~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Sasikumar Jayapal
Student 1D: x21153272

School of Computing
National College of Ireland

Supervisor: Cristina Hava Muntean

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Sasikumar Jayapal
Student ID: x21153272
Programme: Data Analytics
Year: 2022
Module: MSc Research Project
Supervisor: Cristina Hava Muntean
Submission Due Date: 15/12/2022
Project Title: Configuration Manual
Word Count: 1065
Page Count: [

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Sasikumar Jayapal

Date: 29th January 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

1 Introduction
This document includes comprehensive instructions for setting up the hardware and soft-

ware setups, as well as detailed instructions for carrying out the research work including,
dataset preparation, preprocessing, model building, and evaluation.

2 Hardware and Software Requirements

Configuration Manual

Sasikumar Jayapal
x21153272

2.1 Hardware Configuration

This research work has been carried out on a personal laptop, hence the following figure
depicts the system configuration setup. The hardware configuration setup is Intel Core

i7 processor, 8GB of RAM, and a 64-bit operating system.

About

Device specifications

ideapad 530S-14IKB

Device name

Processor

Installed RAM
Device ID
Product ID
System type
Pen and touch

Copy

Rename this PC

LAPTOP-FMSOI4VL

Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz 1.99
GHz

8.00 GB (7.88 GB usable)
AD18FCF4-DD68-4C8D-A288-C4090940D4E2
00327-35813-72600-AA0EM

64-bit operating system, x64-based processor

No pen or touch input is available for this display

Windows specifications

Edition
Version
Installed on
OS build

Windows 10 Home Single Language
21H2

26-01-2022

19044.2251

Figure 1: System Configuration

2.2 Software Configuration

This section describes the environments that were set up and used for the implementation;
these should be prepared in advance. the following software or applications are configured
and they should be configured on the system beforehand.

1. Jupyter Notebook 6.4.5

2. Google Colaboratory (Cloud-based Jupyter notebook environment)
3. Python 3.9.7

4. Microsoft Office 2018: Word, Excel, PowerPoint

5. Online LaTex editor overleaf

6. Google Chrome and Microsoft Edge

3 Methodology and Implementation

3.1 Dataset Collection and Preparation
e Stepl: The dataset for the research work has been collected from the public repos-

itory called kaggle as shown in the below figure [2]

Food Demand Forecasting

Data Card Code (21) Discussion (3) ks New Notebook @

Business Earth and Nature Exploratory Data Analysis Time Series Analysis

Data Explorer
fulfilment_center_info.csv (1.66 kB) & 010> Version 1(20.33 MB)
D fulfiiment_center_info.csv
Detail Compact Column 5of 5 columns v M meal_info.csv
[sample_submission.csv
About this file [test.csv
MD train.csv

Contains information for each fulfillment center

e center_id = # city_code = 1 region_code = A center_ty
TYPE_A
TYPE_C

10 186 456 713 23 g3 Other(15)

Figure 2: Dataset Collection

e Step2: The dataset contains three files meal_info.csv, fulfilment_center_info.csv, and
Train.csv, and all three of them were collected and stored at the local drive for the
implementation as shown in the Figure

F

» @
» Lo

o)]
=)

C)
W
w

> This PC > New Volume (D:) » Msc Data Analytics » Sem Ill » Research Project » Dataset

~

N Name Date modified Type Size
» .

fulfilment_center_info 19-11-2022 21:.08 Microsoft Excel Com... 3 KB
* meal_info 19-10-2022 13:49 Microsoft Excel Com... 2 KB
o train 08-05-2020 05:41 Microsoft Excel Com... 18,295 KB

Figure 3: Dataset

e Step3: Another copy of the dataset files has been uploaded to google drive and
configured to be accessed from the Google Collaboratory as shown in the Figure

L Drive Q. search in Drive E
New My Drive Dataset ~
My Drive Files
Computers
Shared with me
Recent a B B
Starred
Trash B fulfilment_center_info.. B mealinfo.csv B traincsv
Storage

O

7.87 GB of 15 GB used

Figure 4: Google Drive

e Step3: The Google Colaboratory(Colab) Environment Setup is for the smooth run-
ning of the Python codes and it is very effective when the size of the dataset
is huge as it is a cloud-based application. Here, It is configured with my email
ID(sasisarath.j@gmail.com) as shown in the figure

3.2 Importing Libraries

During implementation, the necessary libraries are installed and imported for the dataset
import, exploratory data analysis, graph plotting, statistical analysis, hyperparameter
tuning, model building, and evaluations. The libraries in figure [6] are installed and im-

ported.

