~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics 2022-2023

Gayathri Malaichamy
Student 1D:X21117683

School of Computing
National College of Ireland

Supervisor: Anderson Simiscuka

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Gayathri Malaichamy
Student ID: X21117683
Programme: Data Analytics
Year: 2022-2023
Module: MSc Research Project
Supervisor: Anderson Simiscuka
Submission Due Date: 15/12/2022
Project Title: Online Job Posting Authenticity Prediction using Machine and
Deep Learning Techniques
Word Count: 643
Page Count: [14]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Gayathri Malaichamy

Date: 15th December 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Gayathri Malaichamy
X21117683

1 Introduction

Configuration Manual provides the details about system requirements, environment setup,
tools and algorithms used for the Fake job prediction implementation. In this research,
both Machine Learning and Deep Learning classifiers were used along with feature extrac-
tion techniques. To validate the model performance, evaluation metrics such as Accuracy,
Time, Fl-score, Precision and Recall were used. The process followed during the devel-
opment phase as well as the final research findings are documented in the implementation
section.

2 System Specification
The details of system specification are listed as follows.
e Operating System: Mac OS Ventura 13.0
e Chip: Apple M1
e Memory: 8GB
e Storage: Macintosh HD 494.38GB

MacBook Air

Name Gayathri's MacBook Air
Chip Apple M1
Memory 8 GB
Serial number C02GKOZQQ6LS
Limited Warranty Expires 23-Jan-2023 Details...
mac0S

@ macOS Ventura Version 13.0

Figure 1: System Specification

3 Software Requirements

This research work was implemented using Machine Learning and Deep Learning ap-
proaches and hence Python 3 was used for project implementation. For code implement-
ation, Google Colaboratory was used as its faster and consists of plethora of libraries
required for Deep Learning models.

Examples Recent Google Drive GitHub Upload

Filter notebooks

Title Lastopened & Firstopened

€O Welcome To Colaboratory December 7 April 18

Untitleda.ipynb November 2 November 2

Untitleda.ipynb November 2 July 29

&
L. Untitied November 2 August 17
&
&

UntitledS.ipynb November 2 July 29

Cancel

Figure 2: Google Colaboratory

4 Data Source

The fake job data was collected from the public repository called ” Kaggle” El This dataset
consists of 17000 records and 18 columns. All these records are related to meta data about
the job information.

fake_job_postings.csv (50.06 MB) S o

Detail Compact Column 10 of 18 columns v

ez job_id = A title = A location = A department = A salary_ra

Unique Job ID The title of the job ad Geographical location of Corporate department Indicative si
entry. the job ad. (e.g. sales). (e.g. $50,0C
English Teacher Abr... 2% GB, LND, London 4% [null] 65% [null]
Customer Service A... 1% US, NY, New York 4% Sales 3% 0-0

1 17.9k Other (17423) 97% Other (16504) 92% Other (5782) 32% Other (272¢

1 Marketing Intern US, NY, New York Marketing

2 Customer Service - NZ, , Auckland Success

Cloud Video
Production

Figure 3: sourcedata

5 Data Load and Analysis

Firstly, important libraries were imported as shown in figure [4]

thttps:/ /www.kaggle.com/datasets/shivamb /real-or-fake-fake-jobposting-prediction

o # Importing important Libraries:
import pandas as pd
import numpy as np
import nltk
import re
import seaborn as sns
import plotly.express as px
import spacy
import matplotlib.pyplot as plt
from spacy.lang.en.stop_words import STOP_WORDS
from wordcloud import WordCloud
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from nltk.stem import PorterStemmer
from sklearn.model selection import cross_val_score
nltk.download('stopwords')
nltk.download('wordnet')

> [nltk data] Downloading package stopwords to /root/nltk_data...

[nltk_data] Package stopwords is already up-to-date!
[nltk_data] Downloading package wordnet to /root/nltk_data...
[nltk_data] Package wordnet is already up-to-date!

