~

""—-
\ National
College

Ireland

Generation of Synthetic examples for
imbalanced tabular data

MSc Research Project
Data Analytics

Nirav Bharat Gala
Student ID: X21125261

School of Computing
National College of Ireland

Supervisor: Dr Giovani Estrada

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Nirav Bharat Gala
Student ID: X21125261
Programme: Data Analytics
Year: 2022
Module: MSc Research Project
Supervisor: Dr Giovani Estrada
Submission Due Date: 15/12/2022
Project Title: Generation of Synthetic examples for imbalanced tabular data
Word Count: 557
Page Count: [10]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 1st February 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Generation of Synthetic examples for imbalanced

tabular data

Nirav Bharat Gala
X21125261

1 Hardware Requirements

The hardware used for this research study is an Apple Macbook air laptop with 8Gb ram
and MacOS operating system as shown in the figure.

Hardware Overview:

Model Name:

Model Identifier:

Chip:

Total Number of Cores:
Memory:

System Firmware Version:
OS Loader Version:
Serial Number (system):
Hardware UUID:
Provisioning UDID:
Activation Lock Status:

MacBook Air

Mac14,2

Apple M2

8 (4 performance and 4 efficiency)
8 GB

7459.141.1

7459.141.1

R99X92GYQ2
19BFD729-5A4C-5FB4-9D91-32977D9D88AS8
00008112-001A445A1AF1401E
Disabled

Figure 1: Hardware Requirements

2 Software Requirements

The entire implementation of this research project was done in Google collaboratory using
Python Programming language.As shown in the figure 2, Google Collab is browser based
service to create and execute notebook with python and there is no need of installation

on your computer.

M Inbox (204) - niravgala84@gn X CO Synthetic_data_generation_us X ﬁ Mail - Nirav Bharat Gala - Outl: X M Inbox (204) - niravgala84@gn X ‘
< C @ colab.research.google.com/drive/18265SpMInjw5dPcuvHKqvvANP6MTaHZa#scrollTo=AsjBn5mOWvHv
cO & Synthetic_data_generation_using_GAN.ipynb

File Edit View Insert Runtime Tools Help All changes saved

M X + Code + Text

= Files

e Sy
Q . C k [1 import pandas as pd

o] import numpy as np
o} » @@ sample_data

= data=pd.read_excel("sample_data/Pre_processed data_2.xlsx")
O
[1 ms 4
df2 = data.iloc[:,n:]

[] df2.head()

Term Home_Ownership Purpose Loan_Status Current_Loan_Amount Cre

Figure 2: Programming Software

3 Implementation

The implementation of the entire research project is performed in 5 python notebooks
which are as under.

e Automated EDA.ipynb

e Data_Preparation.ipynb

modelling.ipynb

Synthetic_data_generation_using_gan.ipynb.

Smote.ipynb.
The following libraries were used in implementation of this research study.

e Tensorflow.

e imblearn

e numpy.

e matplotlib.

e Pandas Profiler
e pandas.

e Tabgan.

e sklearn.

4 Dataset Description

e The dataset used in this research is bank loan status dataset available in Kaggle at
the below URL. https://www.kaggle.com/datasets/zaurbegiev/my-dataset.

e [t consists of 1,00,000 rows and 19 features where the target variable is Loan-Status.

5 Data pre-processing

e The dataset is uploaded to the google collab environment and pre-processed.The
notebook that performs this operation is Data_preparation.ipynb as shown in the
figure.Few of the data cleaning operations are shown in the below figures.The pre-
processed data is stored in an excel file for further use.

& Data_preparation.ipynb

File Edit View Insert Runtime Tools Help Lastedited on 6 December

+ Code + Text
es O X

B E‘,I. [A Q [] missing_values_table(dfl)
[+ % Missing Values % of Total Values
B sample_data Months since last delinquent 48337 53.8
Credit Score 19154 21.3
Annual Income 19154 21.3
Years in current job 3802 4.2
Bankruptcies 190 0.2
Tax Liens 9 0.0
Maximum Open Credit 2 0.0

Figure 3: Missing values

[1 ##Removing Duplicate rows

dfl.duplicated().sum()

10215

[1] dfl.drop_duplicates(inplace = True)

[1 dfl.shape

(89785, 19)

Figure 4: Duplicate rows

https://www.kaggle.com/datasets/zaurbegiev/my-dataset

6 Synthetic Data (Generation

After data-preprocessing , synthetic data is generated for tackling class imbalance using
GAN.The notebook that implements this is called Synthetic_data_generation_using_gan.ipynb.
The following figures display few of the important code snippets from this notebook.

