~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Ravjyot Singh Duggal
Student ID: x21128901

School of Computing
National College of Ireland

Supervisor: Dr. Christian Horn

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Ravjyot Singh Duggal
Student ID: x21128901
Programme: Data Analytics
Year: 2022
Module: MSc Research Project
Supervisor: Dr. Christian Horn
Submission Due Date: 15-12-22
Project Title: Deep Learning for Driver Drowsiness Detection
Word Count: 646
Page Count: [

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Ravjyot Singh Duggal

Date: 15th December 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Ravjyot Singh Duggal
x21128901

1 Introduction

This document contains the instructions for reproducing the code for the project on driver
drowsiness. The steps taken for reproducing the deep learning models are listed below.

2 System Configuration

Hardware and software setup for the research work is explained below with respective
diagrams.

2.1 Hardware Configuration

The hardware configuration, Dell Alienware M15 R6 has been used. The specifications
are — Operating System - Microsoft Windows 11 Home Single Language, Processor — Intel
Core i7, RAM — 16GB, GPU — nvidia 3060 8GB, SSD — 500GB shown in Figure.

System > About

Ravjyot
Alienware m15 R6

@ Device specifications

Device name Ravjyot
Processor 11th Gen Intel(R) Core(TM) i7-11800H @ 2.30GHz 2.30 GHz
Installed RAM 16.0 GB (15.7 GB usable)

Figure 1: System configuration

2.2 Software Configuration

For software configuration, Python 3.10, Jupyter notebook Figure.
e Jupyter Notebook — It is used as the primary GUI for model development purposes.

e Python 3.10 — Python has been used as the main programming language.

1

Figure 2: Jupyter notebook

3 Implementation

3.1 Data Source
Dataset can be downloaded from the below. MRL Dataset. [[] Refer Figure.

@ " +

MRL Eye Dataset

The dataset is publically available and can be downloaded from hers

The annctation for approximately 15 000 pupil peints (images) can be downloaded from hore

For more details of the dataset, please refer to the paper “Pupil localization using geodesic distanee” [bibtex]
Please contact Radovan Fusek for questions about the dataset.

Figure 3: MRL dataset

3.2 Feature Engineering

e Open data preparation code in Jupyter notebook.
e Importing necessary libraries Figure.

e Checking the files ending with “.png” format and copying the data into two folders
closed eye and open eye. Figure.

https://www.overleaf.com/project/639a3b5a0c912cc351a54e26
e Installing split-folders library Figure. 0]

e Splitting the data into train, test, and validation Figure. [7]

thttp://mrl.cs.vsb.cz/eyedataset

: Jupyter data preparation Last Checkpoint: Last Sunday at 12:11 PM (autosaved)

File Edit View Insert Cell Kernel Help

B+ < & B 4 4 PRin B C MW Code v| | Ba

In [2]: import os
import shutil
import glob
from tqdm import tqdm

Figure 4: Importing libraries

In [3]: Raw_DIR= r"C:\WUsers\ravjy\Documents\College Subjects\Semester 3\Research Project\driver drowsiness\driver drowsiness\mrlEyes_201f
for dirpath, dirname, filenames in os.walk{Raw_DIR}:
for i in tqdm([f for f in filenames if f.endswith(.png")]):
if i.split(’_")[4]=="0":
shutil.copy(src=dirpath+'/'+i, dst=r™C:\Users\ravjy\Documents\College Subjects\Semester 3\Research Project\driver dr¢

elif i.split(’_")[4]=="1":
shutil.copy(src=dirpath+'/"+i, dst=r"C:\Users\ravjy\Documents\College Subjects\Semester 3\Research Project\driver drg

Figure 5: Checking image format

In [4]: !pip install split-folders

Collecting split-folders

Downloading split folders-0.5.1-py3-none-any.whl (8.4 kB)
Installing collected packages: split-folders
Successfully installed split-folders-@.5.1