3.3 Accessing Data

The data from all three datasets are accessed and combined. We use Google Colab and
Jupyter Notebook, so there are two different ways to access the data.

Welcome To Colaborator
Y Gd Share £ e
File Edit View Insert Runtime Tools Help

&}

+ Code + Text 4 Copy to Drive Connect ~ * Editin ~
Table of contents O x o / g
Getting started
Data science Welcome to Colab!

Machine learning
More Resources

Featured examples

Section

If you're already familiar with Colab, check out this video to learn about interactive tables, the executed code history view, and the command

palette.

Figure 5: Google Colab

o

In []:

e
#Import Lobraries ~
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

import seaborn as sns

import os

import time

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_absolute_error

from sklearn.metrics import mean_squared_error

from sklearn.metrics import r2_score

from sklearn.preprocessing import StandardScaler

from sklearn.tree import DecisionTreeRegressor

from sklearn.neighbors import KNeighborsRegressor

from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import BaggingRegressor

from sklearn.ensemble import AdaBoostRegressor

from sklearn.ensemble import GradientBoostingRegressor
from xgboost import XGBRegressor

from sklearn.metrics import explained_variance_score
from lightgbm import LGBMRegressor

from sklearn.model selection import GridSearchCV

from catboost import CatBoostRegressor

from sklearn.preprocessing import LabelEncoder

import matplotlib.dates as mdates

from sklearn.svm import SVR

from sklearn.model selection impert train_test split
import scipy.stats as stats

import seaborn as sns

import matplotlib.pyplot as p%&

A

Figure 6: Import Libraries

3.3.1 Accessing from Jupyter Notebook

Figure [7] illustrates the way to access the datasets from the Jupyter Notebook, before
that set up a current working directory in Jupyter notebook.

In [218]: |#Set current working directory
#os.chdir('D:/Msc Data Analytics/Sem III/Research Project/Dataset')

In [211]: #Importing datasets
df_food _Orders = pd.read_csv("train.csv")
df meal info = pd.read_csv("meal info.csv")
df_center_info = pd.read_csv("fulfilment_center_info.csv", encoding='latin')

Figure 7: Jupyter Data Access

3.3.2 Accessing from Google Colab

Figure [§] illustrates the way to access the dataset from the Google drive from the Google
Colab.

[} #Mounting google drive
from google.colab import drive
drive.mount('/content/drive’, force remount=True)

B Mounted at /content/drive

[] #Import datasets
df_food_Orders = pd.read_csv("/content/drive/MyDrive/Dataset/train.csv")
df_meal_info = pd.read_csv("/content/drive/MyDrive/Dataset/meal_info.csv")
df _center_info = pd.read_csv("/content/drive/MyDrive/Dataset/fulfilment_center_info.csv")

Figure 8: Colab Data Access

3.3.3 Merging Datasets

As shown in Figure [9] all three datasets are merged.

[1 #Merging all 3 different datasets
df_food_Orders_fnl = df_food_Orders_fnl.merge(df_meal_info,on="meal_id', how = 'left')
df_food_Orders_fnl = df_food_Orders_fnl.merge(df_center_info, on="center_id', how = "left’)

Figure 9: Merge Dataset

3.4 Missing Value Check

Figure 10| shows that There are no missing values are identified.

In [217]: df_food_Orders_fnl.isnull().sum()

Out[217]: id)
Date
week
center_id
meal_id
checkout_price
base_price
emailer_for_promotion
homepage_featured
num_orders
year_of_date
month_of_date
month name
category
cuisine
city_code
city_name
region_code
region_name
center_type
op_area
dtype: intb4

D0 000000000000 000000

Figure 10: Missing Value

3.5 Data Preprocessing

As shown in figure [TI] the following preprocessing steps including missing value check,
outlier detection, Log transformation, and deriving new feature variables are carried out
during the research work.

Data Preprocessing

In [226]: city4={590:'CH1', 526:'CH2',638:'CH3"}
df_food_Orders_fnl['city_enc_4'] = df_food_Orders_fnl['city_code'].map(city4)
df_food_Orders_fnl['city_enc_4'] = df_food_Orders_fnl['city_enc_4'].fillna('CH4")

In [227]: # Outlier detection
plt.figure(figsize= (15,5))
sns.boxplot(df_fobd_OPders_fnl['num_orders'])

In [228]: |#Remove outliers
o= df_food_Orders_fnl[df_food_Orders_fnl["num_orders®]>1500@] .index
df_food_Orders_fnl= df_food_Orders_fnl.drop(o)

In [229]: #Lable encoder
1=['center_type','op_area’, 'cuisine’, "category’]
le=LabelEncoder()
for i in 1:
df_food_Orders_fnl[i]= le.fit_transform(df_food Orders_fnl[i])

