~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Vrushali Bhanudas Darade
Student ID: x21123764

School of Computing
National College of Ireland

Supervisor: Athanasios Staikopoulos

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Vrushali Bhanudas Darade
Student ID: x21123764
Programme: Data Analytics
Year: 2022
Module: MSc Research Project
Supervisor: Athanasios Staikopoulos
Submission Due Date: 15/12/2022
Project Title: Configuration Manual
Word Count: 463
Page Count: [10]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Vrushali Bhanudas Darade

Date: 31st January 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Vrushali Bhanudas Darade
x21123764

1 Overview

This is the research project manual for ”Deep Learning and Natural Language Processing
for Suicidal Ideation Using Instagram Posts.” This will be a step-by-step guide for setting
up the environment, pre-requests, and running the code.

2 Hardware/Software Requirements

2.1 Hardware Requirements

The hardware configuration of the system on which this research project is build and
executed are as follow:

e Operating System: Windows 10 Home Single Language, version - 21H2.
e Processor: 11th Gen Intel(R) Core(TM) i5-11300H @ 3.10GHz 2.61 GHz
e Storage: 458 GB

e RAM: 16.0 GB

2.2 Software Requirements

Software’s required for build and execution:
e Integrated Development Environment: Google Colab
e Scripting Language: Python 3.7
e Cloud Storage: Google Drive

e Other Tool: Notepad ++, overleaf, Excel

3 Setting up environment

3.1 Google Colab

The setup begins with Google Colabs. First go to the official website of Google Colab,
followed by enabling the GPU for processing.

<O Welcome To Colaboratory - Colaw X + - 8

<« C @ colabresearch.google.com ® % O @ nwogive (Up
NewTab 4 Gmail [G} ForexCard 3 leetCode-TheWo.. [l NCI RiE i RC i omm2 [DAPA [l Project £ Apps | Microsoft 365 deonto
Welcome To Colaborator
(Y @ Share £ a
File Edit View Insert Runtime Tools Help
. + Code + Text 43 Copy to Drive Connect v /' Editing ~
i= Table of contents O x
Getting started :
& What is Colab?
Data science
) Machine learning Colab, or "Colaboratory", allows you to write and execute Python in your browser, with
= More Resources « Zero configuration required
Featured examples * Access to GPUs free of charge
« Easy sharing
Section
Whether you're a student, a data scientist or an Al researcher, Colab can make your work easier. Watch Introduction to Colab
to learn more, or just get started below!
~ Getting started
The document you are reading is not a static web page, but an interactive environment called a Colab notebook that lets you
< write and execute code.
=] For example, here is a code cell with a short Python script that computes a value, stores it in a variable, and prints the result:
>

Figure 1: Google Colab

4 Data Selection

The data used in this study was obtained from Kaggle’s dataset repository. This dataset
contains over 20k Instagram images along with a.csv file containing the caption data.

kagg]e Q search signin

Instagram Images with Captions

+ Create s
Data Code (4) Discussion (0) - % New Notebook @ :
® Home
Data Explorer
@ Competitions instagram_data (1 directories, 1 files) &> Version 2 (414 GB)
f@ Datasets ~ [0 instagram_data
=R

<> Code @ captions_csv.csv
D [IIl] » 03 instagram_data2
Discussions

img captions_csv.csv
20,5k files 133 MB

¢ m

Learn
Summary

v More » 0 34.9kfiles

» [6 columns

Figure 2: Google Colab

:“: Create N .
§ MUHAMMAD USMAN SAEED - UPDATED A YEAR AGO - 1 New Notebook & Download (26 MB) :
® Home
@ Competitions H
Depression
@ Datasets
<> Code

& Discussions
& Leamn DataCard Code (0) Discussion (0)

v More

About Dataset :J:Sability (o}

Figure 3: Google Colab

5 Data transformation and Model Building

5.1 Upload data on Google Drive:

Data is directly uploaded to Google Drive using the python package provided by Kaggle,
as shown in the Figure [] below.

