[\
— 0. =

ey
—_y, -
W, N

National
College
Ireland

Configuration Manual: An Approach to
Classify Alzheimer’s Disease using Vision
Transformers

MSc Research Project
Data Analytics

Anitha Drewitt
Student ID: X21122954

School of Computing
National College of Ireland

Supervisor: Qurrat Ul Ain

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Anitha Drewitt
Student ID: X21122954
Programme: Data Analytics
Year: 2022
Module: MSc Research Project
Supervisor: Qurrat Ul Ain
Submission Due Date: 15/12/2022
Project Title: Configuration Manual: An Approach to Classify Alzheimer’s
Disease using Vision Transformers
Word Count: 518
Page Count: 2]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 1st February 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual: An Approach to Classify
Alzheimer’s Disease using Vision Transformers

Anitha Drewitt
X21122954

1 Introduction

” An Approach to Classify Alzheimer’s Disease using Vision Transformers” research can be
recreated following this configuration guide. The prerequisites that must be met in order
to successfully set up, create, run, and test this research using the suggested framework
are covered in depth in this setup manual. Details on the environment setup and the
libraries required to implement this project are provided. All the information about the
dataset, implementation and evaluation has been provided in this configuration manual.
2 Hardware Specification

e Operating System: Windows 11 Home Single Language (11.0, Build 22000.1219)

e Processor: 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz 2.42 GHz

e Installed RAM: 16.0 GB

e System Type: 64-bit operating system, x64-based processor

2.1 Software Specification

e Python
e Windows 11
2.2 Cloud Storage

e Google Drive

e Google Colab

3 Libraries required

The commands that can be used to import each library that was needed for this research
project are listed below.

Library Command

numpy import numpy as np
pandas import pandas as pd
0s import os

import tensorflow as tf

import keras
from tensorflow.keras.preprocessing.image import ImageDataGenerator

from tensorflow.keras.preprocessing.image import load_img, img_to_array

from keras.applications.vgglé import VGG16,preprocess_input

tensorflow|from keras.utils import np_utils

matplot |import matplotlib.pylab as plt

seaborn |import seaborn as sns

shap import shap
from sklearn.utils import shuffle

from sklearn.metrics import confusion_matrix

from sklearn.model_selection import train_test split

sklearn |from sklearn.metrics import classification_report

Figure 1: Library and Command

4 Dataset

The dataset for this research is taken from Kaggle which is completely available on the
public domain named Kaggle. This dataset has a total of 6400 images of four stages
namely Mild Demented (896 images), Moderate Demented (64 images), Non Demented
(3200 images) and Very Mild Demented (2240 images).

4.1 Data Preparation

The dataset is split for training, validating, and testing the model and divided into 807%
training and 20% testing. The training data is further divided into 20% validation and
80% training.

4.2 Data Preprocessing

Data Augmentation is used in preprocessing the data. It is a technique which is used to
increase the amount of data and it helps in avoiding the issue of overfitting.

4.3 Loading the dataset
The augmented data is then passed through the pre-trained ViT architecture.

5 Classification Model Implementation and Evalu-
ation

For ViT, the implementation process is started from scratch. Below code demonstrates
how the libraries are exported and the dataset has been prepared, preprocessed and used
vision transformer to classify the four stages and how the model has been evaluated.

#importing the libraries

import numpy as np
import pandas as pd

import os

import copy
import warnings
warnings.filterwarnings('ignore')

import tensorflow as tf
import cv2
import keras

from
from

tensorflow.keras.preprocessing.image import ImageDataGenerator
tensorflow.keras.preprocessing.image import load_img, img_to_array

import matplotlib
import matplotlib.pylab as plt
import seaborn as sns

lpip

install --quiet shap

import shap

from
from
from
from

sklearn.utils import shuffle

sklearn.metrics impert confusion_matrix
sklearn.model_selection import train_test_split
keras.applications.vgglé import VGG16,preprocess_input

| ANMEERENERNRENERRRNRRRRNRRNRNNE | =75 kB 7.3 Me/s

Figure 2: Importing the libraries

from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive

import os
os.chdir('/content/drive/MyDrive/Alzheimer disease Classification')

