~

\"'ﬂ
\ National
College

Ireland

Configuration Manual: Generating MRI
images using style transfer learning

MSc Research Project
Master of Science in Data Analytics

Dnyaneshwari Mahajan
Student ID: X20191138

School of Computing
National College of Ireland

Supervisor: Qurrat Ul Ain

National College of Ireland National
Project Submission Sheet College of

School of Computing Ireland

Student Name:

Dnyaneshwari Mahajan

Student ID: X20191138

Programme: Master of Science in Data Analytics
Year: 2022-23

Module: MSc Research Project

Supervisor: Qurrat UT Ain

Submission Due Date:

15/12/2023

Project Title:

Configuration Manual: Generating MRI images using style
transfer learning

Word Count:

633

Page Count:

7

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: Dnyaneshwari Mahajan
Date: 24th January 2023

PLEASE READ THE

FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).

You must ensure that

a copy on computer.

your own reference and in case a project is lost or mislaid. It is not sufficient to keep

you retain a HARD COPY of the project, both for | [J

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual: Generating MRI images using
style transfer learning

Dnyaneshwari Mahajan
X20191138

1 Introduction

The configuration manual demonstrates the process used to code the project “Generating
MRI images using Style transfer learning”. To build a model CycleGAN framework and
U-Net-based segmentation of deep learning are used. This manual configuration contains
the hardware requirements, software requirements, and steps of implementation.

2 Hardware and software configuration

2.1 Hardware configuration

The below figure[I] shows the hardware configuration used to run the code.

Hardware Overview:

Model Name: MacBook Pro

Model Identifier: MacBookProi7,1

Chip: Apple M1

Total Number of Cores: 8 (4 performance and 4 efficiency)
Memory: 8 GB

System Firmware Version: 7459.141.1

0S5 Loader Version: 74591411

Serial Number (system): FVFHEB05BQO05G

Hardware UUID: ADAEGAS0-ATBD-5DBE-9978-D44606E96488
Provisioning UDID: 00008103-001254A21108801E

Activation Lock Status: Enabled

Figure 1: Hardware configuration

2.2 software configuration

The Google colab pro subscription is taken because running the program requires more
system RAM, GPU RAM, and disk space.
The below figure[2] shows the software configuration used to run the code.

h %« B @ &% 07

= C © & colab.research.google.com

:(‘ A MRI_images_Generation_using_CycleGAN_final.ipynb ¥
113 December

&% share £ (§”

B comment
File Edit View Insert Runtime Tools Help Lastsave

+ Code + Text

o x

Q

{x)

(]

Table of contents
| Style Transfer of MRI Images using
CycleGAN
Initialization
1a. Importing Libraries
1b. Setting project directory
Data Loading and Visualization
2a. Data Loading
2b. Data Visualization
Data Preprocessing
3a. Image Normalization
3b. Image Resizing
3c. Image Reshaping
3d. Shuffling and Batching Images
Model Building
4a. Instance Normalization
4b. Downsampling
4c. Upsampling

Ve B/EE
~ Style Transfer of MRI Images using CycleGAN

Mounted at /content/drive

+ Objective: To generate T2 styled MRI images from T1 styled MRI images and T1 styled
MRI images using T2 styled images.

« Solution approach: Use of CycleGAN (cyclic generative adversarial neural network) for
the T1 to T2 and vice-versa style transfer and U-Net based segmentation

MRI image attributes

Type Ti highlight style T2 highlight style
Water Dark Very Bright
Very Bright Dark
Dark
Muscle Dark

Tumours ned Bright

Resources X

You are subscribed to Colab Pro. |
Available: 16.79 compute units

Usage rate: approximately 1.96 per hour
You have 1 active sion.

Python 3 Google Compute Engine backend (GPU)
Showing resources since 12:47

System RAM GPU RAM

4d. Generator Building using Unet

4e. Discriminator Building X
Project sequence:

Model Trainina

Figure 2: software configuration

3 Data Preparation

The dataset is collected from the GitHub library [[| and was available in.RAR. format
which is unzipped and uploaded to google drive. The dataset contains 2 sub-datasets of
T1-styled MRI images and T2-styled MRI images in .png format. After uploading the
dataset, it is divided into train and test datasets as shown in figure.3.

LDrive Q_ Ssearchin Drive > @ ® @ i o
N My Drive > Colab Notebooks > Style_Transfer_Project Dataset ~ B @
ew

Folders Name
My Drive
Computers I ttest I Tvain | st B T2tain

Shared with me
Recent
Starred

Trash
Storage

F
» @
» o
o
o
o
o
Y

13.85 GB of 100 GB used

Buy storage

Figure 3: Dataset

e Importing Libraries: First, the required libraries are imported as shown in the
figure.4.

e Setting project directory and Data Loading: The drive is then mounted in the pro-
gram then Changing the working directory to target_path (Mode_Training folder)
and then datasets are loaded in respective variables as shown in figure[5|figure[6]

Thttps://github.com/hackassin/Brain-MRI-Style-Transfer-With-GAN

~ 1. Initialization

1a. Importing Libraries
1b. Setting project directory

~ Ta. Importing Libraries

numpy np
tensorflow

nage.transform i resize
keras.utils.vis_utils t plot_model

lpip install git+https:/

Looking in indexes:

Figure 4: Importing Libraries

~ 1b. Setting project directory

This project is run on Google Colab

drive.mount (' /cc er driy]

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(fdrive®, force_remount=True).

os.chdir(targe

tent/drive/MyDr olab Notebook tyle Transfer Project/Model Training

der)
(target_path, ver

Figure 5: Setting project directory

|)
_train_path)
h)

print(
print(
print(

training im
training im

te; :

testing images:

Figure 6: Data Loading

4 Data Preprocessing

In this step, data normalization is shown in the figure[7], image resizing, image reshaping,
batching and shuffling of the image are done.