© | pip install kaggle --upgrade

Looking in indexes: https://pypi.org/simple, https://us-python.pkeg.dev/colab-wheels/public/simple/

Requirement already satisfied: kaggle in /usr/local/lib/python3.7/dist-packages (1.5.12)

Requirement already satisfied: six>=1.18 in /usr/local/lib/python3.7/dist-packages (from kaggle) (1.15.0)

Requirement already satisfied: certifi in /usr/lecal/lib/python3.7/dist-packages (from kaggle) (2022.9.24)

Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from kaggle) (2.23.@)

Requirement already satisfied: python-slugify in /usr/local/lib/python3.7/dist-packages (from kaggle) (6.1.2)

Requirement already satisfied: python-dateutil in /usr/local/lib/python3.7/dist-packages (from kaggle) (2.8.2)
Reguirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from kaggle) (4.64.1)

Requirement already satisfied: urllib3 in /usr/local/lib/python3.7/dist-packages (from kaggle) (1.24.3)

Requirement already satisfied: text-unidecode>=1.3 in /usr/local/lib/python3.7/dist-packages (from python-slugify->kaggle) (1.3)
Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests->kaggle) (3.0.4)
Reguirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests->kaggle) (2.10)

[1 ! mkdir -p ~/.kaggle 8& cp /content/drive/MyDrive/kaggle.json ~/.kaggle/

! kaggle datasets download -d prithvijaunjale/instagram-images-with-captions -p /content/drive/MyDrive/colab_data/

Dounloading instagram-images-with-captions.zip to /content/drive/MyDrive/colab_data
100% 3.84G/3.84G [02:29<00:00, 28.9MB/s]
100% 3.84G/3.84G [02:39<00:00, 25.8MB/s]

Figure 4: Data upload on Google drive

5.2 Package installations and library importing

This research applied use of the following libraries for data pre-processing, model building,
and evaluation:

o Ftfy

e NTTK

genism.models

DeepFace
o CV2

e TensorFlow
e Keras

o Sklearn.metrics

° from google.colab import drive
import tensorflow as tf
#from deepface import DeepFace
#import face_recognition
import cv2
import matplotlib.pyplot as plt
import os
from os import listdir
from keras.layers import Input, Lambda, Dense, Flatten
from keras.models import Model
from keras.applications.vgglé import VGG16
from keras.applications.vgglé import preprocess_input
from keras.preprocessing import image
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
import numpy as np
from glob import glob
import splitfolders

Figure 5: Imported Libraries and packages

import numpy as np # Array and mathematical operations
import pandas as pd # working with datasets

import re

from math import exp

from numpy import sign

import random

import matplotlib.pyplot as plt # Visualisation

import ftfy

import nltk # text processing

nltk.download('punkt')

nltk.download(' stopwords')

from nltk import word tokenize,sent_tokenize

from nltk.corpus import stopwords # removing unwanted stop words

from nltk import PorterStemmer # used for convering word to its root format by removing prefix or suffix

[nltk_data] Downloading package punkt to /root/nltk_data...
[nltk_data] Package punkt is already up-to-date!

[nltk_data] Downloading package stopwords to /root/nltk_data...
[nltk_data] Package stopwords is already up-to-date!

from sklearn.metrics import classification_report, confusion_matrix, accuracy_score #model evaluation
from gensim.models import KeyedVectors # used for text processing, word2vec

from keras_preprocessing.sequence import pad_sequences # Ensures all the captions have same length

from keras.models import Model, Sequential #Im porting models

from keras.callbacks import EarlyStopping, ModelCheckpoint

from keras.layers import ConvlD, Dense, Input, LSTM, Embedding, Dropout, Activation, MaxPoolinglD, SpatialDropoutlD
from keras.preprocessing.text import Tokenizer # Converting string into substring or words

from keras.utils import plot_model

from keras.metrics import categorical_accuracy

Figure 6: Imported Libraries and packages

ftfy package is used to handle back unicode
Ipip install ftfy

[» Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Collecting ftfy
Downloading ftfy-6.1.1-py3-none-any.whl (53 kB)
| 53 kB 1.4 MB/s
Requirement already satisfied: wcwidth>=8.2.5 in /usr/local/lib/python3.8/dist-packages (from ftfy) (8.2.5)
Installing collected packages: ftfy
Successfully installed ftfy-6.1.1

Figure 7: : ftfy package downloading and installation

5.3 Google drive and Google Colab connection:

Google Colab is linked to Google drive for data access, shown in the below Figure

o # Google drive mount for accessing data file
from google.colab import drive

#Connecting to Google Drive
drive.mount('/content/drive")

C Mounted at /content/drive

Figure 8: Google drive mount

5.4 Data read, transform and splitting:
5.4.1 Text Data

The data is read into the Dataframe and verified in the first step, as shown in Figure [9]

CAPTION_CSV = '/content/drive/MyDrive/colab_data/captions_csv.csv
insta_caption_df = pd.read_csv(CAPTION_CSV, encoding = "IS0-8859-1", usecols = range(®,3))
insta_caption_df
Sk No Image File Caption 2
(1] 1 img/instat NaN
1 2 img/insta2 bye
2 3 imglinsta3 Ok, a few more. . srry | just had so much fun.
3 4 img/instad This was one of my favorite shoots IaC Ove ever.
4 5 img/insta5 ‘Wrapped round my finger like a ring
20510 20511 img/insta20511 Cowagirl 1)
20511 20512 img/insta20512 <3
20512 20513 img/insta20513 1 love me and Kylie's nail polish colors!
20513 20514 img/insta20514 Fammm
20514 20515 img/insta20515 Disneyland!
20515 rows x 3 columns

Figure 9: Caption Data file

Following that, writen custom functions for cleaning up the text data using various
Python libraries and methods, as shown in the Figure [L0] below.