Figure 3: Mounting the drive with google drive

° W = 128 # The default size is 224 but resize to .5 to save memory size
H = 128 # The default size is 224 but resize to .5 to save memory size

label_to_class = {
'Mild_Demented': ©,
'Very_Mild_Demented': 1,
'Non_Demented': 2,
'Moderate_Demented':3,
}
class_to_label = {v: k for k, v in label_to_class.items()}
n_classes = len(label_to_class)

def get_images(dir_name='dataset', label_to_class=label to_class):
"""read images / labels from directory

Images = []
Classes = []

for j in ['/Dataset']:
for label_name in os.listdir(dir_name+str(j)):
cls = label_to_class[label_name]
for img_name in os.listdir('/'.join([dir_name+str(j), label_name])):
img = load_img('/'.join([dir_name+str(j), label_name, img_name]), target_size=(W, H))

img = img_to_array(img)

Images.append(img)
Classes.append(cls)

Images = np.array(Images, dtype=np.float32)
Classes = np.array(Classes, dtype=np.float32)

Images, Classes = shuffle(Images, Classes, random state=o)

return Images, Classes

Figure 4: Setting the width and height of the image, labeling the classes and setting the
image in image array and class in class array

[1 ## split train / test
indices_train, indices_test = train_test_split(list(range(Images.shape[8])), train_size=6.8, test_size=8.2, shuffle=True)
x_train = Images[indices_train]
y_train = Classes[indices_train]
x_test = Images[indices_test]
y_test = Classes[indices_test]

x_train.shape, y_train.shape, x_test.shape, y_test.shape

((5120, 128, 128, 3), (5128,), (1280, 128, 128, 3), (1289,))

Figure 5: Splittig the data to train and test set. 807% training set and 20% test set

° learning_rate = 9.001
weight_decay = ©.@001
batch_size = 16
num_epochs = 288
image_size = 128 # We'll resize input images to this size
patch_size = 6 # Size of the patches to be extract from the input images
num_patches = (image_size // patch_size) ** 2
projection_dim = 64
num_heads = 4
transformer_units = [
projection_dim * 2,
projection_dim,
] # Size of the transformer layers
transformer_layers = 8
mlp_head_units = [2048, 1824]

Figure 6: Defining the parameters

[] data_augmentation = keras.Sequential(
[
layers.Normalization(),
layers.Resizing(image_size, image_size),
layers.RandomFlip("horizontal"),
layers.RandomRotation(factor=0.02),
layers.RandomZoom(
height_factor=0.2, width_factor=e.2
)s
1,
name="data_augmentation",
)
Compute the mean and the variance of the training data for normalization.
data_augmentation.layers[@].adapt(x_train)

Figure 7: Data augmentation

Using the GELU activation function and Dropout layer which are used in Vit

[1 def mlp(x, hidden_units, dropout_rate):
for units in hidden_units:
x = layers.Dense(units, activation=tf.nn.gelu)(x) # GELU activation function
x = layers.Dropout(dropout_rate)(x) # Dropout layer
return x

Figure 8: Using the GELU activation function and Dropout layer which are used in ViT

° class Patches(layers.Layer):
def __init__ (self, patch_size):
super(Patches, self).__init__ ()
self.patch_size = patch_size

def call(self, images):

batch_size = tf.shape(images)[©]

patches = tf.image.extract_patches(
images=images,
sizes=[1, self.patch_size, self.patch_size, 1],
strides=[1, self.patch_size, self.patch_size, 1],
rates=[1, 1, 1, 1],
padding="VALID",

)

patch_dims = patches.shape[-1]

patches = tf.reshape(patches, [batch_size, -1, patch_dims])

return patches

Figure 9: Converting the images into fixed size patches

° import matplotlib.pyplot as plt

plt.figure(figsize=(4, 4))

image = x_train[np.random.choice(range(x_train.shape[€]))]
plt.imshow(image.astype("uints8"))

plt.axis("off")

resized_image = tf.image.resize(
tf.convert_to_tensor([image]), size=(image_size, image_size)
)
patches = Patches(patch_size)(resized_image)
print(f"Image size: {image_size} X {image_size}")
print(f"Patch size: {patch_size} X {patch_size}")
print(f"Patches per image: {patches.shape[1]}")
print(f"Elements per patch: {patches.shape[-1]}")

n = int(np.sqrt(patches.shape[1]))

plt.figure(figsize=(4, 4))

for i, patch in enumerate(patches[8]):
ax = plt.subplot(n, n, i + 1)
patch_img = tf.reshape(patch, (patch_size, patch_size, 3))
plt.imshow(patch_img.numpy().astype("uint8"))
plt.axis("off")