Figure 6: Installing library split-folders

In [28]: import os
import numpy as np
import shutil
import random
root_dir = base_folders+"input/House_Room_Dataset-5_rooms/" # for requesting directly pics
classes_dir = os.listdir(root_dir)

train_ratio - 8.6
val_ratie - 8.1

for cls in classes_dir:
os.makedirs(input_destination +'train_ds/" + cls, exist_ok=True)
os.makedirs(input_destination + test_ds/" + cls, exist_ck=True)
os.makedirs(input_destination +°val_ds/" + cls, exist_ok=True)

for each closs, let’s counts its elements
src = root_dir + cls
allFileNames = os.listdir{src)

shuffle it and split into train/test/va
np.random. shuffle{allfileNames)
train_FileNames, test_FileNames, val_FileNames = np.split({np.array(allFileNames),[int{train_ratio * len(allFileNames)), int(i

save their initiol path
train_FileNames = [src+”/'+ name for name in train_FileNames.tolist()]
test_FileMames - [src+’/' + name for name in test_FileMames.tolist()]
val_FileNames = [src+’/' + name for name in val_FileNames.tolist()]
print("\n sresseesne pesnre e

“\n Total images: “,cls, len(allFileNames),

: ", len(train_FileNames),

‘\n Testing: °, len{test_FileNames),
A leNames),

)

copy files from the initiol
for name in train_FileNames:

shutil.copy(name, input_destination +'train/' + cls)
for name in test_FileNames:

shutil.copy(name, input_destination +'test/" + cls)

e final folders

checking everything was fine
paths = ["train/", "test/"]
for p in paths:

dir,subdir,files in os.walk(input_destination + p):
ir," ", p. str{len(files)))

Figure 7: Train, test, validation split

3.3 Training the model

e Importing the required library. Figure.

In []: from sklearn.datasets import make_circles
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score
from sklearn.metrics import cohen_kappa_score
from sklearn.metrics impert roc_auc_score
from sklearn.metrics import confusion_matrix

In [1]: import tensorflow as tf
from tensorflow.keras.applications import InceptionV3
from tensorflow.keras.models import Model
from tensorflow.keras.layers impert Dropout,Input,Flatten,Dense,MaxPooling2D
from tensorflow.keras.preprocessing.image import ImageDataGenerator # Data Augumentation

Figure 8: Importing library

e Checking if system GPU is active and available. Figure.]

e Keras function ImageDataGenerator is used to extract the Train and validation
dataset from the prepared dataset folder, with image size defined as - 80 pixels
length - 80 pixels width. Figure.

e InceptionV3 model’s architecture is pre-defined in Keras. By default, InceptionV3
takes input of the shape (299, 299, 3). But it needs to be customized to accom-
modation the input shape of the images, that is (80, 80, 3) where 3 is the RGB
Component. Figure. [I]

In [5]: from tensorflow.python.client import device lib
def get available devices():
local device protos = device lib.list local devices()
return [x.name for x in local device protos]
print(get_available devices())

In [8]: tf.test.is gpu available()

True

In [4]: with tf.device('/gpu:1'):
tf.config.list physical devices('GFPU')

Figure 9: System GPU check

In [%]: train_datagen= ImageDataGenerator(rescale=1./255, rotation_range=8.2,shear_range=8.2,
zoom_range=9.2 ,width_shift_range=8.2,
height_shift_range=8.2, validation_split=0.2)

train_data= train_datagen.flow_from_directory(r"C:\Users\ravjy\Documents\College Subjects\Semester 3\Research Project\driver dro
target_size=(88,80),batch_sizesbatchsize,class_modez'categorical',subset="training')

validation_datas train_datagen.flow_from_directory(r"C:\Users\raviy\Documents\College Subjects\Semester 3\Research Projecti\driver
target_size=(58,58) ,batch_size=batchsize,class_mode='categorical', subset="validation')

4 v

Found 64719 images belonging to 2 classes.

Found 16179 images belonging to 2 classes.

In [10]: test_datagen = ImageDataGenerator(rescalesl./255)

test_data = test_datagen.flow_from_directory(r'C:\Users\raviy\Documents\College Subjects\Semester 3\Research Project\driver drow:
target_size=(80,80),batch_size=batchsize,class_mode="categorical')

1 »

Found 4800 images belonging to 2 classes.

Figure 10: Extracting the train and validation dataset

In [11]: bmodel = InceptionV3(include_top=False, weights='imagenet', input_tensor=Input(shape=(88,80,3)))

hmodel = bmodel.output

hmodel = Flatten()(hmodel)

hmodel = Dense(64, activation='relu')(hmodel)
hmedel = Dropout(@.5)(hmodel)

hmodel = Dense(2,activation= 'softmax')(hmodel)

Figure 11: Model’s architecture

e Since the pre-

trained weights from Imagenet have been used, thus the model needs

to be prevented from updating the weights during the training. Thus, for each layer
the trainable parameter has been set to False. Figure.

