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Methodology Framework

Karim Ladouari
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Abstract

Cloud computing has dramatically changed the management of web applica-
tions, software development and information technology. Anyone, anywhere in the
world, can provision a virtual machine on the platform of one of the Cloud com-
puting service providers. One of the many advantages of Cloud computing is to
provide resources on demand. The challenge for Cloud customers is to size and
optimise Cloud applications while controlling over-capacity. The current research
established a mechanism to select the optimal time series forecasting technique to
predict Cloud systems requirements. A Deep learning Recurrent Neural Network
(RNN) time series technique combined with Extreme Gradient Boosting (XGBoost)
feature selection algorithm is designated to produce the optimal short-term predic-
tion, while Seasonal Auto-Regressive Integrated Moving Average with exogenous
factors (SARIMAX) combined with Random Forest is for long-term predictions.
The defined prediction methodology framework would help Cloud application own-
ers maintain their running cost and associated low carbon footprint and improve
performance.

1 Introduction

Cloud computing plays an essential part in people’s lives across the globe by primar-
ily impacting the growth of the world economy and influencing individuals interactions
through the rise of Cloud-based social networks.
Oracle corporation1 has forecasted that Cloud application and associated data will grow
by 50% by 2025 and by 80% by 2028, with the Cloud computing market size expected to
more than double from 450 billion US dollars in 2021 to over one trillion US dollars by
2028.
International Business Machine (IBM) described in a publication2 the last decades’ Cloud
computing innovation and transformation with the creation of virtual machines, the ex-
ponential increase of systems computing power and manufacturing costs reductions. To
a certain extent, Cloud computing transformed how web-based applications are designed,
deployed and scaled. The side effect of this transformation is for Cloud computing cus-
tomers to maintain and scale deployed applications as the complexity of technologies
increases over time. The challenge for commercial applications is to forecast and identify
the business growth and the associated systems requirements.
Major Cloud computing corporations like Amazon Web Services, Microsoft Azure or

1https://www.oracle.com/
2https://www.ibm.com/Cloud/blog/Cloud-computing-history
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Google Cloud offer auto-scaling solutions, allowing clients to horizontally or vertically
scale their deployed systems automatically based on thresholds. For some clients, auto-
scaling is unsuitable, and systems with associated computing resource sizing are based
on intuition or experience. As a result, the absence of autoscaling or forecasting mech-
anisms leaves web-based application architects to oversize their system infrastructure
requirements and consequently their running costs.
This research aims to provide Cloud computing web-based application owners with the
most suitable technique to forecast, predict and optimise Cloud servers’ resource re-
quirements. The motivation is to manage allocated systems resources efficiently and, by
association, improve systems performance and quality of service improvement and re-
duce energy consumption and carbon footprint. The research question for this survey is
defined as what is, based on a selection of commonly known methods, the most optimal
forecasting technique combined with feature selection to predict cloud resource workload.
The time series data from an existing commercial company Cloud-based application is
leveraged to achieve benchmark results. The experimental approach for this study con-
sists of unique application features from the collected data associated with time series
forecasting techniques such as Triple Exponential Smoothing (TES), Seasonal Auto-
Regressive Integrated Moving Average (SARIMA), SARIMAX, RNN, Long Short-term
Memory (LSTM), and Gated Recurrent Unit (GRU) combined with Linear regression,
Random Forest and XGBoost machine learning feature selection algorithms.
This paper is designed as follows Section 2 outlining the related work and background for
time series forecasting techniques and features selection for Cloud applications resource
consumption, and Section 3 describes the research methodology, Section 4 the design spe-
cification and Section 5 the implementation. Section 6 discusses the experiment results,
Section 7 the discussion and Section 8 the conclusion and further work.

2 Related Works and Background

2.1 Cloud Computing

Lisdorf (2021) described the evolution steps of Cloud computing from its creation to its
current state. The author started with the notion of Cloud computing which appeared
in the middle of the nineties with a group of engineers from the Netscape corporation
working on sharing computing resources. The term Cloud computing emerged in the
beginning of the 21st century, defined by the industry at the time as data and server
services located somewhere in the ”Clouds”.
From there, Cloud computing evolved into a self-service industry offering shared, scalable
and elastic IT infrastructure through the internet. Cloud computing is today defined by
three service models. Software as a service (SaaS) where the client access an application
over the internet entirely managed by the vendor. Infrastructure as a Service (IaaS) is the
service offered to clients providing data and computing resources. Finally, Platform as a
service (PaaS) is the service providing consumers with development and web applications
environments coupled with infrastructure.
Additionally, consumers’ access infrastructure can be defined into three types of Cloud
deployment models. The private Cloud is the deployment model where the Cloud re-
sources are dedicated and accessible to only one client. The public Cloud is where the
resources are shared across multiple tenants via the internet, and the hybrid Cloud com-
bines private and public Cloud.