In [231]: #Applying the Log transformation on the target variable
df_food_Orders_fnl['num_orders'] = np.lbg(df_food_Orders_fnl[’num_orders'])

Figure 11: Data Preprocessing

3.6 Feature Scaling and Data Splits

The feature scaling and dataset splits were carried out as shown in figure

In [246]: |#Feature scores
abs(df_food_Orders_fnl.corr()['num_orders']).sort_values(ascending=False)

Out[246]: num_orders 1.900000
checkout_price 8.389111
base_price 8.329375
homepage_featured 8.247964
emailer_for_promotion ©8.227161

center_id_118 8.003348
meal_id 2640 0.002809
compare_week_price y/n 8.901519
id 9.001379
center_id 166 8.900152
MName: num_orders, Length: 155, dtype: floate4d

In [247]: df_food_Orders_fnlzdf_food_Orders_fnl.drop(['id', 'Date’, 'checkout_price', 'month_of_date', 'year_of_date','compare_week_price y/n’',
»

In [248]: X=df_food_Orders_fnl.drop(['num_orders'],axis=1)
y:df_Food_Orders_fnl['num_ordeks']

In [249]: |# train and test split 88% and 20%
X_train, X_test, y_train, y_testz train_test_split(X, vy, test_size = 8.2, random_state=5)
train and test split 70% and 30%
X train 1, X test 1, y train 1, y test 1= train test split(X, vy, test size = 8.3, random state=5)

Figure 12: Feature Scaling and Data Split

3.7 Model Building

Several statistical and machine learning models, including multiple linear regression,
lasso, ridge, Bayesian ridge regression, SVR, decision tree, random forest, and gradient
boosting regression models, such as Gradian Boosting, XGBoosting, LightGBM, Cat-
Boost, and Facebook Prophet, are used in this research.

Figure [13] illustrates the stages of model construction for multiple linear regression,
lasso, and Ridge regression. Additionally, models for Bayesian ridge regression, SVR,
decision trees, random forests, and gradian boosting regression, including Gradian Boost-
ing, XGBoosting, Light GBM, and CatBoost, were built. The Facebook prophet model-
building steps are illustrated as shown in figure (14l

3.8 Hyperparameter Tuning

The hyperparameter tuning was carried out to find the best possible parameters that
improve the performance of the machine learning models. The following Figure il-
lustrates the hyperparameter tuning for the random forest model using the grid search
technique. Additionally, the technique is being utilized for other models as well.

3.9 Model Evaluation

The most popular evaluation metrics |Chicco D] (2021) for regression models are RMSE,
MAE, and R? are calculated and assessed as shown in figure

Linear Regression

In [251]: final_List=[]
reg = Linearfegression()
start = time.time()
linear_df=reg.fit(X_train, y_train)
Model_Execution_time=round(time.time() - start,2)
#print('Model Execution time: {:.2f}'.format(time.time() - start))
#validate result(linear_df, 'Linear Regression’,)
final_List.append(validate_result(linear_df, 'Linear Regression',Model Execution_time,X_ test,y_test))

Lasso and Ridge Regression

In [257]: from sklearn.linear_model import LassoCV
from sklearn.linear_model import RidgeCV

lasso_clf = LassoCV(n_alphas=1, max_iter=3008, random_state=0)
ridge_clf = RidgeCV(gcv_mode='auto")

start = time.time()

lasso_clf_feat = lasso_clf.fit(X_train,y_train)

Model Execution_time=round(time.time() - start,2)

#validate_result(lasso_clf feat, 'LassoCV')

final_List.append(validate_result(lasso_clf_feat, 'LassolV',Model_Execution_time,X_train,y_train))
#solution_models| 'LassoCV ALL feat'] = lasso_clf_feat

start = time.time()

ridge_clf_feat = ridge_clf.fit(X_train,y_train)

Model_Execution_timezround(time.time() - start,2)

#validate_result(ridge_clf feat, 'RidgeCV"')
final_List.append(validate_result(ridge_clf_feat, 'RidgeCV',Model Execution_time,X train,y_train))
#solution_models| 'RidgeCV ALL Feat'] = ridge clf feat

Figure 13: Models
v Facebook Prophet

° #Facebook prophet model building
df = pd.DataFrame()
df['ds'] = pd.to_datetime(df_food_Orders_TimeSeries['Date’])
df['y"] = df_food Orders_TimeSeries['num_orders']
df.head()

[1 #Setting number of predictions i.e, E.g: 10
prediction_size = 18
train_df = df[:-prediction_size]
test_df=df.tail(prediction_size)

