~

\" National
College
Ireland

Identifying Diseases In Mulberry Leaves
That Affects Silk Production: A Deep
Learning Approach

MSc Research Project
Data Analytics

Himanshu Ashok Duragkar
Student ID: X20210639

School of Computing
National College of Ireland

Supervisor: Qurrat Ul Ain

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Himanshu Ashok Duragkar
Student ID: X20210639
Programme: Data Analytics
Year: 2022
Module: MSc Research Project
Supervisor: Qurrat Ul Ain
Submission Due Date: 15/12/2022
Project Title: Identifying Diseases In Mulberry Leaves That Affects Silk Pro-
duction: A Deep Learning Approach
Word Count: 557
Page Count: O

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 29th January 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

[dentifying Diseases In Mulberry Leaves That Affects
Silk Production: A Deep Learning Approach

Himanshu Ashok Duragkar
X20210639

1 Hardware Requirements

The hardware specifications used for this project were a 64-bit Windows 10 operating
system. Intel 11th gen core with Intel iRISx graphics card and 8 GB of RAM (Figure 1)

Device specifications

Device name

Processor

Installed RAM
Device ID
Product ID
System type

Pen and touch

Copy

LAPTOP-VG8IJIDQS

11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz
2.42 GHz

8.00 GB (7.70 GB usable)
8F1C7826-DA03-4DAE-8A9B-FBODAG2CTEBC
00327-36320-18304-AA0EM

64-bit operating system, x64-based processor

No pen or touch input is available for this display

Rename this PC

Windows specifications

Edition
Version
Installed on
OS build

Experience

Copy

Windows 10 Home Single Language

21H2

07-01-2022

19044.2251

Windows Feature Experience Pack 120.2212.4180.0

Figure 1: Hardware Requirements

2 Software Requirements

We wrote code in Python during the research. The Anaconda navigator platform’s Jupy-
ter Lab was used to develop Python codes. Because the system is 64-bit compatible and
a 64-bit compatible application is being used, the first step is to install the Anaconda
application (Figure 2).

Anaconda Distribution

Download

For Windows
Python 3.9 « 64-Bit Graphical Installer « 621 MB

Get Additional Installers
- L
I e

Figure 2: Anaconda navigator specification

After the installation of Anaconda navigator, Jupyter notebook can be launched from
the navigator’s home page itself (Figure 3).

:) Anaconda Navigator

File Help

{2) ANACONDA NAVIGATOR

A Home)
Applications on | base (root) | | channels
@ =nvionments
o o o o !
i vy . :
. -~ e
. g ter
N Learning A Jupy
N Dot
CMD.exe Prompt Datalore IBM Watson Studio Cloud JupyterLab Notebook
% Community 011 A9 648

4n extensible environment for interactive
and reproducible computing, based on the
Jupyter Notebook and Architecture

RuN a emd.exe terminal with your current
environment From Navigator activated

Online Data Analysis Tool with smart.
coding assistance by JetBrains. Edit and run
your Python notebooks in the cloud and
share them with your team

IBM Watson Studio Cloud provides you the
tools to analyze and visuzlize data, to
cleanse and shape data, to create and train
machine learning models. Prepare datz and
build models, using open source data
science tools or visusl modeling.

| Launeh | | Launch | | Launch | | Launch |
. J \ J J J

Figure 3: Anaconda navigator overview

Wieb-based, interactive computing
notebook envirenment. Edit and run
human-readable docs while describing t
data analysis,

| Launch |
/

3

Libraries required for Python

The following is a list of Python libraries that must be installed using the pip command
at the Python environment’s command prompt.

Tensorflow.
Keras.
numpy.
matplotlib.
pandas.
future.
sklearn.

itertools.

Dataset Description

The mulberry leaves data set can be downloaded from the Multi-agent Intelligent
Simulation Laboratory Research Unit website with help of the URL : http://misl.
it.msu.ac.th/7page_id=225.

The images come from various cultivators all over the world.

Data pre-processing

Extract the zip file. divide the data into train, test and validate part into their re-
spective folder each. For data to put into the model the images should be categorical
i.e divided into two folder infected and non infected.