2



There are multiple Cloud computing vendors in the market, but the two principal ones are
Amazon web services (AWS) and Microsoft Azure. AWS is the market leader with more
than 33%, followed by Microsoft Azure with 21 percent. The author defined AWS as a
Cloud computing service provider prioritizing business over technology with a low margin
and high volume strategy, focusing on the customer experience, and offering consumers
a simple and modular service like EC2 compute power and S3 storage. Microsoft Azure
transitioned later to Cloud computing but was able to catch mainly due to a strong cul-
ture in computer and operating systems and a strategy focusing on building full-service
ecosystems and cultivating solid relationships with enterprises of any size.
Hameed et al. (2016) wrote a comprehensive survey about the management of Cloud
computing resource allocation and its associated challenges. The authors started their
work by describing the mechanism for Cloud clients to add or remove a resource’s capa-
city to an environment using Simple Object Access Protocol (SOAP) Restful application
programming interface (API) utilities or elastic scaling apparatus.
Elastic scaling describes the critical feature offered to Cloud computing consumers to
manage and scale their resource allocation dynamically. Elastic scaling can be defined as
horizontal when the scaling is completed at the virtual machine level or as vertical at the
server capacity level. The elastic scaling functionality allows clients to scale up or down
on-demand Cloud service or any resource type such as system capacity (CPU and RAM)
or virtual machine(server, pod or container). The main benefits are fast optimisation
results with reduced labour requirement; however, its application is not exhaustive. The
authors described auto-scaling as three methods, reactive, proactive and hybrid.
The reactive auto-scaling is actioned when the resource level reaches the designated
threshold, proactive is based on the resource prediction load, and hybrid is a combina-
tion of reactive and proactive auto-scaling. The reactive auto-scaling adoption is the most
prevalent, even though challenges exist, particularly with capacity throughput variability
or provisioning performance degradation. Proactive auto-scaling is the most promising
method, but it needs significant effort and data as it leverages machine learning, and res-
ults are not always accurate. The authors also pointed out that many Cloud consumers
do not leverage the elastic scaling service for multiple reasons, even if it is widespread.

2.2 Time Series Forecasting: State of Art

This section describes the definition of the time series forecasting algorithms utilised for
this research.

2.2.1 ARIMA

Autoregressive integrated moving average (ARIMA) is one of the most popular time series
forecasting techniques introduced more than fifty years ago by Jenkins et al. (1970). AR-
IMA is a unidimensional stochastic time series analysis methodology. ARIMA combined
the autoregressive model (AR) and the moving average model (MA) techniques. AR is
used to analyse the dependencies between observations and their past values, while MA
is the approach describing the linear dependency between observations and their residual
error terms. Finally, the I in ARIMA describes the number of order d of differencing
needed to transform the time series to a stationary state. The authors define the sta-
tionary state as a time series without a trend, seasonality or periodic changes and with a
constant variance or autocorrelation over time. They describe ARIMA(p, d, q) with the
orders of the model required (p, d, and q) respectively for AR, I and MA to capture the
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main dynamic data attributes.
AR model of order p with xt as a stationary observation, α as a constant, ϕi as the
auto-correlation coefficients at lags 1 to p and ϵt as the residual are expressed as follows:

xt = α +

p∑
i=1

ϕixt−1 + ϵt (1)

MA model of order q with µ a constant and θi the past forecast errors coefficient at lags
0 to q are expressed as follows:

xt = µ+

q∑
i=0

θiϵt−1 (2)

The technique SARIMA and SARIMAX are the extension of ARIMA that explicitly
and respectively supports univariate and multivariate time series data with a seasonal
component m for (P,D,Q) m.

2.2.2 Neural Network

An artificial neural network (ANN) is a succession of algorithms aspiring to identify a
dataset’s underlying relationships through a process reproducing how the human brain
functions. A neural network consists of a system of multiple neurons. Neural networks
are made of multi-layer interconnected nodes, also known as perceptrons consisting of
elements receiving data through an input layer, then to one or more hidden layers com-
puting the information to an output layer delivering final results. Hidden layers perform
nonlinear transformations by applying an activation function to the result of each node
value and a weight multiplication.
Essentially, the purpose of the activation function is to determine whether or not a neuron
should be activated. The author defines back-propagation as the essential algorithm
optimising the prediction accuracy of a neural network model training process. Back-
propagation works back from output nodes to input nodes optimising weights one layer
at a time using the gradient of the selected loss function. The back-propagation depends
strongly on the choice of the optimiser algorithm and its learning rate. Each model train-
ing iteration passes the whole training set forward and backwards. Ultimately the process
is completed when it reaches the specified number of iterations or epochs.

2.2.3 Recurrent Neural Network

A RNN is a method of handling sequential data types such as time series, text or language
processing or speech recognition. RNN was designed to include dependencies between
time series data points. Standard artificial neural networks are not structured to process
the relationship between a time series data point and its previous outputs. RNNs contain
a concept of memory allowing to save the previous inputs states to generate the following
sequence output.
For each input timestep xt, hidden state sequence ht, the output ot, the bias vectors bh, by,
the weights Whx,Whh,Wyh and the respective activation functions f and g are expressed
as follows:

ht = f(whxxt + whhht−1 + bh)

ot = g(wyhht + by)
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Figure 1: RNN Architecture 3

The hidden state captures and memorize all the information previous time sequence.
RNNs pitfall is the vanishing gradients problem with long data sequences, which makes
is not the right choice for large time series. A vanishing gradient happens when the back-
propagation gradients computing the weight from the previous output will, with time,
get close to zero and prevent improving new weights. LSTM and GRU were designed to
circumvent the vanishing gradient problem.

2.2.4 Long Short Term Memory Network

Hochreiter and Schmidhuber (1997) proposed the algorithmn LSTM as an improvement
to overcome the long-term dependencies gap introduced by RNN. Figure 2 describes the
LSTM networks designed by the authors.

