~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Apurva Kumari
Student ID: X21118175

School of Computing
National College of Ireland

Supervisor: Mr Bharat Agarwal

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Apurva Kumari
Student ID: X21118175
Programme: Data Analytics
Year: 2022
Module: Research Project
Supervisor: Mr Bharat Agarwal
Submission Due Date: 15/12/2022
Project Title: Exploration of the Most Preferred Social Media for the Fashion
Business Practices
Word Count: 1062
Page Count: [14]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Apurva Kumari

Date: 15th December 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Apurva Kumari
X21118175

1 Introduction

For the purposes of predicting business growth for fashion businesses and customer sat-
isfaction, this paper shows how to categorize customer reviews so that they can be used
again. Here are the procedures and specifications needed to recreate the machine learning
models.

2 System Configuration

The necessary hardware and software settings for the research are detailed below, along
with illustrations depicting them.

2.1 Hardware Configuration

Regarding the hardware configuration, an HP laptop with a 1.20 GHz Intel Core i3-
1005G1 processor, 8 gigabytes of random access memory, and a 64-bit operating system
was utilized (see Figure 1).

Item Value

OS Name Microsoft Windows 10 Home Single Language
Version 10.0.19045 Build 19045

Other OS Description MNot Available

OSs Manufacturer Microsoft Corporation

System Name LAPTOP-6FA4F31U

System Manufacturer HP

System Model HP Laptop 14s-drixxx

System Type x64-based PC

System SKU 227Q3PA#HAC]

Processor Intel(R) Core(TM) i3-1005G1 CPU @ 1.20GHz, 1120 ...
BIOS Version/Date AMI F.25, 09-03-2022

SMBIOS Version 32

Embedded Controll... 56.33

BIOS Mode UEFI

BaseBoard Manufact... HP

BaseBoard Product 86C8

BaseBoard Version 56.33

Platform Role Mobile

Secure Boot State On

PCR7 Configuration Elewvation Required to View
Windows Directory CAhwindows
System Directory CAhwindows\system32

Figure 1: Hardware Configuration

2.2 Software Configuration

Several different programs, such as Jupyter notebook, Microsoft Excel, Power Bi, and
Twitter API Setup, have been used to set up software. Figures 2 and 3 show, for the
Twitter dataset, how an account is made and how an API key is gotten. The version of
Jupyter Notebook that works with Anaconda Navigator is shown in Figure 2.

1. Jupyter Notebook and Anaconda Navigator : Various python libraries/packages were
installed beforehand either in anaconda environment or Jupyter notebook for sucessfull
implementation of whole code.

The majorpackages/libraries are: Tweepy,Pandas, TextBlob,NLTK,

Numpy,WordCloud, Seaborn, Transformers, Tensorflow,Sklearn, Tensorflow-gpu,
Hyperopt,Emoji,Imblearn.

2. Microsoft Excel : All datasets have been saved here.

3. Power BI : With the help of this software, exploratory data analysis and data visual-
ization have been done.

4. Twitter API account setup and API key generation : Few steps needs to be completed
before accessing authenticated Twitter APIs defined below::

e Apply and receive approval for Twitter developer accountl| shown in Figure 2.

C @ developer.twitter.com/en/docs/twitter-api/getting-started/getting-access-to-the-twitter-api

, Developer Platform Products ~ Docs v Use Cases v Community v Support~ Developer Portal

Getting started

About the Twitter API

Getting access HOW to get access to the
Make your first request Twitter API

Important resources

Step one: Sign up for a developer account
Tools and libraries

Signing up for a developer account is quick and easy! Just click on the
U D e button below, answer a few questions, and you can start exploring and
Migrate building on the Twitter API v2 using Essential access.

Twitter APl v2 Next you will create a Project and an associated developer App during
the onboarding process, which will provide you a set of credentials that

Enterprise - Gnip 2.0 you will use to authenticate all requests to the APL.