Figure 10: To print the size and image of the patches

° class PatchEncoder(layers.Layer):
def __init__(self, num_patches, projection_dim):
super(PatchEncoder, self).__init__ ()
self.num_patches = num_patches
self.projection = layers.Dense(units=projection_dim)
self.position_embedding = layers.Embedding(
input_dim=num_patches, output_dim=projection_dim

def call(self, patch):
positions = tf.range(start=0, limit=self.num_patches, delta=1)
encoded = self.projection(patch) + self.position_embedding(positions)
return encoded

Figure 11: A position embedding is added to embed the patches

det create vit classitier():
inputs = layers.Input(shape=input_shape)
Augment data.
augmented = data_augmentation(inputs)
Create patches.
patches = Patches(patch_size)(augmented)
Encode patches.
encoded_patches = PatchEncoder(num_patches, projection_dim)(patches)

Create multiple layers of the Transformer block.
for _ in range(transformer_layers):
Layer normalization 1.
x1 = layers.LayerNormalization(epsilon=1e-6)(encoded patches)
Create a multi-head attention layer.
attention output = layers.MultiHeadAttention(
num_heads=num_heads, key dim=projection_dim, dropout=0.1
)(x1, x1)
Skip connection 1.
x2 = layers.Add()([attention_output, encoded patches])
Layer normalization 2.
x3 = layers.lLayerNormalization(epsilon=1e-6)(x2)
MLP.
x3 = mlp(x3, hidden units=transformer_units, dropout rate=0.1)
Skip connection 2.
encoded patches = layers.Add()([x3, x2])

Create a [batch size, projection dim] tensor.

representation = layers.layerNormalization(epsilon=1e-6)(encoded patches)
representation = layers.Flatten()(representation)

representation = layers.Dropout(@.5)(representation)

Add MLP.

features = mlp(representation, hidden units=mlp head units, dropout rate=0.5)
Classify outputs.

logits = layers.Dense(num_classes, activation="sigmoid")(features)

Create the Keras model.

model = keras.Model(inputs=inputs, outputs=logits)

return model

Figure 12: ViT classifier

compile the model

model = create_vit_classifier()

model.compile(
optimizer=keras.optimizers.Adam(learning_rate=0.e001),
loss=keras.losses.CategoricalCrossentropy(),
metrics=[keras.metrics.CategoricalAccuracy(name="accuracy")],

)

model. summary ()

train the model

history = model.fit(
x_train, y_train, batch_size=16, epochs=260, validation_split=@.25

evaluate the model

loss, accuracy = model.evaluate(x_test, y_test)
print(f"Test loss: {round(loss, 2)}")

print(f"Test accuracy: {round(accuracy * 1ee, 2)} %")

val_loss: @.
val_loss: @.
val_loss: @.
val_loss: @.
val_loss: 8.

val_loss: 8.

5408

5245

5938

5296

5274

5387

vai_aciu acy .
val_accuracy:
val_accuracy:
val_accuracy:
val_accuracy:
val_accuracy:

val_accuracy:

®

©

®

©

®

®

)