Figure 2: LSTM Architecture3

LSTM cell state is the top horizontal line going through the neural network (Figure 2). It
is an essential part of LSTM, conveying the information through the network, computing
the output value and deciding the information to store or remove. The algorithm contains
gates with sigmoid activation functions regulating the data towards the cell state. Gates
filter and let through information only if the sigmoid function results are different from
0. The forget gate layer ft is responsible for eliminating what information needs to be
discarded. The input gate layer it decides what input values to update from the memory
state. The tanh gate layer Ct looks at the candidate value addition to the cell state and
finally the output gate layer ot computes the final output.
For each input timestep xt, hidden state sequence ht and Ct, the bias vector bf , bi, bC , b0,
the weights Wf ,Wi,WC ,W0 and the respective activation functions σ and tanh are ex-

3Source: http://dprogrammer.org/rnn-lstm-gru
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pressed as follows:
ft = σ(Wf · [ht−1, xt] + bf )

it = σ(Wi · [ht−1, xt] + bi)

ot = σ(Wo · [ht−1, xt] + bo)

C̃t = tanh(WC ∗ [ht−1, xt] + bC)

Ct = ft ∗ Ct−1 + it ∗ C̃t

ht = ot ∗ tanh(Ct)

2.2.5 Gated Recurrent Unit

GRU neural networks were introduced by Chung et al. (2014). GRU is the most recent
addition to recurrent neural networks, and like LSTM, it seeks to solve RNN’s vanishing
gradient problem. It is similar to LSTM but with a few distinctions. The authors
established the hidden state as the vehicle to transfer information through the network.
GRU has two gates , the update gate, which is dedicated to deciding what information
to keep or forget, and the reset gate looks at how much past data to ignore.

Figure 3: GRU Architecture4

For each input timestep xt, hidden state sequence ht , the bias vector bz, br, bh, the weights
Wz,Wr,Wh and the respective activation functions σ and tanh are expressed as follows:

zt = σ(Wz ∗ [ht−1, xt] + bz)

rt = σ(Wr ∗ [ht−1, xt] + br)

h̃t = tanh(Wh ∗ [rt ∗ ht−1, xt] + bh)

ht = (1− zt ∗ ht−1 + zt ∗ h̃t)

2.3 Related Works

Recent work including Ilyushkin et al. (2017), Podolskiy et al. (2019) and Poppe et al.
(2022) concentrated on improving Cloud resource workload management with some rel-
ative success. Many techniques and algorithms were leveraged to predict Cloud systems
capacity requirements. Starting with Janardhanan and Barrett (2017), who analysed the
forecasting and prediction of systems’ CPU consumption time series using ARIMA and
LSTM with the outcome of LSTM performing better than ARIMA, exhibited by the Root
mean square error (RMSE) score from twenty-four hours of predictions. Even though the

