~

"'—-
\ National
College

Ireland

Msc Data Analytics

MSc Research Project
Msc Data Analytics

Deborah Ebbu Kammu
Student 1D: x20217561

School of Computing
National College of Ireland

Supervisor: Anderson Simiscuka

National College of Ireland National
Project Submission Sheet College of

School of Computing Ireland

Student Name:

Deborah Ebbu Kammu

Student ID: x20217561
Programme: MSc Data Analytics
Year: 2022

Module: MSC Research Project
Supervisor: Anderson Simiscuka

Submission Due Date:

152022

Project Title:

Research on Negative Post Identification in the Regional Lan-
guage (Hindi)

Word Count:

500

Page Count:

[

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Date:

15th December 2022

PLEASE READ THE

FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).

You must ensure that

a copy on computer.

your own reference and in case a project is lost or mislaid. It is not sufficient to keep

you retain a HARD COPY of the project, both for | [J

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Deborah Ebbu Kammu
x20217561

1 Introduction

How to successfully replicate the project is described in this documentation. All the
details like hardware and Software requirements and libraries needed to implement this
project is mentioned in this manual.

2 System Requirements

SSD
cPy

IDE

Figure 1: System Requirements

3 Libraries Required

The following libraries were necessary for the code to operate. Some libraries are pre-
installed with Python, while others need installation.

pandas, numpy, matplotlib, sklearn, tensorflow, keras, indic-nlp-library, googletrans
These libraires can be installed by using command - pip install (library name).

4 Dataset pre-processing and transforming

[11] import io

df=pd.read csv("/content/drive/MyDrive/emotions.csv")

Figure 2: Importing Dataset

googletrans
googletrans.LANGUAGES)

': 'afrikaans', 'sq': 'albanian', 'am': 'amharic', 'ar': 'arabic', 'hy': 'armenian', 'az': 'azerbaijani', 'eu': 'basque', 'be':

+ Code — + Tet ——— 4 JeoeBARDE
n googletrans import Translator
requests
t json
translator = Translator(()|

df['translated text'] = df['Sentences'].apply(translator.translate, src='hi', dest='en').apply(getattr, args=('text',

Sentences Label translated_text
MBI ETHA AW RARAR angry my train booking is failing again and again

W veirge 1 YRET A AW AR AR angry my flight booking is failing again and again
TN AGR B AA BRE angry what rubbish are you talking about

AN AR GF HF@ L angry what tell me friend the mood is bad

AN FA W R FCTPAE angry how can you deduct my money like this

IR W awd i 78 awer @ why don't you understand my problem
AR W WY A e A dude when will | get my money back

their plan is useless

i am an sad henansa of vail

Figure 3: Translating Hindi words into English: The dataset consists of post in Hindi so
it is translated in English so that it can be understandable for other users also if they
don’t know Hindi.

t collections
from collections import Counter
import re
| processText(text):
text = text.lower()
text = re.sub('((www.["s]+)| (https?
text = re.sub('€["s]+',"'",text)
text re.sub('[s]+', ' ', text)
text = re.sub{r'#(["s]+)', r'l', text)

return text

i in range(len(df)):
df['Sente s'][i] =

processText (df['Sentences'][1i])

Figure 4: Processing Text: The sub() function searches for the pattern in the string and
replaces the matched strings with the replacement (repl). If the sub() function couldn’t
find a match, it returns the original string. Otherwise, the sub() function returns the
string after replacing the matches. Removing the unwanted links and mentions from
twitter data and cleaning it.

ort indie_tokenize

tokenization(indic_string):

tokens = []

for t in indic_tokenize.trivial tokenize(indic_string):
tukens.append(lt}l

urn tokens
'] = df['Sentences'].apply(lambda x: tokenization(x))
+ Code — + Text
= 1 in range(len(df)):

df['Sentences'][i] = [s.replace("\n", "") for 8 in df['Sentences’'][1i]]

Figure 5: Using Indicnlp for NLP and common text processing of Hindi (Indian lan-
guages). Trivial tokenizer tokenizes the punctuation boundaries (—, ;, :, etc). And it
returns the lists of tokens.

t matplotlib.pyplot as plt
st = []
for i in range(len(df)):
df_list +=df[te
font */co f

from wordecloud import WordCloud
wordeloud = WordCloud(width = 1000, height = 700,
background color ='w
min_font size = 10, font path= font).generate from frequencies(dictionary)
1o e VordCl i nage
.figure(figsiz 8, B), facecolor
mshow(wordcloud, interpolation="bili
-axis("off")
-tight_layout(pad = 0}
.show()

Figure 6: Upload "gargi.ttf” file which is uploaded in the code artifact. Word clouds,
also known as tag clouds, are visual representations of word frequency that give terms
that appear more frequently in a source text more emphasis. The word’s frequency in
the manuscript was indicated by how big it appeared in the image (s).

X_train, X_te

X_train, X_val, y_train,
X_train.head()
Sentences translated_text

171 [3md, €1, |, 1,), 5, o, g, e, oA, .. You have come! , , Today you have won my heart...

226 TEH thank you

24 [@R, 917, IR, gfEwr, @, =i, 9%, o,) Why is Indica booked again and again?