[1 # facebook prophet model building and fitting training data
m = Prophet()
m.fit(train_df)

[1 #Future predictions..
future = m.make_future_dataframe(periods=prediction_size,freq="W")
future.tail(10)

[] #Forecasting future food orders based on the history

forecast = m.predict(future)
forecast.tail(n=3)

Figure 14: Facebook Prophet

In [73]:

Out[73]:

Hyperparameter Tuning

random_forest_parameters = {
'n_estimators':[16, 50, 106],
"'max_features':['auto’, 'sqrt', "log2’'],
"'max_depth':[3, 5, 7],

3

grid search RF feat = GridSearchCV(estimatorzrandom forest clf feat,
param_grid=random_forest_parameters, cv= 5
)

print(grid_search_RF_feat)
grid_search_RF_feat.fit(X_train, y_train)

GridSearchCV(cv=5,
estimator=RandomForestRegressor(n_estimators=58, random_state=8),
param_grid={'max_depth': [3, 5, 71,
"max_features': ['auto', 'sgrt', 'log2'],
'n_estimators': [18, 5@, 100]})

GridSearchCV(cv=5,
estimator=RandomForestRegressor(n_estimators=58, random_state=8),
param_grid={"'max_depth': [3, 5, 71,
"max_features': ['auto', 'sgrt', "log2'],
'n_estimators': [16, 58, 108]})

In [258]:

Figure 15: hyperparameter Tuning

def validate result(model, model name,Model Execution time,X_test,y test):
predicted = model.predict(X_test)
RSME_score = round(np.sqrt(mean_squared_error(y_test, predicted)),2)
print('RMSE: ', RSME_score)
MAE_score = round(mean_absolute_error(y_test, predicted), 3)
print('MAE: ', MAE_score)
R2_score = round(r2_score(y_test, predicted),2)
print('R2 score: ', R2_score)
return [model name,RSME_score,MAE score,R2 score,Model Execution time]

Figure 16: Evaluation Metrics

Model Name RMSE MAE R2 Meodel Training Time

0 Linear Regression 064 0499 073
1 LassoCV 1.04 0852 027
2 RidgeCV 064 0499 073
o Bayesian Regression 064 0499 0.73
4 Decision Tree Regression 018 0062 095
5 Random Forest with All feat 025 0179 096
€ Random Forest with Hyper 088 0716 045
T Gradient Boosting 065 0511 072
8 XGBoost Regressor 045 0342 057
9 LGE Regressor 049 0380 0584
10 CatBoost 055 0424 0350

Figure 17: Results for 70:30 splits

3.35
10.73
5.42
414
721
23718
85.70
127.66
95.77
3.19
497.26

Model Name RMSE MAE R2 Model Training Time

0 Linear Regression 064 0499 073 4.55
1 LassoCy 1.04 0851 027 13.62
2 RidgeCV 064 0499 0.73 6.45
3 Bayesian Regression 064 0499 073 462
4 Decision Tree Regression 019 0067 098 S.08
5 Random Forest with All feat 026 0131 096 290.79
6 Random Forest with Hyper 088 0716 043 99 56
7 Gradient Boosting 065 0510 0.72 159.36
8 XGBoost Regressor 045 0344 086 113.13
9 LGB Reqgressor 049 0379 084 3.61
10 CatBoost 035 0424 080 605.28

Figure 18: Results for 80:20 splits
4 Appendix

References

Chicco D, Warrens MJ, J. G. (2021). The coefficient of determination r-squared is more
informative than smape, mae, mape, mse and rmse in regression analysis evaluation,
Computer Science .

10

week 1 0.0034

center_id

meal_id

checkout_price

base_price

emailer_for_promotion

homepage_featured

num_orders

year_of date

month_of_date

dty_code

region_code

op_area

id

week

0.053

center _id

meal_id

0.053

0013

0.003

0.015

0.0013 0.0

0.018 0. 0.041 0.18

dheckout_price
base_price
_promotion
num_orders
year of date
month_of_date

homepage featured

emailer_for

Figure 19: Correlation Matrics

11

0.0021

0.0012

0.

-0.8

0.6

04

0.2

0.0

	Introduction
	Hardware and Software Requirements
	Hardware Configuration
	Software Configuration

	Methodology and Implementation
	Dataset Collection and Preparation
	Importing Libraries
	Accessing Data
	Accessing from Jupyter Notebook
	Accessing from Google Colab
	Merging Datasets

	Missing Value Check
	Data Preprocessing
	Feature Scaling and Data Splits
	Model Building
	Hyperparameter Tuning
	Model Evaluation

	Appendix