In [11]: bmodel
hmodel
hmodel
hmodel
hmodel
hmodel

InceptionV3(include_top=False, weights="imagenet', input_tensor=Input(shape=(8@,80,3)))
bmodel . output

Flatten()(hmodel)

Dense(64, activationz'relu')(hmodel)

Dropout(@.5) (hmodel)

Dense(2,activationz 'softmax')(hmodel)

model = Model(inputs=bmodel.input, outputs= hmodel)
for layer in bmodel.layers:
layer.trainable = False

e Summarizing

Figure 12: Trainable parameter

the model Figure.

In [13]: model.summary()

Model: "model™

Layer (type} Output Shape Paras # Connected to

Gioput_t (Inputlayer) [(wone, 80,80, 3] © (1

convad (ConvD) (None, 39, 39, 32} 864 [“input_1[@][@]"]
batch_normalization (BatchMorm (None, 39, 39, 32) 96 [*convad[@][e]"]

alization)

activation (Activation) (None, 39, 39, 32) @ ["batch_normalization[@][@]"]
conv2d_1 (Conv2D) (Mone, 37, 37, 32) 9216 [factivation[@][@]"]
bateh_normalization_1 (BatchMo (Nene, 37, 37, 32) 96 [*eenv2d_1[@][@]"]
rmalization)

activation 1 (Activation) (Mone, 37, 37, 32) @ [*batch_normalization_1[@][@]"]

Figure 13: Model Summary

e Saves the Best model. Figure.

In [14]: frem tensorflow.keras.callbacks impert ModelCheckpoint,EarlyStopping, ReducelROnPlateau
In [15]: checkpoint = ModelCheckpoint(r™C:\Users\raviy\Documents\College Subjects\Semester 3\Research Project\driver drowsiness 1311\driw
monitor='val_loss',save_best_only=True,verbose=3)

Figure 14: Checkpoint

e It monitors the given parameter (validation loss in this case) for given number of

patience level

(5 in this case). If the value of validation loss does not improve for

the 5 consecutive epochs, then the model training needs to stop. Figure.

e This also monitors the given parameter (validation loss in this case) for given num-
ber of patience level (3 in this case). If the value of validation loss does not improve
for the 3 consecutive epochs, then the model training needs to stop. Figure.

e Following parameters were used when the model was compiled: Optimizer was
chosen to be Adam, loss was chosen to be categorical crossentropy, evaluation met-
rics were chosen to be categorical accuracy, precision, and recall.

e Model training was then initiated with the epoch number set to 50.

earlystop = EarlyStopping(monitor = 'val_loss', patience=5, verbose=z 3, restore_best_weights=True)

Figure 15: Early stopping from Keras

learning rate = ReducelROnPlateau(monitor= 'val loss', patience=3, verbosez 3,)

callbacks=[checkpoint,earlystop,learning_rate]

Figure 16: ReduceLROnPlateau from Keras

In [16]: impert scipy

In []: model.compile(optimizer='Adam', loss='categorical_crossentropy',metrics=['categorical_accuracy', tf.keras.metrics.Precision(],
tf.keras.metrics.Recall(}])

Figure 17: Model compile

model.fit(train_data,steps _per epoch=train_data.samples//batchsize,
validation data=zvalidation_data,
validation_ steps=validation_data.samples//batchsize,
callbacks=callbacks,
epochs=5@)

Figure 18: Model training

4 Evaluation

e During the training, the loss as well as validation loss are coming down with each
epoch whereas the categorical accuracy of train and validation datasets are increas-
ing with each epoch. Refer Figure.

def plot(model):
fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(15,4))
axes[0].plot(model.history.history['loss'])
axes[@].plot(model.history.history['val loss'])
axes[@].legend(['loss', 'val loss'])

axes[1].plot(model.history.history['categorical accuracy'])
axes[1].plot(model.history.history['val categorical accuracy'])
axes[1].legend(['categorical_accuracy"', 'val_categorical_accuracy'])

Figure 19: Evaluation

e Plot of Train and validation losses over 50 epochs-

import matplotlib.pyplot as plt

plot(madel)

0.210 A — — loss

T — —— val _loss
0.205 1 b
0.200 A
0.195
0.190

0.185 4

0.180 -

0.175 A

0.0 0.2 0.4 0.6 0.8 1.0

Figure 20: Plot of Train and validation losses over 50 epochs

e Plot of Train and validation categorical accuracies over 50 epochs -

e Code for calculating accuracy and loss for train, validation and test datasets -