33 : , e, 42, o, R, s How did you close the channels like this

), T, o=, T, &, am) Wow |, , Told the cheap thing man

Figure 7: Training Datasets and dividing the dataset into 3 subsets train, test, val to
evaluate the performance of the model.

tk = Tokenizer(filters='!"#$%&()*+,-./: BLN1"_"{"}~=\t\n")

all sentences = X train + X test + X val

tk.fit_on_texts(X['Sentences'])
v | e eEiNTErT el

vocab_size = len(tk.word_index) +ﬂ

X _train_seqg = tk.texts_to_sequences(X_train['Sentences'])
X _test_seq = tk.texts_to_sequences(X_test['Sentences'])
X val_seq = tk.texts_to_sequences(X_val['Sentences'])

max length = 20

Figure 8: Tokenizing each word in the sentence with maximum length=20, also elimin-
ating the punctuations, line breaks, etc

tk.word_index

{'g': 1,

Figure 9: Indexing the words.

26] X _train_seq _pad = pad_sequences(X_train_seq, maxlen=max_length, paddin
X_test_seq pad = pad sequences(X_test_seq, maxlen=max length,padding t')
X _val_seq pad = pad sequences(X_val_seq, maxlen=max_length,padding='post')

le = LabelEncoder/()

y_train le = le.fit transform(y_train)
y_test le = le.transform(y_test)

y val le = le.transform(y_val)
y_train oh = to_categorical(y_train_le)
y_test_oh = to categorical(y_test le)
y_val _oh = to_categorical(y_val_le)

X_train_ seq pad

Figure 10: Sequencing and padding the datasets to make all input sequence of the same
length.

plt.plet(history.history|['ac

plt.plot(history.history["val
plt.title('Mo

plt.ylabel { =

plt.xlabel{ " Epoch

plt.legend{(["Train
plt.show()

Model accuracy

Figure 12: Plotting the accuracy of train and test data sets.

model . summary()}

Model: "sequential"

Layer (type) Output Shape

embedding (Embed (None, 20, 256) 176640

1stm (LSTM) (None, 16) 17472

dense (Dense) (None, 4)

Total param 194,180
Trainable params: 194,180
Non-trainable params: 0

Figure 13: Showing the model summary.

results = model.evaluate(X test seq pad, y test_oh)

print('/n'")
print('Test accuracy of i dings model: {0:.2f}%'.format(results[1]*100))

- 0s llms/step - loss: 1.6572 - accuracy: 0.6104

Test accuracy of word embeddings model: 61.04%

df=pd.read_csv("
= df['Sent
= df['Label’]

from sklearn.model selection ir t train_ test split
X train, X test, y train, y test train test_split(X, y, test size=0.1, random state=48)

EES
fire oR fim & Tew = F ™
: Sentences, Length: 461, dtype: object

Figure 15: We may build our training data and test data with the aid of the Sklearn
train test split function. This is so because the original dataset often serves as both the
training data and the test data. Starting with a single dataset, we divide it into two
datasets—train and test—in order to obtain the data needed to create a model.

s).fit(
cal/lib/python3.8/dist-packages/sklearn/feature_extraction/text.py: UserWarning: The parameter 'token_pattern'

warn(
ib/python3.8/dist-packages/sklearn/feature_extraction/text.py serWarning: Your stop_words may be incons

from sklearn.metrics import accuracy_score

X test_transformed = vect.transform(X_ test)

y_pred train = modell.predict(X_train vectorized)

y_pred test = modell.predict(X_test transformed)

print('Train accuracy = ', accuracy_score(y_train, y_pred train))
print('Test accuracy = ', accuracy score(y_ test, y pred test))

Train accuracy = 0.7440347071583514
Test accuracy = 0.6346153846153846

Figure 16: Showing the results of train accuracy and test accuracy.

[51] print(Final cross validation score = ', np.mean(c))

Final cross validation score = 0.6140271493212669

Figure 17: Training on the whole data set and 10 fold cross validation core.

from sklearn import svm

sve = svm.SVC()

from sklearn.svm import SVC

from sklearn.model_selection import GridSearchCV

param grid = {'Cc': [0.1, 1, 10, 100, l000],
'gamma': [1, 0.1, 0.01, 0.001, 0.00017],
kernel': ['rbf'])}

grid = GridSearchCV(SVC(), param grid, refit = True, verbose = 3)

grid.fit(X_vectorized,y)

[56] grid predictions = grid.predict(X_vectorized)

print(classification_report(y, grid_predictions))
precision recall fl-score support

angry 0.74 0.96 - 130
happy 0.91 0.89 151
neutral 0.94 0.81 128
sad 0.89 0.73 - 104

accuracy 513
macro avg - G
weighted avg Gl

Figure 18: Showing the SVM results

from sklearn.ensemble import RandomForestClassifier

classifier= RandomForestClassifier(n_estimators= 10, criterion="entropy"
classifier.fit(X vectorized, y)

y_pred= classifier.predict(X_ vectorized)
print(classification report(y pred, y))

precision recall fl-score support

angry 0.99 0.94 .97 137
happy 0.97 0.99 .98 148
neutral 0.97 0.98 na7 127
sad 0.95 0.98 .97 101

accuracy 97 513
macro avg .97 513
weighted avg . . .97 513

58] from google.colab imp

drive.mount (ontent

Figure 19: Showing the Random forest result.

	Introduction
	System Requirements
	Libraries Required
	Dataset pre-processing and transforming