Figure 4: Important packages and Libraries

Fake job data was taken from Kaggle repository and kept in the Google Drive[5] From
Google drive , the code was loaded in to Data input data frame by using pandas library
as shown in figure [6]

[] # Importing the fake jobdata file:
from google.colab import files
uploaded = files.upload()

Figure 5: Dataload from Google Drive

~ Data Load into Dataframe:

DR -K- NN |
© # road the file into input dataframe:
data = pd.read_csv('/content/fake_job_postings.csv'))
data.head()

g job_id title location department salary range company profile description requirements b

Marketin US, NY, We're Food52, and Food52, afast- Experience with content
9 bub Marketing NaN we've created a growing, James Beard management systems a
groundbreaki... Award-winn... m...

® 1 Intern New York

Figure 6: dataload

The structure of the data is illustrated as shown in figure [6]

° print(data.shape,end='\n\n")
print(data.info())

C> (17880, 18)
<class 'pandas.core.frame.DataFrame'>

RangeIndex: 17880 entries, 0 to 17879
Data columns (total 18 columns):

Column Non-Null Count Dtype
0 job_id 17880 non-null int64
1 title 17880 non-null object
2 location 17534 non-null object
3 department 6333 non-null object
4 salary_range 2868 non-null object
5 company profile 14572 non-null object
6 description 17879 non-null object
7 requirements 15185 non-null object
8 benefits 10670 non-null object
9 telecommuting 17880 non-null int64
10 has_company_logo 17880 non-null int64
11 has_guestions 17880 non-null inté64
12 employment_type 14409 non-null object
13 required_experience 10830 non-null object
14 required_education 9775 non-null object
15 industry 12977 non-null object
16 function 11425 non-null object
17 fraudulent 17880 non-null int64

dtypes: int64(5), object(1l3)
memory usage: 2.5+ MB
None

Figure 7: structure of data

5.1 Exploratory Data Analysis

The Location column was splitted into city and country in order to plot the geographical
distribution of fake job across the world. Also, various graphs were plotted to understand
the fake job distribution.

[1 # To split the location to extract the country in order to plot the geographical distribution:
split_location=data["location"].apply(lambda x:str(x).strip().split(',"))
split_location=split_location.apply(pd.Series)
data.shape

Country values after mapping:
data['country']=data['country'].apply(lambda x:country code mapping[x] if x!='nan' else 'nan')

Figure 8: Extraction of country

° fig = go.Figure(data=go.Choropleth(
locations = list(percent_fraud_dict.keys()),
z = list(percent_fraud_dict.values()),
text = list(percent_fraud_dict.keys()),
colorscale = 'Reds',
autocolorscale=False,
marker_ line_color='darkgray',
marker_ line_width=0.5,
colorbar_title = 'Job ads percent',

fig.update_layout(
title_text='Percentage of fraudulent job ads',
geo=dict (
showframe=False,
showcoastlines=True,
projection_type='equirectangular

).

)

fig.show()

Figure 9: Total Fake jobs postings

© # 1In terms of employment type, ads which specify "full-time", "contract" and "temporary” are less likely to be fake. For re

import seaborn as sb
data.dropna(axis= 0, how= 'any', inplace=True)

plt.figure(figsize=(10,8))

sb.set_style("darkgrid")

sb.countplot (x='employment_type',data=data,palette='BuPu r', hue = 'fraudulent')

Interpretation based on results:
From the plot, it is evident that the Full-time job opportunies have the highest number of fraudulent job advertisements.

Figure 10: Fake jobs postings for Employment_type

Keywords for fraudulent job postings:

au
STOPWORDS = spacy.lang.en.stop_words.STOP_WORDS
plt.figure(figsize = (16,14))

we = WordCloud(min_font_size = 3, max_words = 3000 , width = 1600 , height = 800 _color='white',st ds = STOPWORDS) te(str(" ".join(fra
plt.imshow(wc, interpolation = 'bilinear')

plt.axis("off")

(parameter) stopwords: Any | None

Following Fake job word cloud shows that it consits of common general terms not job related requirements.

