

Configuration Manual

MSc Research Project MSc Data Analytics

Sarthak Gupta Student ID: 20247575

School of Computing National College of Ireland

Supervisor: Mr. Aaloka Anant

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Sarthak Gupta Name:

Student ID: x20247575

Programme MSc Data Analytics 5

Year: 2022-2023

Module: **Research Project**

Lecturer: Mr Aaloka Anant Submission **Due Date:** 01.02.2023

Project	Skin Lesion Classification Based on Various Machine Learning Models
Title:	Explained by Explainable Artificial Intelligence
Word	
Count:	736 Page Count: 8

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature: Sarthak Gupta

Date: 01.02.2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies)	
Attach a Moodle submission receipt of the online project	
submission, to each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both	
for your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office	Use	Only

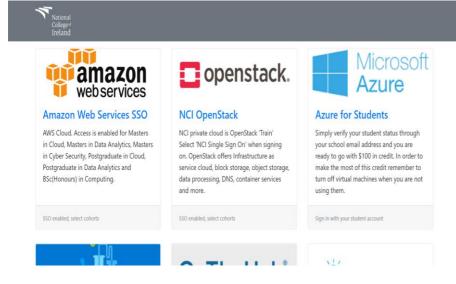
Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Skin Lesion Classification Based on Various Machine Learning Models Explained by Explainable Artificial Intelligence

Sarthak Gupta Student ID:20247575

1 Introduction


The aim of this project is to build a classification model based on a machine learning model, the XGB Classifier, and two convolutional neural network models. and with the help of SHAP and LIME, explain the decision-making process. In this document important code snippets are present that can be used to recreate the project code.

2 System Requirements

To implement this project, the Amazon Web Services platform was used to run the proposed models, which required high computational power.

2.1 Software Configuration

Amazon Web Services Setup

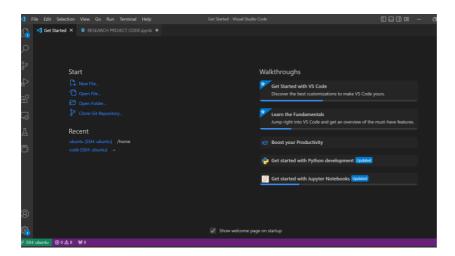
• Go to https://cloud.ncirl.ie/ and click on aazon web services

Create an EC2 Instance

• Using the settin shown in the screenshot, create an instance

=	Instance type	▼ Summary	` ١
	p.8.Butage Family p3 32,4291 244 GB Nemary So-the pander Line packing: 13.22 USD per Hour On-Demand Windows pricing: 14.632 USD per Hour	Number of instances Info	
	Key pair (login) inte You can use a key pair to securely connect to your instance. Ensure that you have access to the selected key pair before you launch the instance.	Software image (AMI) Non-supported GPU instances: P_read more ami-0e3954rla3acc821 Virtual server type (instance type)	ł
	Key pair name - required Select V Create new key pair	p3.8xlarge Firewall (security group) New security group	ĺ
	▼ Network settings info	Storage (volumes)	
	Network Info		
=	Instance type p3.8x4rge	▼ Summary	٩
	Family:p3 32 xCPU 244 GB Memory ♥ On-Bernard Linux pricing: 132 SD per Hour On-Dennard Windows pricing: 14.692 USD per Hour	Number of instances Info 1	
	▼ Key pair (login) toto You can use a key pair to securely connect to your instance. Ensure that you have access to the selected key pair before you launch the instance.	Software (mage (AMI) Non-supported GPU instances: Pread more ami-0:d035.54n33bet:821 Virtual server type (instance type)	
	Key pair name - required Select V C Create new key pair	p3.8xlarge Firewall (security group)	
		New security group	
	▼ Network settings Info Edit	Storage (volumes)	

• Select 75 GB as storage of the setup


The following should be the setup of the instance.

New EC2 Experience X	Updated less than a minute ago	9D4ee6550 (X2U24/5/5-eC2) Info	
Tell us what you think	C Connect Instance state	▼ Actions ▼	
EC2 Dashboard	Instance ID	Public IPv4 address	Private IPv4 addresses
EC2 Global View	i-00ca32579b4ee655d (x20247575-ec2)		
Events	IPv6 address	Instance state	Public IPv4 DNS
Tags	-	⊘ Running	
Limits			1.compute.amazonaws.com open address 🗹
♥ Instances	Hostname type	Private IP DNS name (IPv4 only)	
Instances New		0	
Instance Types	Answer private resource DNS name	Instance type	Elastic IP addresses
Launch Templates	IPv4 (A)	p3.8xlarge	-
Spot Requests	Auto-assigned IP address	VPC ID	AWS Compute Optimizer finding
Savings Plans	Ø	D vpc-0c735787e36a3c094	8
Reserved Instances New	-		User: arn:aws:sts::250738637992:assumed-rol
Dedicated Hosts			e/AWSReservedSSO_MSCDATA_b8ebde9582e6 d699/x20247575@student.ncirl.ie is not autho