Premium v1.1

Standard v1.1

Twitter Ads API

Figure 2: Developer account signup

e Develop your own Twitter application account.
e Make sure your project has its own unique API keys and access tokens by generating
them shown in Figure 3.

"https://developer.twitter.com/en

https://developer.twitter.com/en

Products ~ Docs ~ Use Cases v Community ~ Support v Developer Portal

Step two: Save your App's key and tokens
and keep them secure

Once you have access and have created a Project and App. you will be
able to find or generate the following credentials within your developer
App:

e API Key and Secret: Essentially the username and password for
your App. You will use these to authenticate requests that require
OAuth 1.0a User Context, or to generate other tokens such as
user Access Tokens or App Access Token.

e Access Token and Secret: In general, Access Tokens represent
the user that you are making the request on behalf of. The ones
that you can generate via the developer portal represent the user
that owns the App. You will use these to authenticate requests
that require OAuth 1.0a User Context. If you would like to make
requests on behalf of another user, you will need to use the 3-
legged OAuth flow for them to authorize you.

Figure 3: API keys and token generation

e Generate bearer tokens for your app.
e Apply for access to the specified API and receive it as shown in Figure 4 and 5.

Step three: Make your first request

What’s next? Let’s make your first request to the API!

We have guides, tutorials, tools, and code to help you get started. The
following page will be a great place to start, but note that we’ve also put
together an important resources page to help you navigate the broader
documentation.

Make your first request

[Optional] Step four: Apply for additional
access

With Essential access, you are only able to make requests to the Twitter
APl v2 endpoints, and not the v1.1 or enterprise endpoints. You are
limited to 500K Tweets/month, and unable to take advantage of certain
developer portal functionality such as teams and access to additional
App environments.

Figure 4: Final request for Twitter API

Developer
Portal

Fashion Business demo

Settings Keys and tokens

Dashboard

Projects & Apps
Consumer Keys

Overview

Project 1 API Key and Secret ® ® Reveal APl Key hint

Fashion Business demo

Products LS Authentication Tokens

Bearer Token @ Revoke

Account

Billing

Access Token and Secret @ Revoke

Created with Read Only permissions

Figure 5: Final created Twitter APP and developer portal

3 Implementation

3.1 Source of data

The dataset was fetched using Twitter API and creating twitter developer account. The
link used for the same was: https://developer.twitter.com/en

3.2 Data Cleaning/Preprocessing/Transformation

1. Data was fetched from Twitter using Twitter API with the help of API keys and
Tokens shown in below Figures 6 and 7. In figure 6, python library Tweepy is imported.
to extract data from Twitter. API access keys and tokens were used to fetch texts from
Twitter using different hashtags related to fashion business. Data fetched using hashtags
is then saved in csv file.

Im

[2]1:

import pandas as pd
import tweepy

function to display dato of eocch tweest

def printbwesetdata(n, ith_ tweet):
print()
print(f"Tweet {n}:™)
print{f"uUsername: {ith_tweet[@]}")
print{f "Description: {ith_tweet[1]}")
print(f"Location: {ith_ftweet[2]3}")
print{f"Following Count:{ith_tweet[21}")
print{f"Follower Count:{ith_tweet[2+]1}")
print(f"Total Tweets:{ith_tweet[5]}")
print{f"Retweet Count:{ith_ tweet[&]}")
print{f"Tweet Text:{ith_tweet[7]1}")
print(f "Hashtags used:{ith_ tweet[3]}")}

function to perform dato extroction
def scrape({words, date_since, numtweet):

& Creagting DatarFrame using pandas

db = pd.DataFrame{columns=[‘usernams",
‘description’,
'location',
‘following" ,
'followers" ,
"totaltweets",
'retweetcount” ,
"text",
'hashtags"])

& We agre using .cursor() to search
& through twitter for the reguired tweets.
The mumber of tweets can be
& restricted using .items{number of tweets)
tweets = tweepy.Cursor{api.search_tweets,
words, lamg="en",
since id="2828-81-21",
tweet mode="extended ") . items {numbwest)