Figure 11: wordcloud for Fakjob postings

6 Data Preprocessing

This section explains various preprocessing steps that were implemented before model
building. In this process, the basic operations such as unwanted column removal, HTML
tags removal from the text were implemented. In addition, the NLP oprations such as
stop words removal, special characters removal and tokenization were performed in order
to get clean data for model building.

[1 #Removing Unwanted Columns from the raw data

data.drop(columns=['department', 'salary range'],axis = 1,inplace=True)

[1 data.fillna('',inplace=True)

Figure 12: IrrelevantColumn_Removal

[1 # Removing HTML Tags:
cols = ['company profile' ,'description', 'requirements', 'benefits']

for col in cols:
for i in range(len(data[col])):
TAG_RE = re.compile(r'<[">]+>")
data[col][i] = TAG_RE.sub('', data[col][i])

Figure 13: HTML_Tags_Removal

[1 # Stopwords Removal from Text:
all_stopwords = stopwords.words('english')
print(all_stopwords)
all_stopwords.remove('not')
all_stopwords.remove('no')
all_stopwords.remove('nor')

['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", "you've", "you'll",

° # Special Characters removal from Text:

import nltk

nltk.download('omw-1.4")

for i in range(0,final.shape[0]):
sample = final['Text'][i]
Lemmatization process
lemmatizer = WordNetLemmatizer()
sample = re.sub("["a-zA-Z']", ' ', sample)
sample = re.sub(r"can\'t",'can not',6sample)
sample = re.sub(r"n\'t", "
sample = sample.lower()
sample = sample.split()
sample = [lemmatizer.lemmatize(word) for word in sample if not word in set(all_stopwords)]
sample = ' '.join(sample)
final['Text'][i] = sample

not", sample)

Figure 14: NLP Processing

Since the data is highly imbalanced, the RandomUnderSampling technique was ap-
plied in order to make the balanced data.

‘, # Randomundersampler for data resampling:
columns = data.columns.tolist()
columns = [c¢ for c in columns if c not in ["fraudulent"]]
target = "fraudulent"
state = np.random.RandomState(42)
X = data[columns]
Y = data["fraudulent"]

from imblearn.under_sampling import RandomUnderSampler

under sampler = RandomUnderSampler()
X_rus, y _rus = under_sampler.fit_resample(X, Y)

dfl = pd.DataFrame(X_rus)
df2 = pd.DataFrame(y_rus)

result = pd.concat([dfl, df2], axis=1, join='inner')
display(result)
data=result;

Figure 15: Random Under Sampling process

7 Model Building

This section provides a brief overview of model building process. For model building,
both Machine Learning and Deep Learning classifiers were used. Before model build,
the feature extraction techniques such as Unigram, Bigram, Trigram and TF-IDF were
implemented.

° # Unigram Model Building:
X = final.Text
y = final.fraudulent
from sklearn.feature extraction.text import CountVectorizer
count_vectorize = CountVectorizer(ngram range=(1,1))
X = count_vectorize.fit_transform(X).toarray()

Figure 16: Unigram model

[1 # Train and Test data Split before model build:
from sklearn.model selection import train_test_split
X _train, X_test, y train, y_test = train_test_split(X_new, y, test_size = 0.20, random state = 0)

Figure 17: Train and Test data Split

° # Random Forest Classifier:
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score,fl_score,precision_score,recall_score
import time

start_time = time.time()

forest = RandomForestClassifier()
forest.fit(X_train,y_train)

y_pred = forest.predict(X_test)

end_time = time.time()

eta = end_time - start_time

print('Random Forest Classifier')

Evaluation metrics:

print('time taken:',eta)

print('accuracy :',accuracy_score(y_test,y pred))
print('Fl score :',fl_score(y_test,y_pred))
print('Precision:',precision_score(y_test,y_pred))
print('Recall :',recall_score(y_test,y_pred))

Figure 18: RandomForest Classifier

Random Forest classifier was retrained with hyper parameter tuning for optimized
performance.

