split into train and test

The code for splitting the data into 20% for test and 80% for train using stratified
random sampling is displayed in figure 24.

8 Experiments
8.1 Random Undersampling (RUS)

Figure 25: RUS balancing method

The RandomUnderSampler() function in figure 25 is used for undersampling the
train data.

8.2 SMOTE

Figure 26: SMOTE balancing method

The SMOTE() function in figure 26 is used for oversampling the train data.

12

9 Implementation and Evaluation of Models
9.1 Random Forest (RF)

Figure 27: Base version of RF

The code and the result for the base version of RF classifier is displayed in figure
27.

Figure 28: RF parameter tuning

13

The code and the output for finding the best parameters using randomized search
along with 10-fold cross validation for RF is displayed in figure 28.

Figure 29: Tuned version of RF

The code and the result for the tuned version of RF classifier is displayed in figure
29. The RF built under SMOTE is similar to this with the same parameters, instead
rus and res is replaced with sm, and the random state is set to 70.

9.2 Bernoulli Naive Bayes (BNB)

Figure 30: Base version of BNB

The code and the result for the base version of BNB is displayed in figure 30.

14

Figure 31: BNB parameter tuning

The code and the output for finding the best parameters using randomized search
along with 10-fold cross validation for BNB is displayed in figure 31.

Figure 32: Tuned version of BNB

The code and the result for the tuned version of BNB is displayed in figure 32.
The BNB built under SMOTE is similar to this, instead rus and res is replaced
with sm.

15

9.3 Stochastic Gradient Descent (SGD)

Figure 33: Base version of SGD

The code and the result for the base version of SGD classifier is displayed in figure
33.

Figure 34: SGD parameter tuning

The code and the output for finding the best parameters using randomized search
along with 10-fold cross validation for SGD is displayed in figure 34.

16

Figure 35: Tuned version of SGD

The code and the result for the tuned version of SGD classifier is displayed in fig-
ure 35. The SGD built under SMOTE is similar to this with the same parameters,
instead rus and res is replaced with sm, and the random state is set to 22 in base
version and 50 in tuned version.

9.4 Adaptive Boosting (AB)

Figure 36: Base version of AB

The code and the result for the base version of AB classifier is displayed in figure
36.

17

Figure 37: AB parameter tuning

The code and the output for finding the best parameters using randomized search
along with 10-fold cross validation for AB is displayed in figure 37.

Figure 38: Tuned version of AB

The code and the result for the tuned version of AB classifier is displayed in figure
38. The AB built under SMOTE is similar to this, instead rus and res is replaced
with sm. Additionally, AB is not hyper tuned because under RUS even after hype
tuning the results remained the same.

18

9.5 Logistic Regression (LR)

Figure 39: Base version of LR

The code and the result for the base version of LR is displayed in figure 39.

Figure 40: LR parameter tuning

19

The code and the output for finding the best parameters using randomized search
along with 10-fold cross validation for LR is displayed in figure 40.

Figure 41: Tuned version of LR

The code and the result for the tuned version of LR is displayed in figure 41. LR
built under SMOTE is similar to this with the same parameters, instead rus and
res is replaced with sm.

9.6 Support Vector Machine (SVM)

Figure 42: Base version of SVM

The code and the result for the base version of SVM is displayed in figure 42.

20

Figure 43: SVM parameter tuning

The code and the output for finding the best parameters using randomized search
along with 10-fold cross validation for SVM is displayed in figure 43.

Figure 44: Tuned version of SVM

The code and the result for the tuned version of SVM is displayed in figure 44.
The SVM built under SMOTE is similar to this, instead rus and res is replaced
with sm. Additionally, SVM is not hyper tuned because under RUS, after hype
tuning, the recall value decreased by 1%.

21

9.7 Voting Classifier (VC)

Figure 45: Code and result for VC

The code and the result for VC is displayed in figure 45. The VC built under
SMOTE is similar to this, instead rus and res is replaced with sm.

9.8 Stacking Classifier (SC)

Figure 46: Code and result for SC

The code and the result for SC is displayed in figure 46. The SC built under
SMOTE is similar to this, instead rus and res is replaced with sm and the ran-
dom state of SGD classifier which is a base learner is set to 50.

22