®

®

.3812

.4583

.4461

4341

.3448

.4286

.3863

.3892

.3486

Lo ey | 1 oss sommssslSp sUs3. w.oULL GLCW Ely. U/ oo0U
Epoch 142/208
248/240 [] - 37s 154ms/step - loss: ©.5913 - accuracy: 6.7372
Epoch 143/200
248/240 [] - 37s 154ms/step - loss: ©.5808 - accuracy: 8.7359
Epoch 144/200
248/240 [] - 37s 154ms/step - loss: ©.5876 - accuracy: ©.7344
Epoch 145/200
248/240 [] - 37s 155ms/step - loss: ©.5914 - accuracy: ©6.7318
Epoch 146/200
248/240 [] - 39s 162ms/step - loss: ©.5748 - accuracy: ©.7388
Epoch 147/200
248/240 [] - 37s 154ms/step - loss: ©.5729 - accuracy: ©.7464
Epoch 148/200
248/240 [] - 39s 163ms/step - loss: ©.5637 - accuracy: ©.7482 - val_loss
Epoch 149/200
240/240 [] - 37s 154ms/step - loss: ©.5628 - accuracy: ©.7576 - val_loss
Epoch 15@/200
nantma~ T 1 mm- asmeroa M A mmAA A mran -
Figure 13: Compile the model
Epoch 192/200
24@/248 [] - 39s 162ms/step - loss: ©.4476 - accuracy: ©.8094 - val_loss
Epoch 193/200
240/240 [] - 39s 163ms/step - loss: ©.4353 - accuracy: ©.8141 - val_loss
Epoch 194/20@
24@/248 [] - 39s 164ms/step - loss: ©.4380 - accuracy: ©.8148 - val_loss
Epoch 195/200
240/248 [] - 37s 154ms/step - loss: ©.4414 - accuracy: ©.8135 - val_loss
Epoch 196/20@
24e/248 [] - 39s 163ms/step - loss: ©.4168 - accuracy: ©.8169 - val_loss
Epoch 197/200
240/240 [] - 39s 162ms/step - loss: ©.4344 - accuracy: 0.8180 - val_loss
Epoch 198/20@
240/240 [] - 37s 155ms/step - loss: ©.4469 - accuracy: ©.8078 - val_loss
Epoch 199/200
240/240 [] - 39s 163ms/step - loss: ©.4137 - accuracy: 0.8247 - val_loss
Epoch 200/200
240/240 [] - 39s 162ms/step - loss: ©.4085 - accuracy: 0.8279 - val_loss
408/40 [- 4s 86ms/step - loss: ©.3424 - accuracy: 0.8750

Test loss: ©.34
Test accuracy: 87.5 %

val_accuracy:
val_accuracy:
val_accuracy:
val_accuracy:
val_accuracy:
val_accuracy:
val_accuracy:
val_accuracy:

val_accuracy:

®

[

®

®

®

)

®

®

.5824 - val_accuracy:

.5180 - val_accuracy:

.8617
.8078
.8281
.8281
.87@3
.8336
.8531
.8586

.8734

®

®

®

®

®

®

®

®

.7986

.7820

.7352

.7820

.7797

.8031

.8186

.8094

Figure 14:

Accuracy and loss value

import matplotlib.pyplot as plt

summarize history for accuracy

plt.plot(history.history['accuracy'],label="train_acc")
plt.plot(history.history['val_accuracy'],label="val_acc")

plt.title('model accuracy')

plt.ylabel('accuracy')

plt.xlabel('epoch")

plt.legend(['Train', 'validation'], loc='upper left')
plt.savefig("/content/drive/MyDrive/Alzheimer disease Classification/accuracyplot.png")
plt.show()

summarize history for loss

plt.plot(history.history['loss'],label="train_loss")
plt.plot(history.history['val_loss'],label="val_loss")

plt.title('model loss')

plt.ylabel('loss"')

plt.xlabel('epoch")

plt.legend(['Train', 'Validation'], loc='upper left')
plt.savefig("/content/drive/MyDrive/Alzheimer disease Classification/lossplot.png")
plt.show()

Figure 15: Accuracy and loss

model accuracy

—— Train
-~ \falidation
0.8 1
. D.? 7
®
5
(%]
B 0.6
05 1
04 T T T T

0 25 50 5 100 125 150 175 200
epoch

Figure 16: Accuracy graph

10

loss

model loss

25
- Train
- \alidation
20 1
15 4
10 A
05 -

0 25 50 75 100 125 150 175 200
epoch

Figure 17: Loss graph

11

blt.figure(figsize = (10,7))
sns.heatmap(cm, annot=True, fmt='g')
plt.savefig("/content/drive/MyDrive/Alzheimer disease Classification/CM.png")

-500

-400

- 300

-200

- 100

Figure 18: Confusion matrix

classes = ['Mild_Demented', 'Very_Mild_Demented', 'Non_Demented', 'Moderate_Demented']
from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred,target_names=classes))

precision recall fl-score suppert

Mild_Demented 8.85 8.81 8.83 186
Very_Mild_Demented 9.78 .87 9.82 476
Non_Demented 9.90 .84 9.87 606
Moderate_Demented 9.90 8.75 9.82 12
accuracy 9.85 1280

macro avg @.86 8.82 9.84 1280

weighted avg 8.85 @.85 8.85 1289

Figure 19: Classification report

12

	Introduction
	Hardware Specification
	Software Specification
	Cloud Storage

	Libraries required
	Dataset
	Data Preparation
	Data Preprocessing
	Loading the dataset

	Classification Model Implementation and Evaluation