4Source: http://dprogrammer.org/rnn-lstm-gru
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two techniques used are complementary and valuable for time series forecasting, this re-
search lack depth as the data is only univariate.
Duggan et al. (2017), Zhang et al. (2018) and Shaw et al. (2018) provided similar research
forecasting and predicting CPU workload using extracted data from multiple major Cloud
service providers (CSP). RNN among other techniques, was used to forecast and predict
CPU utilisation multiple time steps ahead. As a result, RNN outperformed all other
techniques showing high precision in predictions on unseen data but not more than three
steps ahead. The side effect of RNN is that it loses efficiency with long time series se-
quences due to a vanishing gradient.
Yadav et al. (2022) discuss in their article the concept of proactive Cloud computing
auto-scaling approach combined with LSTM to optimise service latency through pro-
visioning optimisation. The design of the auto-scaling process incorporates the LSTM
optimal prediction for systems resource requirements with the Service level agreement
(SLA) violations. The experimentation is essentially the forecast of univariate Cloud
systems CPU workload time series using LSTM along ARIMA and Support vector ma-
chine (SVM), comparing the prediction accuracy performance score resulting in LSTM
outperforming all the other techniques.
Chapram et al. (2018) use the same method and concept and achieve similar results in
their research as LSTM outperformed ARIMA to predict workload resources from Cloud
web servers. As highlighted in previous research, predicting Cloud systems CPU workload
using only univariate data is limited. The applications running on the Cloud systems are
more certainly influential to the CPU consumption.
Further, Li et al. (2022) research the impact of combining bi-directional LSTM (BILSTM)
and GRU for CPU resource usage forecasting and prediction and compared performance
and accuracy against ARIMA, LSTM, BILSTM and GRU models. The experimental
outcomes of using a data set extracted from Google Cloud showed that the model com-
bined with techniques BILSTM and GRU improved performance and accuracy compared
to the traditional single prediction methods.
Using a similar approach, Ouhame and Hadi (2019) present a method combining a Vector
Autoregressive (VAR) model and LSTM forecasting Cloud computing resource workload
multivariate time series. Combining VAR and LSTM enables capturing the linear and
non-linear trends from the extracted multivariate Bitbrains data. The proposed method
results were more effective than ARIMA/LSTM and GRU models. Combining tech-
niques is a good approach as it leverages the strength of both techniques. The authors’
motivation lay more on incorporating techniques jointly, ignoring the added value of a
multivariate dataset.
Moreno-Vozmediano et al. (2019) propose using the Support Vector Machine (SVM)
method to forecast and predict Cloud resource workload univariate time series rather
than ARIMA or neural networks, as they suggest methods have limitations. Considering
neural networks suffer from potential local minima and do not produce one unique solu-
tion, ARIMA holds linear dependencies with the past. However, like any other machine
learning algorithm, SVM also has gaps as it is unsuitable for large data sets and does not
perform well with data sets with noise, which is one of the times series characteristics.
Calheiros et al. (2015) propose integrating an ARIMA Cloud resource forecasting mech-
anism into a pro-active auto-scaling process. The forecast produced by the ARIMA model
generates an optimisation with an associated action dynamically provisioning or decom-
missioning a virtual machine when the prediction exceeds the designated threshold. The
authors used a simulation to generate the dataset with a pre-determined linear pattern
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and reduced variability trend. The pitfall of this research resides in the experiment lim-
itation of using engineered data as it lacks introducing unpredictability in time-series
forecasting model fitting.
Chen, Hu, Min, Zomaya and El-Ghazawi (2020) suggest predicting Cloud resource work-
load with high dimension and high variability dataset by combining a feature selection
top-sparse auto-encoder and GRU for time series forecasting. The authors use a neural
network auto-encoder and principal component analysis (PCA) dimensionality reduction
algorithm for feature selection options. The authors’ motivation for not only using PCA
is due to its limitation for dimensional reduction of high-variance data. The experiment
uses a different workload and various prediction lengths to evaluate every possible scen-
ario. As a result, the selected technique’s prediction outperforms RNN, LSTM and GRU.
Ullah et al. (2021) propose a similar concept but with different techniques by combining
VAR, Convolutional Neural Network (CNN) and LSTM to forecast Cloud computing
resource utilisation. The authors use VAR to filter the linear relationship within the mul-
tivariate dataset extracted from 1750 virtual machines from the Bit-brains Cloud data
centre. They then extract the influential features using CNN to forecast and predict
CPU, memory, network and disk usage using LSTM. As a final step, the authors measure
the prediction accuracy of the selected method, compare the score against traditional
forecasting techniques and conclude it improves the accuracy by a least 3.8%. Research
exploting feature selection highlight how resource workload prediction performance can
be improved, but using only one algorithm reduces the accomplishment potential.
Xie et al. (2022) present a prediction system for Cloud micro-services containers resource
workload using a hybrid model consisting of ARIMA and TES. The hybrid model com-
bines the predictions from ARIMA and TES. The experimentation uses extracted data
from AWS Elastic Compute Cloud to predict diverse workload containers’ CPU. The au-
thors measure the hybrid model prediction accuracy using the Mean squared error (MSE)
and compare it against ARIMA, TES and neural networks models. As a result, the hybrid
model improved the prediction accuracy by at least 20%. The limitation of the authors’
research included using MSE exclusively as outliers can impact MSE significantly.
Kumar et al. (2021) conduct a comparative study of multiple predicting and forecast-
ing techniques. This study aims to determine which method among Linear regression,
SVM, K-Nearest Neighbors (KNN) and ARIMA is the most accurate in predicting CSP
workload resources using two distinctive univariate time-series datasets. The central mo-
tivation from the authors is also to compare the forecasting efficiency between traditional
machine learning algorithms and a time-series forecasting technique like ARIMA. The au-
thors select MSE, Mean absolute error (MAE) and RMSE as criterion scores to measure
the effectiveness of each prediction. ARIMA comes out as the most accurate predict-
ing technique for both datasets. It would have been also valuable to compare ARIMA
model’s results against neural network time series forecasting techniques.
Mehmood et al. (2018) put forward a research predicting CSP resource workload using
stacking KNN and Decision-tree machine learning algorithms. The extracted data is
multivariate. The model prediction results are compared and evaluated against machine
learning and neural network forecasting techniques. The outcome shows an improvement
in accuracy by at least 2%. While the method is very innovative, this research needs to
include feature selection to help refine which variables are influential in improving pre-
dictions.
Even though the cited articles are inspiring, they all require more depth and breadth.
Most of the applied methodologies are based on univariate data set experiments. Mul-
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tivariate modelling would undoubtedly introduce more precision as features generated
from the Cloud applications would most likely influence and impact Cloud system re-
source usage. Additionally, there is very little leveraging of feature selection; when there
is, it is limited to one algorithm. Introducing multiple feature selection techniques will
increase the likelihood of selecting the most influential features to reduce noise and over-
fitting and increase accuracy.
The most apparent gap in the existing research is in combining multiple feature selection
techniques with the most successful time-series forecasting learnings to increase the pre-
cision of Cloud resource workload predictions. Finally, most experiments mentioned in
the highlighted articles use short-length datasets. The introduction of a more extensive
data set would add variability and complexity to the model training process, with results
to reduce the risk of overfitting.

3 Methodology

The research methodology consists of six stages, namely data collection, data pre-processing,
data transformation, data selection, data modelling , evaluation, predictions and results,
as shown in Figure 4.

Figure 4: Research Methodology

3.1 Methodology Stages

3.1.1 Data collection

The workload resources (CPU and RAM) and application data are all recorded on the
monitoring system. The data is stored on an hourly basis and categorised by customers,
application services and resources workload. The data collection stage consists of pro-
grammatically querying and extracting the data using multiple Python5 API calls. All the
extracted systems resource performance and associated application features data activity
will be saved as dedicated Comma-separated values (CSV) files for each customer.

5https://www.python.org

9



3.1.2 Data Pre-Processing

Data pre-processing involves cleaning and preparing the data for feature selection and
model fitting. The data format required for the steps following data pre-processing is time
series per server with daily resources workload. However, the extracted data consists of
a time series data set for all servers hourly resource consumption and a time series data
set for the seven application attributes hourly metrics. The feature engineering process
transforms raw data into features, and the hourly to daily conversion task of the times
series datasets is an opportunity to introduce new features. The data sets conversion from
hourly to daily is not only limited to averaging values. Computing the daily maximum
or highest value factor for the capacity consumption and each application component is
essential for measuring resources workload capacity. After the data pre-processing section
completion, a daily time series for each server representing the relationship between the
application components metrics and its resource consumption is computed. The final
steps involve aggregating all the time series datasets and finally producing a dataset per
server.