from tabgan.sampler import GANGenerator

import pandas as pd

import numpy as np

from sklearn.model_selection import train test split

gen_x, gen_y = GANGenerator(gen_x_times=1.3, cat_cols=None,
bot_filter quantile=0.001, top_filter_quantile=0.999, \
is_post_process=True,
adversarial_model_ params={
"metrics": "AUC", "max_depth": 2, "max_bin": 100,|
"learning_rate": 0.01, "random_state": \
42, "n_estimators": 500,
}, pregeneration_frac=2, only_generated_data=False,\
gan_params = {"batch_size": 500, "patience": 25, \
"epochs" : 500,}).generate_data_pipe(df_x_train, df_y_train,\
df_x_test, deep_copy=True, only_adversarial=False, \
use_adversarial=True)

Fitting CTGAN transformers for each column: 100% [16116 [01:57<00:00, 5.34sit]

Training CTGAN, epochs:: 36% ([NN 181/500 [46:58<1:20:28, 15.14s/1t]

Figure 5: Tabgan Data Generator

7 Modelling on balanced and imbalanced data

Before data is balanced,modelling is performed on imbalanced data using algorithms
like Logistic Regression,Decision Tree and RandomForest.This phase is implemented in
modelling.ipynb notebook.

[1 from sklearn.preprocessing import RobustScaler

[1 scaler = RobustScaler()

[] x train scaled=scaler.fit transform(df x train)

[1 x test_scaled=scaler.transform(df x test)

[1 from sklearn.linear_model import LogisticRegression
[1 y=df_y_ train.to_numpy().ravel()

[1 modell = LogisticRegression()
modell.fit(x_train scaled,y)

LogisticRegression()

[1 modell.score(x train_scaled,y)

0.7485699137762648

Figure 6: Model Building

[1 y pred = modell.predict(x_test_scaled)
[] from sklearn.metrics import classification_report

° print(classification_report(df_y test, y pred))

(3 precision recall fl-score support
0.76 0.99 0.86 13448

1 0.49 0.04 0.07 4471

accuracy 0.75 17919

macro avg 0.62 0.51 0.46 17919
weighted avg 0.69 0.75 0.66 17919

Figure 7: Model Building

7.1 Modelling on data balanced using GAN

Data is balanced using GAN by oversampling the minority class by adding the synthetic
records generated.Hyperparameter tuning is performed and models are optimized for
metric recall as shown in the following figures.This phase is implemented in the notebook
file Synthetic_data_generation_using_gan.ipynb.

from sklearn.model_selection import GridSearchCv

params = {"C": np.logspace(-4, 4, 20),
"solver": ["lbfgs"],
"class_weight":["balanced"],
"max_iter":[10000]}

1lr_clf = LogisticRegression()

1lr_cv = GridSearchCV(lr_clf, params, scoring=b, n_jobs=-1, verbose=1, cv=5)
1r_cv.fit(x train_scaled, y)

best_params = lr_cv.best_params_

print(f"Best parameters: {best_params}")

1r_clf = LogisticRegression(**best_params)

lr_clf.fit(x_train scaled, y)

Fitting 5 folds for each of 20 candidates, totalling 100 fits
Best parameters: {'C': 0.0001, 'class_weight': 'balanced', 'max iter': 10000, 'solver': 'lbfgs'}
LogisticRegression(C=0.0001, class_weight='balanced', max_iter=10000)

Figure 8: Hyperparamter Tuning

7.2 Modelling on data balanced using SMOTE

Data is balanced using SMOTE by oversampling the minority class by adding the syn-
thetic records generated.Hyperparameter tuning is performed and models are optimized
for metric recall as shown in the following figures. This phase is implemented in the note-
book file SMOTE.ipynb.