& .cursord) returns an iterocble object. Bach item in
the iterator has wvarious attributes

that vou cam agccess to

& get imformation cbout each ftweet

list bweets = [tweet for tweet in tweets]

Counter to mointoin Tweet Count
i=21

we will iterote owver each tweet in the

& list for extrocting imformaoition about each tweet

for tweet in list tweets:
username = tweet.user.screen_name
description = tweet.user.description
location = tweet.user.location
Ffollowing = tweet.user.friends_count
followers = tweet.user.followers_count
totaltweets = tweet.user.statuses_coumt

Figure 6: Twitter data extracted using Tweepy

if name__ == "' main_ ":

Enter your own credentials obtained

from your developer account

consumer_key = "MDRP2mJVfbIFATYfjAiEdX7xC"

consumer_secret = "qvDpk8wSv51GyNAUstetXY1KfcGrTSb3Erdho3FNnQNt9kKxHs"
access_key = "1600501539046625286-DBmtPFgqdyog50hdG5pi4LTullSnk20™
access_secret = "0J6VRoA2z10tABhWBZz8khJIkIkVBPf99766KxywdkyUS50"

auth = tweepy.OAuthHandler (consumer key, consumer_secret)
auth.set access token(access key, access secret)
api = tweepy.API(auth)

Enter Hashtag and initial date

print("Enter Twitter HashTag to search for™)

words = input()

print("Enter Date since The Tweets are required in yyyy-mm--dd")
date_since = "2020-01-01"

number of tweets you want to extract in one run
numtweet = 1000

scrape(words, date since, numtweet)
print('Scraping has completed!')

Figure 7: Data extracted using Access keys and Tokens

2. Using the previous code, which incorporated the four most popular hashtags, the
data was saved in the.csv file. Using the pandas package, the code seen in Figures 8
below turned all of the datasets’ data into a structured format using the DataFrame ob-
ject in Python. Also, all 4 dataframes are selected using head() function for first 5 records.

In [1]: import pandas as pd
df1=pd.read_csv('#fashion.csv')
df2=pd.read_csv('#fashionbrand.csv')
df3=pd.read_csv('#onlineshopping.csv')
dfd=pd.read_csv('#clothingbrand.csv')

In [2]: dfl.head()

Out[2]: Unnamed:
0

username description location following followers totaltwests retweetcount text hashtags
With us "you" are the Welcome to the Prestige [bosslady’,
0 0 TheEventFundis brand. Clothing design Pretoria 87 61 133 0 Sports Awards 2022 GirBuyZa',
n.. dre.. 'GinTalkzA', 'shapp...
Aways #young #ladies ¢r $20626 9y [lmequiar, 'Choice,
1 1 buy1_best arehere. Join usnow. New York, NY 8023 9348 635146 0 \nimegular Choice Amore 'Amare’, 'Womens',
B.. Womens Syn.. y...
B Hottest Sneaker Free Sneakers

[nike', 'sneakerhead',

2 2 skrscopstore Drop 50% OFF NN 0 5 4% 0 GleawaliNieAr (i
SALENn@ World... Jordan11l.. !

News | Gossip | 10 Top Casual looks of o e
3 3 DESbiz GupsupDiscore E‘”%:% M9 60T 910 0 Bolyood ”as'?;gl'mf;{:gi

What's Trendi... Actorsin\nVer. !

A |eﬂdiﬂg p\atTOlm for Ha'Pelech, Tel Aviv, [‘amnneﬁur&',
4 4 AmazngAchi #archieciure proects Meico 200 9088 12682 0 lsmelbyErezShan house Tashion
ATTh.. ‘Gecor' .

Figure 8: Data frames created

3. Various libraries like textbloh?] scikit-learn| and NLTK are imported for data-
preprocessing of texts for sentiment analysis.
4. All the tweets extracted are listed into three categories based on tones and sentiments
of texts namely, neutral negative and positive. Total percent of each sentiment is fetched
in below Figure 9.