3.1.3 Data Transformation

The data transformation consists of identifying and imputing missing data points. Jadhav
et al. (2019) propose a complete survey about imputation techniques comparing multiple
algorithms such as mean, median, KNN, predictive mean matching, Bayesian Linear re-
gression, Linear regression, non-Bayesian, and random sample. The authors suggest KNN
is the best missing data imputation technique as it outperforms all others. Additionally,
they recommend not to impute variables containing more than 16% missing data points.
As a first step, every server dataset is programmatically scanned to identify and delete
their independent variables or data frame columns with more than 16% of missing data
points.
Applying the imputation technique on data set features missing data points completes
data transformation. Makwana et al. (2013) suggest using the elbow method to determ-
ine the number of optimal K cluster for KNN imputation. This method helps choose the
optimal K number of clusters to use by selecting the elbow of the curve from the K values
and its cost function plot. The identified missing points are replaced using the K-Nearest
Neighbor method with the optimal K number of clusters.

3.1.4 Data Selection

The data selection or feature selection is the process of isolating the most influential and
relevant features for the selected server data set model fitting.
Guyon and De (2003), Chen, Dewi, Huang and Caraka (2020) and Alsahaf et al. (2022)
suggest using Linear regression, bagging Random Forest and boosting XGBoost feature
selection methods. Random Forest combined with Recursive Feature Elimination (RFE)
uses impurity or Gini importance to identify the significant features. Feature selection
is completed by measuring how, on average, each feature decreases the impurity over all
trees generated by the Random Forest algorithm. Like Random Forest, XGBoost com-
bined with RFE uses Gini importance to identify influential features.
The difference resides in that XGBoost uses a sequential procedure by adding each fea-
ture one at a time and measuring its importance each time. Linear regression feature
selection is completed by iteratively running a stepwise selection function against all the
predictors and keeping only the one contributing significantly to the model. However,
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Linear regression has conditions which should be met before proceeding with predictions
and are expressed as follows:

• Variables and residuals are normally distributed

• Linear relationship between independent and dependent variables

• Homoscedasticity

• Reduced independent variables multicollinearity

• Independence of the observations

The data selection phase consists of running the three chosen feature selection techniques
against the selected data set to identify and record their influential features. Random
Forest and XGBoost are combined with RFE for scoring and ranking the predictors’ in-
fluence, and only the features scoring more than ten are selected.
In contrast, the preliminary requirements for the Linear regression feature selection are
first to check the normal distribution of all variables. Any variables not normally distrib-
uted are transformed using the Box-Cox transformation method. Furthermore, highly
correlated variables scoring more than 80% at the Pearson score are removed. The Lin-
ear regression feature selection proceeds with the stepwise selection function against all
the remaining predictors, and only the statistically significant ones with a p-value less
than 0.05 are selected. Ultimately, Linear regression assumption plots are generated and
verified.

3.1.5 Data Modelling

Data Modelling involves fitting and training models using selected algorithms. This
research cornerstone lies in model fitting, combining feature selection techniques and
time series forecasting algorithms to identify the best method to predict system resource
workload. However, the selected algorithms require the completion of preparatory tasks
on the dataset before starting fitting models.
As a first preparation task and specifically for the ARIMA technique, the data set is
transformed using the Box-Cox method, but only if it is not normally distributed. The
time series dataset is normalised and transformed into multiple input/output patterns for
recurrent neural network algorithms. Each data point has its current observation as the
output combined with its three previous observations as the input. Finally, the training
and validation data sets are created using a simple split data type which splits it with an
80/20 hold-out.
Besides ARIMA and TES, all forecasting models are multivariate as they are built using
the systems resource workload as dependent variables and the independent variables
specified by the features selections (Linear regression, Random Forest and XGBoost).
Fourteen models are fitted to forecast any server’s resource workload, two univariate and
twelve multivariate combining the selected forecasting techniques and the three feature
selections. The model fitting process also integrates hyper-parameter tuning to identify
the model optimal parameters for model performance maximisation.

3.1.6 Evaluation

Model evaluation consists of using various performance metrics to understand a machine
learning model’s performance results and related strengths and weaknesses. The per-
formance scoring metrics are computed using testing samples and the trained model’s
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predicted data. The model evaluation is initially processed during the model training
to determine the best feature selection technique for each forecasting algorithm. Shch-
erbakov et al. (2013) wrote a comprehensive survey of metrics which can be employed
for measuring errors level for time series forecasting and predictions. They stress that
defined scoring measures are not pre-determined for any prediction scenario. Neverthe-
less, the authors still recommend using RMSE, MAE, and Mean absolute percentage
error (MAPE).
RMSE is the standard deviation of predicted errors, showing how models accurately pre-
dict responses. A low RMSE value indicates the model’s goodness of fit, allowing for
comparison to others. However, it can be influenced by large values or outliers. For each
actual observation xi , predicted observation x̂i and the number of time series data points
n are expressed as follows: √√√√ 1

n

n∑
i=1

(xi − x̂i)2

MAE is the sum of absolute differences between actual and predicted values. It eliminates
direction, positive or negative and is robust to the effects of outliers. Lower value indicates
a good model performance.
For each actual observation xi , predicted observation x̂i and the number of time series
data points n are expressed as follows:

1

n

n∑
i=1

|xi − x̂i|

MAPE is the mean of the absolute percentage errors of predictions. A value of MAPE
less than 20% shows the goodness of fit of a model.
For each actual observation xi , predicted observation x̂i and the number of time series
data points n are expressed as follows:

1

n

n∑
i=1

∣∣∣∣xi − x̂i

xi

∣∣∣∣
The same evaluation steps are used to measure the performance of the unseen data
predictions on fitted models.