Before the data is given input to the model, it is pre-processed with different image
augmentation techniques (Figure 4).

http://misl.it.msu.ac.th/?page_id=225
http://misl.it.msu.ac.th/?page_id=225

def DataGenerator(training batch, validation_batch, IMAGE_SIZE):
generator = ImageDataGenerator(preprocessing function=preprocess_input,
rescale=1./255,
rotation_range=1e,
horizontal_flip=True,
vertical flip=True)

generator.mean=np.array([163.939, 116.779, 123.68],dtype=np.float32).reshape(1,1,3)
training_gen = generator.flow_from_directory("dataset/train data/",
target_size=(IMAGE_SIZE, IMAGE_SIZE),
color_mode="rgb",
class_mode="categorical’, #categorical because two of two present classes

#infected and noninfected
batch_size=training_batch)

validation_gen = generator.flow_from directory("dataset/val/",
target_size=(IMAGE_SIZE, IMAGE_SIZE),
color_mode="rgb",
class_mode="categorical’,
batch_size=validation_batch)

generator = ImageDataGenerator(preprocessing function=preprocess_input,
rescale=1./255)

generator.mean=np.array([1€3.939, 116.779, 123.68],dtype=np.float32).reshape(1,1,3)

testing_gen = generator.flow_from directory(“dataset/test data/",
target_size=(IMAGE_SIZE, IMAGE_SIZE),
color_mode='rgb",
class_mode="categorical’,
shuffle=False)

return training gen, validation_gen, testing gen

Figure 4: Image data augmentation

6 Model Preparation

Two model is implemented in the proposed research:

6.1 VGG16 model for feature extraction and transfer learning

input_image = Input(shape=(IMAGE_SIZE, IMAGE_SIZE, 3))
base = vGG16(include top=False, weights="imagenet', input tensor=input image)

base.summary()

Figure 5: VGG16 model

6.2 Capsule neural network for image classification

This section consist of two parts. The first part is for creating the model and the second
for model fitting.

class Capsule(Layer):

def _init (self,
num_capsule,
dim_capsule,
routings=3,
share_weights=True,
activation="squash’,
*wargs):
super(Capsule, self). init (**kwargs)
self.num_capsule = num_capsule
self.dim_capsule = dim_capsule
self.routings = routings
self.share_weights = share_weights
if activation == 'squash':
self.activation = squash
else:
self.activation = activations.get(activation)

def build(self, input_shape):
input_dim_capsule = input_shape[-1]
if self.share weights:
self.kernel = s=lf.add _weight(
name="capsule kernel’,
shape=(1, input_dim capsule,
self.num_capsule * self.dim_capsule),
initializer="glorot_uniform’,
trainable=True)
else:
input_num_capsule = input_shape[-2]
self.kernel = self.add weight(
name="capsule_kernel’,
shape=(input_num_capsule, input_dim_capsule,
self.num_capsule * self.dim_capsule),
initializer="glorot_uniform’,
trainable=True)

def call(self, inputs):

if self.share weights:
hat_inputs = K.convld(inputs, self.kernel)
else:
hat_inputs = K.local_convld(inputs, self.kernel, [1], [1])

Figure 6: Capsule Model Creation

7 Evaluation of Implemented Methods

Initially, three experiments were run on the model. Experiment 1 to check weather the
model is built properly or not (Figure 8)

#experiment 1 to chcek if the model 1is working correctly or not

model.fit_generator(train,
epochs=1,
validation_data=val,
validation steps = len(val.classes)//validation batch,
steps_per_epoch=120)

loss, acc = model.evaluate_generator(test, len(test))
#priniting data loss and accuracy

print ("Data Loss: {}".format(loss))
print ("Accuracy: {@:.2f} %".format(acc * 10@))

test.reset()

Figure 7: Capsule Model fit

#experiment 1 to chcek if the model is working correctly or not

model.fit generator(train,
epochs=1,
validation_data=val,
validation steps = len(val.classes)//validation batch,
steps_per_epoch=120)

loss, acc = model.evaluate generator(test, len(test))
#priniting data loss and accuracy

print ("Data Loss: {}".format(loss))
print ("Accuracy: {@:.2f} %".format(acc * 1ee))

test.reset()

Figure 8: Experiment 1

The second experiment increased the number of epochs to 10, with the same number
of iterations per epoch (Figure 9).