— categorical_accuracy
— val_categorical_accuracy
0.930 A — —
0.925
0.920 _—
0.915 - _—

0.0 0.2 0.4 0.6 0.8 1.0

Figure 21: Plot of Train and validation categorical accuracies over 50 epochs

In []: acc_tr, loss_tr = model.evaluate(train_data)

print(acc_tr)
print(loss_tr)

In []: acc_vr, loss_vr = model.evaluate(validation_data)

print(acc_vr)
print(loss_wr)

In []: acc_test, loss_test = model.evaluate(test_data)

print(acc_tr)
print(loss_tr)

Figure 22: Code for calculation of categorical accuracies and losses

5 Running the model

e Importing the libraries Refer Figure.

~Ju pyter Main Production Last Checkpoint: 12/04/2022 (unsaved changes)

File Edit View Insert Cell Kernel Help

B 4+ 2= @B 424 4 PRin B C W cCode v | @m

In [1]: dimpert cv2
import tensorflow as tf
from tensorflow impert keras
from tensorflow.keras.models import load_model
import numpy as np
from pygame import mixer

pygame 2.1.2 (SDL 2.8.18, Python 3.18.8)
Hello from the pygame community. https://www.pygame.org/contribute.html

Figure 23: Importing libraries

e Importing Haar cascade files Refer Figure.

In [7]: face_cascade = cv2.(ascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifiar(cvz.date.hsarcascades + 'haarcascade_eye.iml')
model = load_model(r"C:\Users\r.

jy\Documents\College Subjects\Semester 3\Research Project\driver drowsiness\driver drowsiness\sc

1 b

Figure 24: Haar cascade files

e Code for early stop.

earlystop = EarlyStopping(monitor = 'val_loss', patience=5, verbose=z 3, restore_best_weights=True)

Figure 25: early stop

e Code for model compile and fit.

e Code for live camera feed. 27

10

In [16]: import scipy

In [1: model.compile(optimizer="Adam', loss='categorical crossentropy’,metrics=['categorical accuracy', tf.keras.metrics.Precision(),
+f.keras.metrics.Recall()])

model.fit(train_data,steps_per_epoch=train_data.samples//batchsize,
validation_datazvalidation_data
validation_steps=validation_data.samples//batchsize
callbacks=callbacks,
epochs=50)

Figure 26: Model compile and fit

import winsound
frequency = 2580 # Set frequency to 2566
duration = 1588 # Set duration to 1580 ms == 1.5 sec
import numpy as np
import cv2
path = "haarcascade_frontalface_default.xml"
faceCascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
cap = cv2.VideoCapture(9)
#check 1f webcam is opened correctly
if not cap.isOpened():
cap = cv2.VideoCapture(1)
cap.set(cv2.CAP_PROP_FPS, 15)
counter = @
while True:
ret,frame = cap.read()
eye cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_eye.xml')
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
eyes = eye cascade.detectMultiScale(gray, 1.1, 4)
for x,y,w,h in eyes:
roi_gray = gray[y:y+h, x:x+w]
roi_color = frame[y:y+h, x:x#w]
cv2.rectangle(frame, (x,y), (x+w,y+h), (®, 255, @), 2)
eyess = eye cascade.detectMultiScale(roi gray)
if len(eyess) == @:
print("Eyes are not detected")
else:
for (ex, ey, ew, eh) in eyess:
eyes_roi = roi_color[ey: ey+eh, ex: ex+ew]
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
if(faceCascade.empty()==False):
print("detected")
faces = faceCascade.detectMultiScale(gray, 1.1, 4)
Draw a rectangle around eyes
for (x,y,w,h) in faces:
cv2.rectangle(frame, (x, y), (x+w, y+h), (8, 255, @), 2)
font = cv2.FONT_HERSHEY_SIMPLEX
final image = cv2.resize(eyes roi, (860,80))
final_image = np.expand_dims(final_image, axis=@)
final_image = final_ image/255.8
Predictions = model.predict(final_image)
print(Predictions)

Figure 27: Live camera feed

11

	Introduction
	System Configuration
	Hardware Configuration
	Software Configuration

	Implementation
	Data Source
	Feature Engineering
	Training the model

	Evaluation
	Running the model