3.1.7 Predictions

The predictions section involves evaluating the selected models with unseen data. Eval-
uation scores are the same as the ones used to measure model fitting and are completed
for ten, twenty, thirty and forty days.

4 Design Specification

The implementation project is designed into three tiers of architecture: Data persistent,
Business logic and Client, as shown in Figure 5. The data persistent tier is where the
information is processed and stored. The business logic tier represents the application
layer dedicated to data modelling where all models are fitted, and the most performant
ones are selected. Ultimately, the client tier describes the user layer where predictions
from the best candidate models are produced to determine the required system capacity.
As a result, CompanyA can leverage prediction to determine their system capacity needs
and define the optimal method from horizontal or vertical scaling.
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Figure 5: Three Tier Design Architecture

5 Implementation

5.1 Experimentation

The experimentation scenario uses genuine data from CompanyA, providing commer-
cial software as a service to its customers. The solution is a web-designed application
for single-tenant dedicated instances per customer. The application consists of multiple
servers (or nodes) deployed in a micro-service environment, each containing several pods
and multiple containers. CompanyA Systems infrastructure is provided by CSP but
does not subscribe to additional infrastructure services. Instead, they manage their own
Docker/Kubernetes platform on a provisioned CSP Bare-metal 6, physical and dedicated
architecture. For cost and efficiency purposes, CompanyA is not currently planning to
subscribe to Cloud virtual systems services and to leverage autoscaling services. Com-
panyA’s intuition is that all their systems run over capacity with no planned appropriate
optimisation process. The experimentation will leverage the best performant technique
to predict a selected system’s daily maximum resource requirement.

5.2 Dataset

The server using the largest amount of resources from the most active end-customer is
selected as the experiment case scenario. The first implementation step was to collect data
from Server1. The data is programmatically extracted using multiple Python API calls
connecting to the monitoring system. Seven dedicated API calls were executed, six for
each application attributes activity (API calls, total calls, transaction calls, integration
calls, integration2 calls, service calls and database calls) and one for the system resource
workload consumption (CPU and memory). The data pulled from each API call is held
in a dedicated Python Pandas data frame and then stored in a CSV file on a laptop
computer. The data is an aggregation of the selected end-customer all systems. Initial

6https://learn.microsoft.com/en-us/azure/baremetal-infrastructure/concepts-baremetal-
infrastructure-overview
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extracted data is from the 1st of December 2021 to the 31st of June 2022, hour to hour.
Afterwards, data from the 1st of July 2022 to the 15th of August 2022 are extracted to
compare with the final predictions.

5.3 Implementation Steps

The first step is using the Python Groupby function to convert each of the seven data
frames from hourly to daily, as this experiment aims to select the best technique to pre-
dict the maximum daily necessary system resource. The Python merge function is used
to merge all data frames. Subsequently, a Python function is designed and executed to
split the data frame into servers distinctive data frames and save them as CSV files in an
allocated directory. The pre-processing implementation tasks are completed by loading
the experimentation selected server into a Python data frame.
The transformation phase is achieved by replacing any data frame missing values using
KNN imputation function from Fancyimpute library. A Python condition is included in
the function for replacing missing data points for data frame columns containing not more
than 16% of their total. The optimal K number of clusters is set to five by plotting the
K values and its cost function elbow of the curve. From this stage, the dataset is ready
for model fitting. It consists of 212 data points with a date variable recording values for
the system resource’s maximum daily mean CPU consumption as the dependent variable
and 26 application-associated independent variables.
Feature selection is first initiated by processing the Scikit-Learn7 library normalisation
function on the data frame. Specifically for Linear regression, a SciPy library box-cox
transformation combined with a Pandas correlation function is executed to eliminate from
Linear regression feature selection any highly skewed and or correlated features. Linear
regression feature selection is completed by designing stepwise Linear regression, including
a Python For loop condition leveraging the Statsmodels8 library Ordinary Least Squares
method. Random Forest and XGBoost feature selections are completed by respectively
running Scikit-learn library RandomForestRegressor and XGBoost library XGBRegressor
methods. The selected influential features from each technique are saved in distinctive
lists which will be then used for fitting each model.
Thereafter, a function is designed for each learning incorporating every required step for
Model Fitting. The function includes multiple other functions, each with a defined role
and is run for each feature selection nominated set of variables and ultimately produces
a plot comparing the forecasted and the test datasets and the evaluation scores.
For ARIMA learning, a Python Box-Cox method is first processed to transform all se-
lected variables for SARIMAX and only the dependent variable for SARIMA to ensure
normal distribution. Subsequently, two designed functions were successively launched,
one to extract the time series seasonality value using from Python package Statsmodels
seasonaldecompose function seasonaldecompose and one to determine using library pm-
darima’s ndiffs if time series required differencing. The ndiffs function uses Augmented
Dickey-Fuller (ADF) , Kwiatkowski-Phillips-Schmidt-Shin (KPSS) and Phillips-Perron
(PP) statistical tests to determine differencing requirements. The designed function re-
turns, as a value, the best two test results over three.
For Neural Networks, the time series dataset is first normalised using the Scikit-Learn
library scaler method. The variables are then transformed into multiple input/output