In [15]: tw list negative = tw list[tw list["sentiment"]=="negative"]
tw list positive = tw list[tw list["sentiment"]=="positive"]
tu_list neutral = tw_list[tw list["sentiment"]=="neutral"]

In [16]:
def count values in column(data,feature):
total=data.loc[:,feature].value counts{dropna=False)
percentage=round(data.loc[:,feature].value counts(dropna=False,normalize=True)*188,2)
return pd.concat([total,percentage],axis=1,keys=['Total', 'Percentage’])

In [17]: #Count values for sentiment
count_values in column(tw_list,"sentiment")

Out[17]: Total Percentage

positive 1928 61.81
neutral 1028 3290
negative 165 5.29

Figure 9: Texts classified into sentiments

5. In Figure 10, data cleaning and transformation is performed on classified texts
where all punctuations are removed, tokenization is applied on texts , stopwords are
removed from texts and Stemming is performed. Next, In figure 11 countvectorizer is
performed to convert all texts into mathematical format in NLP to train model. A matrix
of words(3319,6553) is formed in the end to apply it in model.

2TextBlob analyzes emotions using the Lexicon. It includes polarity scores, rules, and a word-weight
dictionary.

3Python module used in sentiment analysis to detect the underlying emotional tone of phrases using
Python-written computational algorithms.

4NLTK is a set of Python tools and programs for symbolic and statistical natural language processing
in English.

In [28]: #Removing Punctuation
def remove_punct(text):
text = "".join([char for char in text if char not in string.punctuation])
text = re.sub('[@-9]+", "', text)
return text

tw_list['punct’] = tw_list[text'].apply(lambda x: remove_punct(x))

#Appliyng tokenization

def tokenization(text):
text = re.split("\W+', text)
return text

tw_list[tokenized'] = tw_list["punct’].apply(lambda x: tokenization(x.lower()))
#Removing stopwords
stopword = nltk.corpus.stopwords.words(english’)
def remove_stopwords(text):
text = [word for word in text if word not in stopword]
return text

tw_list['nonstop'] = tw_list['tokenized'].apply(lambda x: remove_ stopwords(x))
#Appliyng Stemmer
ps = nltk.PorterStemmer()

def stemming(text):
text = [ps.stem{word) for word in text]
return text

tw_list['stemmed'] = tw_list['nonstop’].apply(lambda x: stemming(x))
#Cleaning Text
def clean_text(text):

text_lc = "".join([word.lower() for word in text if word mot inm string.punctuation]) # remove puntuation
text_rc = re.sub(’[8-9]+", "', text_lc)
tokens = re.split("\W+', text_rc) # tokenization

text = [ps.stem(word) for word in tokens if word not in stopword] # remove stopwords and stemming
return text
tw_list.head()

Figure 10: Twitter data Pre-processing

In [28]: #Appliyng Countvectorizer
countVectorizer = CountVectorizer(analyzer=clean text)
countVector = countVectorizer.fit transform{tw list['text'])
print('{} Number of reviews has {} words'.format(countVector.shape[8], countVector.shape[1]))
#print (countVectorizer.get_feature_names())
count_vect_df = pd.DataFrame(countVector.toarray(), columns=countVectorizer.get feature_names out())
count_vect_df.head()

3119 Number of revisws has 6553 words

Out[29]: aajeevika aandn aaronhasmoney abandon abbey abercrombiefitch abercrombiekid abound absolut .. zebr zebra zenpet zerodownpay zeromariai
01 0 0 0 0 0 0 0 0 0. 0 0 0 0
12 0 0 0 0 0 0 0 0 0. 00 0 0
21 0 0 0 0 0 0 0 0 0. 0 0 0 0
32 0 0 0 0 0 0 0 0 0. 0 0 0 0
41 0 0 0 0 0 0 0 0 0. 0 0 0 0
5 1ows % 6353 columns

Figure 11: Countvectorizer applied

6. The clean data is then exported to csv file saved as all_tweets_fashion.csv.
7. Next, data is transformed further separately for BERT model using cleaned texts.