~ 3. Data Preprocessing

3a. Image Normalization

3b. Image Resizing

3c. Image Reshaping

3d. Shuffling and Batching images

~ 3a. Image Normalization

Figure 7: Data Normalization

5 Model Building

After the data pre-processing is done the model for generating MRI images is built us-
ing U-Net segmentation by using Upsampling (Transposed Convolutional Neural Net-
work)and Downsampling(Convolutional Neural Network) layers as shown in figure[§

After this step building of the Discriminator is also performed with only Down-
sampling (Convolutional Neural Network) layers as shown in figure.9.

e Defining Losses: After building a model all Losses are defined as required for train-
ing a model as shown in figure {10

e Checkpoints Initialization: To save the model during training flow checkpoints are
stored on the drive and Adam optimizer is also applied to the model as shown in

figure[T1]

downsample(
downsample(

nsampl

mple(512,

upsample
upsample

ups

er = tf.random normal_initie

ras.layers.

concat = tf
put:
inputs

= last(x)

m tf el(inputs = inputs,

Figure 8: U-Net based generator model

~ 4e. Discriminator Building

d riminator():

inmitializer = tf.ran normal_initializer(

conv = tf

D{l, 4, strides = 1, kernel_initializer = initializer)(ze

(inputs = inp, 1P last)

Figure 9: U-Net based Discriminator model

~ 5b. Calculating Discriminator Loss

Discriminator losses:

« Loss on Real data
+ Loss on Fake/Generated data

discriminator_loss(real data, fake data):

~ 5c. Calculating Generator Loss

« Loss on generated/fake data

ata) :
e(fake_data), fake_data)

~ 5d. Calculating Cycle Consistency Loss

+ Cycle Loss

Figure 10: Losses

ptimizer = tf.ke:

5g. Checkpoint Initialization

+ Checkpoints initialized to save models during trai

ckpt_manager = tf.train

Figure 11: Checkpoints Initialization and applying Optimizer

6 Model Training

The function is defined for the training of a single batch of data using the CycleGAN
framework which contains 2 generators and 2 discriminators as shown in figure[12]

Figure 12: Function defination of model training

num_epochs = 100

~ 6. Visualizing Style Transfer

m keras.utils.image utils import saw

epoch

train
generate_:

+ ckpt_save_path)

_ image_y)
image_x, image_y)

.format (c.numpy()))

oint for epoch 96 at ./Trained Model/ckpt-96
consistancy loss: 3.90

discriminator_L
generator lo

Figure 13: Model Training

7 Image Generation and Model Evaluation:

The function is created that takes the input image and generates the output MRI respect-
ively as shown in the figure.14, Also in this function definition evaluation code is included
which prints the SSIM and PSNR score. Whenever this function is called it generates the
input image and also prints the SSIM and PSNR score to evaluate a respective model.

After the function is defined it is called to generate 4 types of images whose out-
put contains generated image and the SSIM and PSNR score of the generated image
respectively.

rt structural similarity as ssim

. 8qrt

age_generator (input_image, ge

inp = (input_image / 1

prepr: inp = preprocess_inp.astype(

generated_image = generator(preprocess_inp)

ted_image. numpy ()

shape(resize_dim_1, resize _dim_2)

ut, (input_image.shape[0],nput_image.shape[1])}

ut_image.dtype))

Figure 14: Function for Image Generation and Model Evaluation

7.1 Generating Data By Providing Test dataset

The four results are generated such as Tlstyled image to T1Styled image as shown in
figure.15,T2-Styled image to T2-styled image as shown in figure.16, T2-styled image to
T1-Styled image as shown in figure.17, T1-styled image to T2-Styled image as shown in
figure.18.

These four figure shows the results of generated images using 2 types of a generator
on the test dataset which is converted into TensorFlow format.

10

~ 8.1 Checking how the model generates T1 image when T1 image is provided

Generated image

use numpy.mean instead

Figure 15: T1-styled image to T1-Styled image

~ 8.2 Checking how the model generates T2 image when T2 image is provided

Double-click (or enter) to edit

Generated image

ted and will be re py.mean instead

Figure 16: T2-Styled image to T2-styled image

11

~ 8.3 Checking how the model generates T2 image when T1 image is provided

Figure 17: T2-styled image to T1-Styled image

~ 8.4 Checking how the model generates T1 image when T2 image is provided

Generated image

cipy.mean is deprecated and will be removed in S , use numpy.mean instead

Figure 18: T1-styled image to T2-Styled image

12

	Introduction
	Hardware and software configuration
	Hardware configuration
	software configuration

	Data Preparation
	Data Preprocessing
	Model Building
	Model Training
	Image Generation and Model Evaluation:
	Generating Data By Providing Test dataset