7https://scikit-learn.org
8https://www.statsmodels.org
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patterns format using a designed function.
The training and testing data sets are constructed for all models by splitting the data-
set’s Python array into respective temporal orders of 70% and 30%. A hyper-parameter
tuning function is designed and processed to identify the model’s optimal parameters
for model performance maximisation from a large settings selection. Akaike Information
Criterion (AIC) and RMSE are the hyper-parameter tuning function scoring methods
respectively used for ARIMA and Neural network techniques. Additionally, the Keras9

EarlyStopping method is incorporated in the neural network hyper-parameter function
to stop training models and record the epoch numbers before overfit occurs. A hyper-
parameter tuning function is combined with the Python multi-threading method to boost
computation time. The optimal model selection also includes the least impact from over
or underfitting. The best models are fitted for neural networks using Tensorflow10 Keras
compile and fit methods along mean absolute error as the loss function, and for SAR-
IMAX, the Statsmodels sarimax method. The model training function is completed by
plotting the forecasted against the test datasets along with the Scikit-Learn evaluation
scores. Specifically for SARIMA and SARIMAX plotdiagnostics method is processed to
plot diagnostic checks for model validation.
Predictions for ten, twenty, thirty and forty days ahead are compiled for each forecasting
technique’s most performant model/feature selection. As previously completed for the
model fitting, each prediction is plotted and evaluated using prediction against unseen
data.

6 Results

This section presents the results described in the experimentation section, starting with
each algorithm’s most performant model fitting and feature selection, followed by the
multi-step ahead predictions and a discussion highlighting the significance of the out-
comes.

6.1 Model Selection

Table 1 shows the results of the model fitting of forecasting techniques and each feature
selection except for SARIMA and TES. No feature selection applies to SARIMA and TES
as algorithms involve univariate datasets.
TES is the most performant univariate forecasting technique with an RMSE score of
0.6954 and MAPE of 0.5059. However, TES produces 27% more error than the least
performant selected multivariate time series forecasting technique.
Table 1 also displays a broad range of results for the fitted model using time series forecast-
ing techniques and feature selection algorithms influential predictors. Although XGBoost
MAPE score is for SARIMAX 1.5% lower than Random Forest, Random Forest applied to
SARIMAX as a feature selection as has RMSE and MAE errors scores respectively lower
by 0.07 and 0.021 compared to XGboost. Additionally, examining the plots comparing
the forecasted and testing dataset for each technique show Random Forest capturing bet-
ter the underlying data. For neural networks, XGBoost is the most performing feature
selection learning with an MAE score larger than the following performing learning by
approximately 15% for LSTM, 13% for GRU and 17% for RNN and an RMSE score

9https://keras.io
10https://www.tensorflow.org

15



larger by approximately 20% for LSTM, 13% for GRU and 18% for RNN. In contrast,
the Linear regression feature selection algorithm performed the poorest for almost all
forecasting techniques except for RNN outperforming Random Forest by 1%.

Forecasting Technique Feature Selection MAE RMSE MAPE
TES N/A 0.4942 0.6385 0.4483
SARIMA N/A 0.5491 0.6954 0.5059
SARIMAX LinearRegression 0.2656 0.4134 0.2154

RandomForest 0.1513 0.1808 0.1703
XGBoost 0.1727 0.2544 0.1558

LSTM LinearRegression 0.2632 0.4002 0.3331
RandomForest 0.2365 0.3392 0.4078
XGBoost 0.0881 0.1333 0.1457

GRU LinearRegression 0.2678 0.4093 0.2678
RandomForest 0.2388 0.2819 0.4869
XGBoost 0.1023 0.1522 0.1719

RNN LinearRegression 0.2570 0.3938 0.3219
RandomForest 0.2618 0.3003 0.5576
XGBoost 0.0870 0.1244 0.1409

Table 1: Model selection based on feature selection

6.2 Multi-step Ahead Prediction

Figure 6 provides results of the multi-step ahead predictions for each of the six forecasting
technique. Predictions are made for ten, twenty, thirty and forty days ahead, and error
levels are measured using RMSE, MAE and MAPE against unseen data. TES and SAR-
IMA RMSE scores increased by approximately 100% from ten to forty days predictions
and MAPE scores by approximately 50% to reach 0.4513 and 0.4712.
The first observation is that Neural Networks RMSE scores are larger than SARIMAX
for short-term prediction within ten days. The RNN, LSTM and GRU RMSE predic-
tions score trends are almost identical, and score gaps are marginal. However, there is
a shift from twenty days predictions where Neural networks RMSE performance score
increase from 0.0822 to 0.2210 to exceed SARIMAX, which remains approximately con-
stant. Neural networks RMSE score sharply increases from the first to the second step
prediction but stabilises to reach approximately 8% from one step period prediction to
another. On the contrary, SARIMAX RMSE score remains almost constant for all step
period predictions except for the increase from 0.1759 to 0.2017 from twenty to thirty
days.
Multi-step ahead prediction models’ MAE scores show the same pattern as RMSE but
with a performance shift from twenty days instead of ten days. This distinction is ex-
plained by the fact that RMSE is more sensitive to outliers penalising more significant
errors than MAE. The MAE is a constant score, meaning each residual is weighted equally
in the average.
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Figure 6: Prediction metrics