Bert is a pre-trained model where Bert weights are modeified as per Twitter dataset.
Token(Most occuring texts) lengths from tweet sentences are fetched and added in the
datasets which is further used in Bert model. Emojis are removed from clean texts by
importing emoji library. Various libraries were imported to successfully implement BERT
classifier like transformers, tensorflow, tensorflow-gpu, rich=12.0.1 ,sklearn etc.

Below Figure 12 shows final architecture of BERT classifier where number of total, train-
able and non-trainable parameters are defined

In [52]: model = create_model(bert_model, MAX_LEN)
model. summary ()

Model: "model”

Layer (type) Output Shape Param # Connected to
input_1 (InputLayer) [(None, 128)] 8 [1
input_2 (InputLayer) [(None, 128)] 8 [1

tf_bert_model (TFBertModel) TFBaseModelOutputiwi 189482248 ['input_1[@&][e]’,
thPoolingAndCrossAt "input_2[8][e]"]
tentions(last_hidde
n_state=(None, 128,
768),
pooler_output=(Non
e, 768),
past_key_values=No
ne, hidden_states=N
one, attentions=Hon
e, cross_attentions
=None)

dense (Dense) (None, 3) 2387 ["tf_bert_model[®][1]"]

Total params: 189,434,547
Trainable params: 189,484,547
Non-trainable params: @

Figure 12: BERT architecture

8. Lastly, imblearn library is used to balance the classified data by implementing
oversampling technique and Labelencoder() is performed to label classified texts where
Neutral is encoded as 0, Positive as 1 and Negative as 2 respectively.

9. In below Figure 13, the first model implemented is Naive Bayes Classifier where Coun-
tervectorized matrix (3119,7786) is used in training models as X_features and confusion
matrix is fetched.

In [55]: from sklearn.metrics import classification report, confusion matrix
y pred test = NaiveBclassifier.predict(X test)
Confusion matrix
cm = confusion matrix(y test, y pred test)
sns.heatmap(cm, annot= True)

Figure 13: Naive Bayes Model

10. In below Figure 14, the second model to be implemented is XGBoost classifier
where hyperparameter tuning is also performed to fetch best parameters to obtain better
accuracy.

In [63]: ###xgboost classifier

import xgboost as xgb

space={"max_depth’: hp.quniform(“max_depth”, 3, 18, 1),
‘gamma’: hp.uniform ('gamma’, 1,9),
‘reg_alpha' : hp.quniform('reg_alpha’, 4,180,1),
‘reg_lambda’ : hp.uniform('reg_lambda', 8,1),
‘colsample_bytree' : hp.uniform('colsample_bytree’, 8.5,1),
‘min_child_weight' : hp.quniform('min_child_weight', @&, 18, 1},
‘n_estimators': 188,
‘seed’: @

def objective(space):
clf=xgb.XGBClassifier(
n_estimators =space['n_estimators'], max_depth = int(space['max_depth']), gamma = space['gamma’],
reg_alpha = int(space['reg_alpha']),min_child weight=int(space['min_child_weight']),
colsample_bytree=int(space['colsample_bytree']))

evaluation = [({ ¥_train, y_train), (X_test, y_test)]

clf.fit(X_train, y_train,
eval set=evaluation, eval metric="auc",
early_stopping_rounds=1@8,verbose=False)

pred = clf.predict(X_test)

accuracy = accuracy_score(y_test, pred»8.5)
print ("SCORE:", accuracy)

return {'loss’: -accuracy, 'status’: STATUS OK }

In [64]: from hyperopt import STATUS_OK, Trials, fmin, hp, tpe
trials = Trials()

best_hyperparams = fmin({fn = objective,
space = space,
algo = tpe.suggest,
max_evals = 168,
trials = trials)

Figure 14: XGBoost Classifier

11. In below Figure 15, third mode , SVM (Support Vector Machine) is performed
where GridSearchCV is used for hyperparameter tuning where best possible tunable
paprameters are estimated and accuracy is optimized.