© # Unigram RandoForest with Hyperparameter Tuning:
start_time = time.time()
forest = RandomForestClassifier(criterion='entropy',n_estimators = 910, min_samples_split = 2, min_samples_leaf = 1, max_features = 'auto’, max_
forest.fit(X_train,y_train)
y_pred = forest.predict (X_test)
end_time = time.time()
eta = end_time - start_time
print('Random Forest Classifier Uni-Gram with hyperparameter tuning')

print(’

print(’ " ,accuracy_score(y_test,y_pred))

print(’ ', £1_score(y_test,y_pred))
print(’ ' ,precision_score(y_test,y_pred))
print('Recall :',recall_score(y_test,y_pred))

Figure 19: RandomForest with Hyperparameter Tuning

° # Gaussian Naive Bayes :
from sklearn.naive_bayes import GaussianNB
start_time = time.time()
gnb = GaussianNB()
gnb.fit(X_train, y_train)
y_nb = gnb.predict(X_test)
end time = time.time()
eta = end_time - start_time
print('Gaussian Naive Bayes')
Evaluation metrics:
print('time taken:',eta)
print('accuracy :',accuracy score(y_test,y nb))
print('F1l score :',6fl_score(y_test,y nb))
print('Precision:',precision_score(y_test,y_nb))
print('Recall :',recall_score(y_test,y_nb))

Figure 20: Naive Bayesn Classifier

© # night cBM :
import lightgbm as 1lgb

start_time = time.time()

lgbm = lgb.LGBMClassifier()

lgbm.fit(X_train, y_ train)

y_lgbm = lgbm.predict(X_test)

end time = time.time()

eta = end_time - start_time

print('LightGBM Classifier')

Evaluation metrics:

print('time taken:',eta)

print('accuracy :',accuracy_score(y_test,y_lgbm))
print('F1l score :',fl_score(y_test,y_lgbm))
print('Precision:',precision_score(y_test,y lgbm))
print('Recall :',recall_score(y_test,y_lgbm))

Figure 21: Light GBM Classifier

Light GBM classifier was retrained with hyper parameter tuning for optimized per-
formance.

@ #Unigram LightGBM with Hyperparamenter tuning:
start_time = time.time()
1gbm = 1gb.LGBMClassifier(subsample = 0.7000000000000001, random_state = 501, objective= 'binary', num_leaves= 30, min_split_gain = 0.4, min_dat
1gbm. £it (X_train, y_train)
y_lgbm = lgbm.predict(X_test)
end_time = time.time()
eta = end_time - start_time
Evaluation metrics:
print('LightGBM Classifier')
print('time taken:', eta)

print('accuracy :',accuracy_score(y_test,y lgbm))
print('F1 score :',fl_score(y_test,y_lgbm))
print(’'Precision:’,precision_score(y_test,y_lgbm))
print('Recall :',recall score(y_test,y_lgbm))

Figure 22: LightGbm with Hyperparameter Tuning

© # xcBoost :
from xgboost import XGBClassifier
start_time = time.time()
xgb = XGBClassifier()
xgb.fit(X_train, y_train)
y_xgb = xgb.predict(X_test)
end_time = time.time()
eta = end_time - start_time
Evaluation metrics:
print('XGBoost Classifier')
print('time taken:',6eta)
print('accuracy :',accuracy_score(y_test,y_ xgb))
print('Fl score :',fl_score(y_test,y_xgb))
print('Precision:',precision_score(y_test,y_xgb))
print('Recall :',recall_score(y_test,y_xgb))

Figure 23: XGBoost Classifier

In addition to Machine Learning models, Deep Learning models such as ANN and
MLP classifiers were built for model comparison.