7 Discussion

7.1 Model Selection

The first observation of this experiment illustrated how poorly TES and SARIMA univari-
ate performed fitting models. The univariate and the multivariate time series forecasting
methodologies developed a significant error gap which can be explained by the univariate
methods not having associated predictors
The second observation is the impact of associating features to the time series dependent
variable and the technique for selecting the most influential ones. Feature selection is
key to determining which variables influence each forecasting technique the most. The
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second experiment tested feature selection algorithms and determined the most perform-
ant technique for each model. The experiment results show that boosting (XGBoost)
and bagging (Random Forest) feature selections for the selected dataset perform better
than Linear regression across all forecasting techniques. The performance scores show
that Linear regression was insignificant, while XGBoost was proven more effective across
all techniques, even if, for SARIMAX, Random Forest negligibly outperformed XGBoost.
Whereas for Neural networks, XGBoost significantly surpassed the other two techniques
with its low level of errors.
XGboost superior performance can be explained by the presence of a boosting feature
selection algorithm to select features by minimizing errors, as displayed by its RMSE and
MAE scores. On the contrary, Linear regression feature selection is the learning with the
lowest performance, which is explained by the larger residuals resulting from the linear
relationship between the dependent and independent variables.
The model fitting experiment confirmed how essential feature selection techniques are to
forecast future values and how influential it is to select the highest level of precision from
a diverse set of techniques.

7.2 Multi-step Ahead Prediction

One of the experiment objectives was to determine how influential independent variables
were in predicting time series values. The first observation from the multi-step ahead
prediction experiment is the prediction precision score disparity between univariate and
multivariate forecasting techniques. Comparatively, the RMSE and MAE scores for TES
and SARIMA for ten days of prediction are approximately 25% to 30% higher than mul-
tivariate methods and are proportionally increasing for the following prediction periods
The two univariate techniques have the same prediction trend, although TES outper-
formed SARIMA for each period except for forty days showing that long-term prediction
between the two techniques flattened. Introducing independent variables for predicting
Cloud resource workload is an absolute requirement, as using the dependent variable’s
past value to explain its future value is insufficient. However, it requires more than just
adding variables to a dataset. Adding a feature selection mechanism into the equation is
essential to define which added variables are significant and influential to the dependent
variable and its prediction.
The observation from the multi-step ahead predictions best models revealed the same
region of performance for the multivariate techniques. Looking closer at results from
RMSE outlined better short-term predictions from neural network models, while SAR-
IMAX offers more precision for long-term predictions. MAE show the same behaviour
but with the performance shift happening between twenty and thirty days of predictions
instead of ten days for RMSE.
The interpretation of these findings is that MAE evaluates the absolute distance of the
observations to the prediction and is less influenced by outliers to the same degree as
RMSE. For predicting future values, MAE is differentiated as more robust than RMSE
to measure each model goodness of fit. Overall, the prediction scores suggest SARIMAX
is more stable than Neural network models, which have less variance over time and better
generalise the data. In contrast, MAPE scores showed RNN having a better average per-
centage difference between the predictions and the actual data sample, even for long-term
predictions.
The neural network prediction error variance can be explained by the number of data

18



points used for that experiment, as a large dataset is recommended to take advantage
of neural networks. Insufficient data points can also explain RNN being the most per-
formant neural network while suffering from a vanishing gradient and loss of efficiency
with long time series sequences. A vanishing gradient is a problem that RNN face during
model training. The gradient becomes exponentially small, causing the back-propagation
process to struggle to optimise the network weights. LSTM and GRU were developed
to overcome RNN constitutional gaps to improve performance and prediction accuracy,
which is contradicted in the prediction experiment as RNN accuracy scores are negligibly
better than LSTM and GRU. Multiple factors can explain these results, starting with the
shortness of the dataset, the requirement for an extensive hyper-parameter cycle, or the
enablement of LSTM and GRU stateful functions to better control each network memory
cell.
Nonetheless, accuracy and precision maximisation can be achieved by selecting the model
and technique providing the best result for each prediction step to produce the most
optimal outcomes. Ultimately, the prediction experiment did not elect a method system-
atically outperforming others but provided a framework leveraging the best technique for
each step ahead prediction.

8 Conclusion and Future Work

This research aimed to determine the most optimal forecasting technique based on a se-
lection of commonly known methods. One of the primary outcomes is the design of a
flexible model framework combining multiple time series forecasting and feature selection
algorithms to determine the most optimal model to predict Cloud workload require-
ments. Random Forest and XGBoost were the most effective feature selection techniques
for SARIMAX and Neural Network, respectively.
The outcomes from the experiment revealed that neural network models and SARIMAX
provided the most accurate results for short-term and long-term prediction. However,
evidence from the multi-step ahead predictions plot (Figure 6) showed SARIMAX as the
model generalising the data best as showing steady residual variability over time. Fur-
thermore, a hybrid model combining RNN for short-term predictions and SARIMAX for
long-term would undoubtfully provide the most accurate prediction.
The value of this research resides not only in electing the best technique but also in select-
ing the finest methods for optimal prediction, as data set composition and nature vary
constantly. This research demonstrated that feature selection, coupled with forecasting
techniques, was a robust method to identify the best model for optimal prediction.
Future work will focus on adding feature selection algorithms such as neural network
auto-encoder or Principal Component Analysis (PCA) to introduce more variation and
strengthen the process to build the best forecasting model. Additionally, implementing a
stacking ensemble machine learning algorithm combining the predictions from the most
performant models could enhance prediction accuracy.
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