In [78]: from sklearn.model selection import GridSearchCV
from sklearn.svm import SVC
param grid = {'C': [@.1,1, 1@, 1@@], 'gamnma': [1,0.1,8.81,0.801], kernel': ['rbf', 'poly’, 'sigmoid"]}
grid = GridSearchCV(SVC(),param_grid,refit=True,verbose=2)
grid.fit(X_train,y_train)
print(grid.best_estimator)

Figure 15: SVM Classifier

12. In below Figure 16, BERT model classifier is performed where trained data is
masked and tokenized length is used for training the model. In order to achieve optimized
accuracy four epochs are run whcih take some time to run.

10

In [162]: history_bert = model.fit([train_input_ids,train_attention masks], y_train, validation_data=([val_input_ids,val_attention_masks],

4
Epoch 1/4
163/163 |] - 61305 37s/step - loss: B.5884 - categorical accuracy: 9.7881 - val_loss: 9.1914 - va
1 categorical accuracy: 8.9202
Epach 2/4
163/183 [] - 61215 38s/step - loss: 8.1334 - categorical accuracy: @.9535 - val loss: 8.8838 - va
1 categorical accuracy: 8.9786
Epach 3/4
163/163 [] - 7593s 475/step - loss: 8.8684 - categorical accuracy: @.9793 - val loss: 8.8418 - va
1 categorical accuracy: 8.9879
Epach 4/4
163/163 [] - 68925 42s/step - loss: 8.8222 - categorical accuracy: 8.9933 - val_loss: 0.8452 - va

1 categorical accuracy: 8.9362

In [183]: result_bert = model.predict([val_input_ids,val attention masks])

19/19 |] - 1565 8s/step

In [184]: y_pred bert = np.zeros_like(result_bert)
y_pred_bert[np.arange(len(y_pred bert)), result_bert.argmax(1)] = 1

Figure 16: BERT model Classifier

3.3 Evaluation

1. Figure 17 depicts a piece of code that has been used to demonstrate numerous classi-
fication performance measurements. According to these data, the BERT model classifier
appears to be the most accurate.

In [185]: print(classification report(y valid.argmax(l), y pred bert.argmax(1)))

precision recall fl-score support

8 6.99 1.0@ 1.08 193

1 6.98 8.98 6.98 193

2 6.98 8.97 6.98 193

accuracy 6.99 579
macro avg 6.99 8.99 6.99 579
weighted avg 8.99 8.399 8.99 579

Figure 17: BERT model Classification results

2. Below Figure 18, shows confusion matrix for BERT model classifier where 0,1,2
depicts Neutral, Positive ,Negative respectively.

11

In [106]: cm xg = confusion matrix(y_valid.argmax(l), y_pred bert.argmax(1))
sns.heatmap(cm_xg, annot= True)

Out[1e6]: <AxesSubplot: >

175

1.9e+02

150

125

1.9e+02 100

75

1.9e+02

25

Figure 18: Confusion matrix

4 EDA and Visualisation

1. Exploratory Data Analysis and Visualisation was performed both Python and Power
BI. In python, libraries like seaborn and matplotlib was used for implementing EDA.
2. Below Figure 19 depicts geographical map with Tweets count for all countries.

12

Total tweets by Location

Figure 19: Total tweets by Country

3. Below Figure 20, depicts bar chart consisting of Top 10 locations with most follwers
and total tweets. As we can clearly show, Kampala, Uganda has highest number of
followers.

13

Followers and totaltweets by Location Y E

followers ®totaltweets

15M

1.0M

1§
QEIM 1018
SN
DaEM 05M 0.15M 0146
150
E3 2 rm | £ Coau

o w Washington, DC Fiofid, USA Urited Cingaiom

L

Figure 20: Top 10 Followers and TotalTweets by Location

14

	 Introduction
	System Configuration
	 Hardware Configuration
	 Software Configuration

	Implementation
	 Source of data
	 Data Cleaning/Preprocessing/Transformation
	 Evaluation

	EDA and Visualisation