[1 import imblearn

c, from imblearn.over_sampling import SMOTE

smote = SMOTE(sampling strategy= 'minority’)

X sm, y_sm = smote.fit resample(df x train,df y train)
[1 y_sm.value counts()

0 53558

1 53558
Name: Loan_Status, dtype: int64

Figure 9: SMOTE

from sklearn.model_selection import GridSearchCVv
n_estimators = [20,60,100, 120]

max_features = ['auto', 'sqrt']

max_depth = [2, 3, 5, 10, 15, None]
min_samples_split = [2, 5, 10]

min_samples_leaf = [1, 2, 4]

params_grid = {
'n_estimators': n_estimators,
'max_features': max_features,
'max_depth': max_depth,
'min_samples_split': min_samples_split,
'min_samples_leaf': min_samples_leaf

}

rf_clf = RandomForestClassifier(random state=42)

rf_cv = GridSearchCV(rf_clf, params_grid, scoring='recall', cv=3, verbose=1, n_jobs=-1)
rf cv.fit(x_train_scaled, y_sm)

best_params = rf_cv.best params_

print(f"Best parameters: {best_params}")

rf_clf = RandomForestClassifier(**best_params)
rf_clf.fit(x_train_scaled, y_sm)

Figure 10: Hyperparameter Tuning

8 Evaluation of Implemented Methods

Three experiments were carried out.First was modelling on the imbalanced data and
second was modelling on the data balanced data using GAN.The third experiement in-
volved modelling on the data balanced using SMOTE.The results of these experiements
were compared by classification report and ROC-AUC plots. The figures below show the
logistic regression model built in three experiments.

print(classification report(df y test, y_pred)ﬂ

precision recall fl-score support

0 0.76 0.99 0.86 13448

1 0.49 0.04 0.07 4471

accuracy 0.75 17919
macro avg 0.62 0.51 0.46 17919
weighted avg 0.69 0.75 0.66 17919

Figure 11: Experiment 1

report=classification_report(df_y test,predict)

print(report)
precision recall fl-score
0 0.82 0.58 .68
1 0.33 0.62 .43
accuracy .59
macro avg 0.58 0.60 .56
weighted avg 0.70 0.59 .62

Figure 12: Experiment 2

support

13448
4471

17919
17919
17919

report=classification_report(df_y test,predict)

print(report)
precision recall fl-score
0 0.85 0.50 0.63
1 0.33 0.74 0.45
accuracy 0.56
macro avg 0.59 0.62 0.54
weighted avg 0.72 0.56 0.58

Figure 13: Experiment 3

support

13448
4471

17919
17919
17919

fig = plt.figure(figsize=(8,6))
for i in result_table.index:
plt.plot(result_table.loc[i]['fpr'],
result table.loc[i]['tpr'],
label="{}, AUC={:.2f}".format(i, result table.loc[i]['auc']))

##plt.plot([0,1], [0,1], color='orange', linestyle='--')
plt.xticks(np.arange(0.0, 1.1, step=0.1))

plt.xlabel("False Positive Rate", fontsize=15)
plt.yticks(np.arange(0.0, 1.1, step=0.1))

plt.ylabel("True Positive Rate", fontsize=15)

plt.title('ROC Curve Analysis', fontweight='bold', fontsize=15)
plt.legend(prop={'size':13}, loc='lower right')

blt.show()

Figure 14: Experiment 1:Code for Plotting ROC-AUC Curve

ROC Curve Analysis

10 1

091

08 4

0.7 1

06 1

05 4

04

True Positive Rate

031

024

—— LogisticRegression, AUC=0.69
0.1 DecisionTreeClassifier, AUC=0.56
0.0 - —— RandomForestClassifier, AUC=0.71

00 01 02 03 04 05 06 07 08 09 10
False Positive Rate

Figure 15: Experiment 1: ROC-AUC Curve

True Positive Rate

ROC Curve Analysis

10 -
09 -
08 -
3 074
&
o 061
2
S 05
wn
o
Q. o4
@
>
= 03
02 A
—— LogisticRegression, AUC=0.66
0.1 1 DecisionTreeClassifier, AUC=0.63
00 1 —— RandomForestClassifier, AUC=0.70
00 01 02 03 04 05 06 07 08 09 10
False Positive Rate
Figure 16: Experiment 2: ROC-AUC Curve
ROC Curve Analysis
1.0
0.9 -
0.8 -
0.7
0.6 -
0.5
0.4
0.3
0.2
— LogisticRegression, AUC=0.67
e —— DecisionTreeClassifier, AUC=0.61
0.0 1 —— RandomForestClassifier, AUC=0.66
0.0 01 02 03 04 05 06 07 08 0.9 1.0

False Positive Rate

Figure 17: Experiment 3: ROC-AUC Curve

10

	 Hardware Requirements
	Software Requirements
	Implementation
	Dataset Description
	Data pre-processing
	Synthetic Data Generation
	Modelling on balanced and imbalanced data
	Modelling on data balanced using GAN
	Modelling on data balanced using SMOTE

	Evaluation of Implemented Methods