° # ANN :
import tensorflow
from tensorflow.keras.layers import Embedding
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.models import Sequential
from s import Dropout
from tensorflow.keras.layers import Dense, Activation
from tensorflow.keras.callbacks import EarlyStopping

Figure 24: Important Libraries for Deep Learning Model

10

° # ANN model building and prediction:
start_time = time.time()
model = Sequential()
model.add(Dense(units=100,activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(units=1,activation="'sigmoid'))
model.compile(loss='binary crossentropy', optimizer='adam',metrics=['accuracy'])
model.fit(X_train,y_train,epochs=65,validation_data=(X_test, y_test), verbose=1)
end_time = time.time()
eta = end_time - start_time
print('time taken:',eta)

Figure 25: ANN Classifier

The MLP classifier was trained with two optimizers called "LBFGS” and " ADAM”
in order to get optimized model.

° #MLPClassifier with solver as lbfgs:

from sklearn.neural network import MLPClassifier
from sklearn.metrics import roc_auc_score

start_time = time.time()
mlp = MLPClassifier(solver='lbfgs',
activation = 'relu’,
hidden_layer_sizes = (100,50,30),
max_iter = 1000)
mlp.fit(X_train, y_train)
mlp pred = mlp.predict(X_test)
end_time = time.time()
eta = end_time - start_time
print('time taken:',eta)
Evaluation metrics:
print('accuracy :',accuracy score(y_test,mlp_pred))
print('roc_auc_score:', roc_auc_score(y_test, mlp_pred))
print('Fl score :',6fl_score(y_test,mlp_pred))
print('Precision:',precision_score(y_test,mlp_pred))
print('Recall :',recall_score(y_test,mlp_pred))
print(classification_report(y_test, mlp_pred))

Figure 26: MLP Classifier with LBFGS Optimizer

© #Mueclassifier with solver as Adam:
start_time = time.time()
mlp = MLPClassifier(solver='adam',
activation = 'relu’',
hidden_layer_sizes = (100,50,30),
max_iter = 1000)
mlp.fit(X_train, y_train)
mlp pred = mlp.predict(X_test)
end_time = time.time()
eta = end_time - start_time
print('time taken:',eta)
Evaluation metrics:
print('accuracy :',accuracy_score(y_test,mlp_pred))
print('roc_auc_score:', roc_auc_score(y_test, mlp pred))
print('Fl score :',fl_score(y_test,mlp_pred))
print('Precision:',precision_score(y_test,mlp_pred))
print('Recall :',recall_score(y_test,mlp pred))
print(classification_report(y_test, mlp_pred))

Figure 27: MLP Classifier with ADAM Optimizer

Initially Unigram feature was implemented with all classifiers. Then, Bigram, Trigram
and TF-IDF models were built with all classifiers in order to assess the model performance
for different feature extraction techniques.

11

[1 # Bi-gram mobel Building:

X = final.Text

y = final.fraudulent

from sklearn.feature_extraction.text import CountVectorizer
Bigram range selection:

count_vectorize = CountVectorizer(ngram range=(2,2))

X = count_vectorize.fit_transform(X).toarray()

Figure 28: Bigram model

[1 # Tri_Gram Model building :
X = final.Text
y = final.fraudulent
from sklearn.feature extraction.text import CountVectorizer
Trigram range selection:
count_vectorize = CountVectorizer(ngram range=(3,3))
X = count_vectorize.fit_transform(X).toarray()

Figure 29: Trigram_model

© # TF-IDF model Building :
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(final.Text).toarray()
X

Figure 30: TF-IDF model

8 Model Evaluation and comparison

After model building, various evaluation metrics were used to evaluate the model perform-
ance. Evaluation metrics such as Accuracy, Time, F1_Score, Precision, Recall, Confusion
Matrix and ROC_AUC curve were used.

