
Configuration Manual

MSc Research Project

Data Analytics

Ravjyot Singh Duggal
Student ID: x21128901

School of Computing

National College of Ireland

Supervisor: Dr. Christian Horn

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Ravjyot Singh Duggal

Student ID: x21128901

Programme: Data Analytics

Year: 2022

Module: MSc Research Project

Supervisor: Dr. Christian Horn

Submission Due Date: 15-12-22

Project Title: Deep Learning for Driver Drowsiness Detection

Word Count: 646

Page Count: 11

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Ravjyot Singh Duggal

Date: 15th December 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Ravjyot Singh Duggal
x21128901

1 Introduction

This document contains the instructions for reproducing the code for the project on driver
drowsiness. The steps taken for reproducing the deep learning models are listed below.

2 System Configuration

Hardware and software setup for the research work is explained below with respective
diagrams.

2.1 Hardware Configuration

The hardware configuration, Dell Alienware M15 R6 has been used. The specifications
are – Operating System - Microsoft Windows 11 Home Single Language, Processor – Intel
Core i7, RAM – 16GB, GPU – nvidia 3060 8GB, SSD – 500GB shown in Figure. 1

Figure 1: System configuration

2.2 Software Configuration

For software configuration, Python 3.10, Jupyter notebook Figure. 2

• Jupyter Notebook – It is used as the primary GUI for model development purposes.

• Python 3.10 – Python has been used as the main programming language.

1



Figure 2: Jupyter notebook

3 Implementation

3.1 Data Source

Dataset can be downloaded from the below. MRL Dataset. 1 Refer Figure. 3

Figure 3: MRL dataset

3.2 Feature Engineering

• Open data preparation code in Jupyter notebook.

• Importing necessary libraries Figure. 4

• Checking the files ending with “.png” format and copying the data into two folders
closed eye and open eye. Figure. 5

https://www.overleaf.com/project/639a3b5a0c912cc351a54e26

• Installing split-folders library Figure. 6

• Splitting the data into train, test, and validation Figure. 7

1http://mrl.cs.vsb.cz/eyedataset

2



Figure 4: Importing libraries

Figure 5: Checking image format

Figure 6: Installing library split-folders

3



Figure 7: Train, test, validation split

3.3 Training the model

• Importing the required library. Figure. 8

Figure 8: Importing library

• Checking if system GPU is active and available. Figure. 9

• Keras function ImageDataGenerator is used to extract the Train and validation
dataset from the prepared dataset folder, with image size defined as - 80 pixels
length - 80 pixels width. Figure. 10

• InceptionV3 model’s architecture is pre-defined in Keras. By default, InceptionV3
takes input of the shape (299, 299, 3). But it needs to be customized to accom-
modation the input shape of the images, that is (80, 80, 3) where 3 is the RGB
Component. Figure. 11

4



Figure 9: System GPU check

Figure 10: Extracting the train and validation dataset

Figure 11: Model’s architecture

5



• Since the pre-trained weights from Imagenet have been used, thus the model needs
to be prevented from updating the weights during the training. Thus, for each layer
the trainable parameter has been set to False. Figure. 12

Figure 12: Trainable parameter

• Summarizing the model Figure. 13

Figure 13: Model Summary

• Saves the Best model. Figure. 14

Figure 14: Checkpoint

• It monitors the given parameter (validation loss in this case) for given number of
patience level (5 in this case). If the value of validation loss does not improve for
the 5 consecutive epochs, then the model training needs to stop. Figure. 15

• This also monitors the given parameter (validation loss in this case) for given num-
ber of patience level (3 in this case). If the value of validation loss does not improve
for the 3 consecutive epochs, then the model training needs to stop. Figure. 16

• Following parameters were used when the model was compiled: Optimizer was
chosen to be Adam, loss was chosen to be categorical crossentropy, evaluation met-
rics were chosen to be categorical accuracy, precision, and recall. 17

• Model training was then initiated with the epoch number set to 50. 18

6



Figure 15: Early stopping from Keras

Figure 16: ReduceLROnPlateau from Keras

Figure 17: Model compile

Figure 18: Model training

7



4 Evaluation

• During the training, the loss as well as validation loss are coming down with each
epoch whereas the categorical accuracy of train and validation datasets are increas-
ing with each epoch. Refer Figure. 19

Figure 19: Evaluation

• Plot of Train and validation losses over 50 epochs- 20

Figure 20: Plot of Train and validation losses over 50 epochs

• Plot of Train and validation categorical accuracies over 50 epochs - 21

• Code for calculating accuracy and loss for train, validation and test datasets - 22

8



Figure 21: Plot of Train and validation categorical accuracies over 50 epochs

Figure 22: Code for calculation of categorical accuracies and losses

9



5 Running the model

• Importing the libraries Refer Figure. 23

Figure 23: Importing libraries

• Importing Haar cascade files Refer Figure. 24

Figure 24: Haar cascade files

• Code for early stop. 25

Figure 25: early stop

• Code for model compile and fit. 26

• Code for live camera feed. 27

10



Figure 26: Model compile and fit

Figure 27: Live camera feed

11


	Introduction
	System Configuration
	Hardware Configuration
	Software Configuration

	Implementation
	Data Source
	Feature Engineering
	Training the model

	Evaluation
	Running the model