#experiment 2 with increase in number of epochs

history=model.fit generator(train,
epochs=10,
validation data=val,
validation steps = len(val.classes)//validation batch,
steps_per epoch=120)

loss, acc = model.evaluate generator(test, len(test))

#priniting data loss and accuracy
print ("Data Loss: {}".format(loss))
print ("Accuracy: {@:.2f} %".format(acc * 100))

test.reset()

Figure 9: Experiment 2

To save a model or weights at some interval, a check point is created so the model or
weights can be loaded later to continue the training from the saved state.

#creating a check point for exp2 so that model can be reused for further traing in the next experiment
#used in conjunction with training using model.fit() to save a model or weights at some interval,
#so the model or weights can be loaded later to continue the training from the state saved.
lr=1e-4
checkpoint = ModelcCheckpoint(“weights.hs",
monitor="val loss',
verbose=1,
save_best_only=True,
save_weights_only=False,
mode="min")
early = EarlyStopping(monitor='val_loss', patience=10, verbose=@, mode='min', restore_best_weights=True)

callback_list = [checkpoint, early]

Figure 10: Checkpoint

The third experiment increased the number of epochs to 15 with the same number of
iterations per epoch, i.e., 120. (Figure 11)

#Experiment 3 with initailizing number of epochs to 15
model.compile(loss=margin_loss, optimizer=SGD(lr=1r, momentum=08.9), metrics=["accuracy'])

history = model.fit generator(train,
epochs=15,
validation_data=val,

validation steps = len(val.classes)//validation batch,
steps_per_epoch=120,
callbacks=callback_list)

loss, acc = model.evaluate generator(test, len(test))

print ("Data Loss: {}".format(loss))
print ("Accuracy: {e:.2f} %".format(acc * 100))

test.reset()

Figure 11: Experiment 3

The evaluation of the implemented model is addressed in this section for each experi-
ment. In the initial stage, the accuracy and loss graph is plotted as a performance metric
(Figure 12). The next classification report is printed for the implemented model (Figure
13). The last evaluation is done using a confusion matrix, where the model is evaluated
using all the common metrics (Figure 14).

#Plotting data accuracy and Loss with respect to the epochs
print(history.history.keys())

plt.plot(history.history['accuracy'])
plt.plot(history.history['val accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')

plt.xlabel(epoch")

plt.legend(["train’, 'test'], loc='upper left')
plt.show()

summarize history for loss
plt.plot(history.history[loss'])
plt.plot(history.history['val loss'])
plt.title('model loss')

plt.ylabel('loss")

plt.xlabel(epoch")

plt.legend(['train’, 'test'], loc="upper left')
plt.show()

Figure 12: Steps to display Accuracy and loss graphs

#PLotting the matrix

from sklearn.metrics import classification_ report, confusion matrix
¥ pred = model.predict generator(test)

y pred = np.argmax(Y pred, axis=1)

print('Confusion Matrix ')

cm = confusion matrix(test.classes, y pred)

plot confusion matrix(cm, classes, title='Confusion Matrix in terms of percentage')
plot confusion matrix(cm, classes,False, title='Confusion Matrix in terms of quantity’)

Figure 13: Steps to display Confusion matrix

#plotting Classification report for exp 2

from sklearn.metrics import classification report

print(“"Model : Capsule neural netwrok™)
print(classification report(test.classes, y pred))

Figure 14: Steps to display classification report

To check the results, an array is created that stores the actual results and the predicted
results. A comparison is performed to check the classified results. (Figure 15) .

#creating a array for actual results and labbeling with the class
true_labels=[]

for i in test.classes:
if(i==@):
true_labels.append("Infected")
else:
true labels.append(“Not infected")

#creating a array for predicted results and Labbeling with the class
predicted_labels=[]

for i in y_pred:
if(i==@):
predicted_labels.append("Infected")
else:
predicted_labels.append("Not infected”)

Figure 15: Actual result and predicted result array

#actual value for input image
true_labels[@]

'Infected’

#predicted value for the input image

predicted_labels[©]

'Infected’

image = mpimg.imread("C:/Users/himan/Downloads/mulberry/dataset/test data/infected/20191207_110114 - Copy.JPG")

plt.imshow(image)
plt.show()

200 400 600 80O 1000 1200

Figure 16: Classification result with comparison

	 Hardware Requirements
	Software Requirements
	Libraries required for Python
	Dataset Description
	Data pre-processing
	Model Preparation
	 VGG16 model for feature extraction and transfer learning
	Capsule neural network for image classification

	Evaluation of Implemented Methods