• To transfer files WinSCP is used with the credentials

N I I I I O MA	50.04.0 MF	660									X
🖺 ubuntu - ubuntu@34.2	50.21.3 - Win	SCP						-	- I		×
🖶 🛃 🔯 Synchronize	.	🖗 🎒 Qu	ieue 🔹 Tr	ransfer Settin	gs Default	-	<i>🝠</i> -				
Local Mark Files Comm	ands <u>S</u> ession	n <u>O</u> ptions J	Remote <u>H</u>	elp							
🖵 ubuntu@34.250.21.3 ×	New Se	ession									
📫 C: Windows 🔹 🖆	• 🝸 • 💼	🛯 🏠 🎜	1	• => -	ubu • 🖆	- 🛛 - 🚺	2 🗇 🗖	🙇 Find Fi	es 🔚	- 🗢	
📓 Upload 🝷 📝 Edit 🝷	X 🕅 🕞 i	Properties	🖞 New 🕶	+ - »	Download	d 🛛 🖉 Edit	- 🗙 📝 🖟	Properties	😭 Nev	N - -	F »
C:\Users\gupta\					/home/ubuntu	V					
Name	Size	Туре		Changec _	Name		Size	Changed			Rights
1		Parent direc	tory	14-12-20	.			10-11-2022	05:03:56		rwxr-x
Desktop		File folder		14-12-2(code			14-12-2022	18:00:48		rwxrw:
		File folder		14-12-2(ataset 🔁			03-12-2022	17:13:22		rwxrw:
Zotero		File folder		13-12-2	nvidia-ackn	owledgem		10-11-2022	05:20:35		rwxrw:
Documents		File folder		13-12-2(BUILD_FRO	M_SOURCE	43 KB	10-11-2022	05:45:56		rw-r
iconda.		File folder		05-12-2(LINUX_PAC	KAGES_LIC	128,680 KB	10-11-2022	05:45:55		rw-rw-
OneDrive		File folder		23-11-20	LINUX_PAC	KAGES_LIST	163 KB	10-11-2022	05:45:46		rw-rw
ssh		File folder		19-11-2(PYTHON_P	ACKAGES_L	1,080 KB	10-11-2022	05:45:46		rw-rw-
.vscode		File folder		19-11-2(THIRD_PAR	TY_SOURC	1 KB	10-11-2022	05:45:46		rw-rw-
Videos		File folder		22-10-20							
Links		File folder		19-10-2(
Saved Games		File folder		19-10-20							
A		es. 2.12	_	19-10-2022	20:50:22						
0 B of 3.10 MB in 0 of 35			_	19 hidden	0 B of 126 MB	in 0 of 8				16 H	nidden
								SFTP-3	1	11:21	1:35 🦼

• To run the python script, we used visual studio code connected to the server via credentials

3 Environment Setup

The following libraries are installed and imported.

Pandas Numpy CV2 Matplotlib OS TenserFlow Keras LIME SHAP Seaborn Sklearn xgboost

4 Implementation

4.1 Data Collection

 The dataset was downloaded for the Havard Dataverse website and should be unzipped before use. The link of the dataset is provided below <u>https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DBW86T</u>

A Home	Name	Date modified	Туре	Size
🔷 OneDrive - Persc	✓ Last month			
	ISIC2018_Task3_Test_Images	19-11-2022 13:44	File folder	
Desktop 🖈	\sim Earlier this year			
↓ Downloads *	ISIC2018_Task3_Test_NatureMedicine_AI_Interac	16-10-2022 18:38	Microsoft Excel Com	920 KB
Documents	HAM10000_metadata	16-10-2022 18:38	Microsoft Excel Com	675 KB
	🚝 HAM10000_segmentations_lesion_tschandl	16-10-2022 18:38	Compressed (zipped)	10,556 KB
Pictures 🖈	HAM10000_images_part_2	16-10-2022 18:43	File folder	
🚱 Music 🔹 🖈	HAM10000_images_part_1	16-10-2022 18:42	File folder	
🛂 Videos 🛛 🖈				
📜 Screenshots 📌				

• The CSV file path is given to the and imported in the environment.