12

print('time taken:',eta)

print('accuracy :',accuracy_score(y_test,mlp pred))
print('roc_auc_score:', roc_auc_score(y_test, mlp pred))
print('Fl score :',fl_score(y_test,mlp pred))
print('Precision:',precision_score(y_test,mlp pred))
print('Recall :',recall_score(y_test,mlp pred))
print(classification_report(y_test, mlp pred))

MLP Classifier with 1lbfgs for TF_IDF model
time taken: 8.535385131835938e-05

accuracy : 0.930835734870317
roc_auc_score: 0.9312054849231178

F1l score : 0.9329608938547487

Precision: 0.943502824858757

Recall : 0.9226519337016574
precision recall fl-score support
0 0.92 0.94 0.93 166
1 0.94 0.92 0.93 181
accuracy 0.93 347
macro avg 0.93 0.93 0.93 347
weighted avg 0.93 0.93 0.93 347

Figure 31: Evaluation_Metrics

° # Confusion Matrix:

from sklearn.metrics import plot_confusion matrix

from sklearn.metrics import confusion matrix

plt.figure(figsize=(4,3))

ConfMatrix = confusion matrix(y_test,y pred)

sns.heatmap(ConfMatrix, annot=True, cmap="Blues", fmt="d",
xticklabels = ['Non_fraudulent', 'fraudulent'],
yticklabels = ['Non_ fraudulent', 'fraudulent'])

plt.ylabel('True label')

plt.xlabel('Predicted label')

plt.title("Confusion Matrix - Random Forest");

Figure 32: ConfusionMatrix

ROC_AUC Curve was used to compare both Machine Learning and Deep Learning
models based on ROC_AUC score.

13

Naive Bayes Classifier:

y_pred_proba NB = gnb.predict_proba(X_test)[::,1]

fpr2, tpr2, _ = metrics.roc_curve(y_test, y_pred_proba NB)
auc2 = metrics.roc_auc_score(y_test, y_pred proba NB)

LightGBM Classifier:

y_pred_proba_lgb = lgbm.predict_proba(X_test)[::,1]

fpr3, tpr3, _ = metrics.roc_curve(y_test, y_pred proba_lgb)
auc3 = metrics.roc_auc_score(y_test, y_pred proba_lgb)

XGBoost Classifier:

y_pred_proba_xgb = xgb.predict_proba(X_test)[::,1]

fpr4, tpr4, _ = metrics.roc_curve(y_test, y_pred proba_ xgb)
auc4 = metrics.roc_auc_score(y_test, y_pred proba_xgb)

MLP Classifier:

y_pred_proba mlp = mlp.predict proba(X_test)[::,1]

fpr5, tpr5, _ metrics.roc_curve(y_test, y pred proba_mlp)
auc5 = metrics.roc_auc_score(y_test, y_pred_proba_mlp)

ROC plot:
plt.figure(figsize=(10,7))
plt.plot([0, 1], [0, 1], 'k-=")

plt.plot(fprl,tprl,linestyle='--',6label="Random Forest, auc="+str(round(aucl,2)))
plt.plot(fpr2,tpr2,linestyle= ',label="Naive Bayes Classifier, auc="+str(round(auc2,2)))
plt.plot(fpr3,tpr3,linestyle='--',label="LightGBM Classifier, auc="+str(round(auc3,2)))
plt.plot(fpr4,tpr4,linestyle='--',6label="XGBoost Classifier, auc="+str(round(auc4,2)))

plt.plot (fpr5,tpr5,linestyle='--',label="MLP Classifier, auc="+str(round(auc5,2)))
plt.legend(loc=5, title='Models', facecolor='white')

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('ROC_AUC Curve', size=15)

plt.box(False)

plt.savefig('ImageName', format='png', dpi=200, transparent=True);

Figure 33: ROC_AUC_Curve Comparison

14

	Introduction
	System Specification
	Software Requirements
	Data Source
	Data Load and Analysis
	Exploratory Data Analysis

	Data Preprocessing
	Model Building
	Model Evaluation and comparison