met	adata=pd.read	_ csv('/home/u	buntu	/dataset/	'HAM10	000_meta	adata.csv' , on_	bad_lines='s
met	adata.sample <mark>(</mark>	n=5)						
	lesion_id	image id	dv	dx_type	age	sex	localization	dataset
8845	HAM_0006947	ISIC 0031662	nv	histo		female	foot	rosendahl
7902	- HAM_0002015	- ISIC_0033771		histo	30.0	female	lower extremity	vidir_modern
1472	HAM_0002032	ISIC_0030575	mel	histo	25.0	male	back	rosendahl
2723	HAM_0004662	ISIC_0024331	bcc	histo	65.0	male	lower extremity	rosendahl
2810	HAM_0006386	ISIC_0029035	bcc	histo	70.0	male	face	rosendahl
met	adata.rename(columns = {'d		esion_typ		inplace	ion'}, inplace = True) on_type '}, inp	

4.2 Data Preprocessing

• Null values are removed using the following code

```
metadata['age'].fillna((metadata['age'].mean()), inplace=True)
metadata.isnull().sum()
```

• Data visulasization is done using matplotlib, seaborn

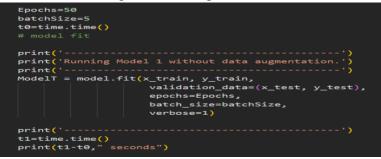
4.3 Data Transformation

• The images from the dataset were resized fro 450*600 to 120*160

metadata['image'] = metadata['path'].map(lambda x: np.asarray(Image.open(x).resize((160,120))))

• The dataset is splitted into test and train

- The dataset is Standardized
- The attributes of the dataset are converted to categorical values.


4.4 Model Building

- Three models are proposed in this dataset two built on the same CNN architecture
- CNN Architecture

Model 1 CNN on orignal dataset

• Model fitting CNN on original dataset.

Mdel 2 CNN after Image Augmentation

• Image augmentation

```
trainDatagen = ImageDataGenerator(
    rotation_range = 20, # Tried a variety of rotations but made little difference
    width_shift_range = 0.1, # 0.2
    height_shift_range = 0.1, # 0.2
    #shear_range = 0.1, # 0.2
    zoom_range = 0.1, # 0.2, 0.3
    horizontal_flip = True,
    #vertical_flip = True # tended to add a bit more overfitting
)
trainDatagen.fit(x_train) # fit the training data in order to augment.
```

• Model fit after Image augmentation

Model 3 XGB Classifier

- Categorization of columns
- Split into test and train

```
X = tile_df[features]
```

```
y = tile_df['lesion_type_categorical'].values
```

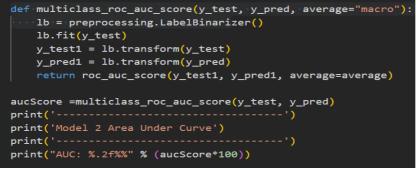
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=0)

• Model fit

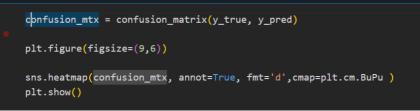
```
model = XGBClassifier(random_state=1)
model = model.fit(X_train, y_train)
```

5 Evaluation

Results of Model are calculated using the same code as the model are same but different parameters there the following snippets can be used to evaluate all the models.


• For model accuracy and loss

```
print('------')
print('Model 2 Accuracy and Loss Scores')
print('-------')
scores = model.evaluate(x_test, y_test, verbose=2)
print("CNN Error: %.2f%%" % (100-scores[1]*100))
print("CNN Acc: %.2f%%" % (scores[1]*100))
final_loss, final_acc = model.evaluate(x_test, y_test, verbose=1)
print("Final loss: {0:.4f}".format(final_loss, final_acc))
print('------')
```


• To generate classification report

• To calculate area under the curve

• To calculate confusion matrix

6 Explainable AI

• To implement install LIME AND SHAP Using !pip install command. SHAP explainer

• Define model and SHAP Value

```
explainer = shap.TreeExplainer(model)
shap_values = explainer.shap_values(X_test)
```

• Create plots to explain the models using the following codes

```
shap.summary_plot(shap_values, X_test, plot_type="bar")
```

shap.summary_plot(shap_values[0], X_test)

```
shap.initjs()
shap.force_plot(explainer.expected_value[0], shap_values[0][:100,:], X_test.iloc[:100,:])
```

shap.initjs()
shap.force_plot(explainer.expected_value[0], shap_values[0][15,:], X_test.iloc[15,:])

LIME Explainer

Install and import LIME

• LIME is inputted CNN model to explain the images

- The following code can be used to proce explaination for an image present in the datset
- Select an image at random from the datset to provide explainations

skimage.io.imshow(perturb_image(Xi,mask,superpixels))