Replace contractions with normal words
def replaceContractions(text, c_re=c_re):
def replace{match):
return Contractions_words[match.group{a)]
return c_re.sub{replace, text)

[20] # mRemove varicus extra items from the caption such as emojis, hashtag, special characters and so on
def capticn_cleanup{captions):
capticn_cleanup = []
for caption in captions:
caption = str(caption)
if url links then dont append to avoid news articles
To focus on depression word, check for lemgth > 1@
if re.match("(\w+:\/\\S+)", caption) == Mome and len(caption) > 1@:
removing emojis, hashtags and special characters
caption = * '.jein(
re.sub(" (B[A-Z2-18-9]+) | (\#[A-

z8-9]+) | (<Emoji:.*>»)", » captiom).split())
Unicede changes
caption = fitfy.fix_text(caption)

calling replace method for comtraction replace
caption = replaceContractions{caption)

handling punctuation
caption = ' '.join(re.sub{"(["~@-9a-Za-z \t])", " ", captiom}.split(}}

Removal of stop words

stop_words = set({stopwords.words('english®))

word_tokens = nltk.word_tokenize(captiom)

filtered_sentence = [w for w in word tokens if not w in stop_words]

capticn = «Join(filtered semtence)

Removing stemming words
caption = PorterStemmer().stem{caption)

caption_cleanup.append(caption)

return caption_cleanup

Figure 10: Clean up methods

After cleaning up the data, I tokenised the word and converted the list into a 2D array
for model building.

tokenizer = Tokenizer(num_words=max_words)

Provides number of caption data available
tokenizer = Tokenizer(num_words=max_words)
tokenizer.fit_on_texts(suicide_d + non_suicide_d)

Assign number to words
sequences d = tokenizer.texts to sequences(suicide d)
sequences_r = tokenizer.texts_to_sequences(non_suicide_d)

Assign index to words
word_index = tokenizer.word_index
print('Found %s unique tokens' % len{word_index))

Found 11545 unique tokens

#Converting data into 2D array

data_d = pad_sequences(sequences_d, maxlen=148)
data_r = pad_sequences(sequences_r, maxlen=140)
print('Shape of data d tensor:', data_d.shape)
print('Shape of data r tensor:', data_r.shape)

Shape of data_d tensor: (268, 146)
Shape of data_r tensor: (13623, 148)

Figure 11: Word Tokenisation

Data is then split for text, train and validation into 60:20:20

Data split into test (60%), validation (28%), and train data (20%)
random. seed(1)

perm_r = np.random.permutation(len(data r))
perm_d = np.random.permutation(len(data_d))

train_d = perm_d[:int(len(data_d)*(Train_split))]
test_d = perm_d[int(len(data_d)*(Train_split)):int(len(data_d)*(Train_split+Test_split))]
val d = perm d[int(len(data d)*(Train split+Test split)):]

train_r = perm_r[:int(len(data_r)*(Train_split))]
test_r = perm_r[int({len(data_r)*(Train_split)):int(len(data_r)*(Train_split+Test_split))]
val_r = perm_r[int(len{data_r)*(Train_split+Test_split)):]

data_train = np.concatenate((data_d[train_d], data_r[train_r]))
labels train = np.concatenate((labels d[train d], labels r[train r]))
data_test = np.concatenate((data_d[test_d], data_r[test_r]))
labels_test = np.concatenate((labels_d[test_d], labels r[test_r]))
data_val = np.concatenate((data_d[val_d], data_r[val_r]))

labels_wval = np.concatenate((labels d[val_d], labels r[val r]))

Figure 12: Data split into 60:20:20

5.4.2 Image Data

Loading train and test data for model implementation

train_path = "/content/drive/MyDrive/colab_data/dataset/train'
valid path = "/content/drive/MyDrive/colab_data/dataset/train/sad’

Figure 13: data load from Google drive

Data Augmentation for data transformation and pre-processing

train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 6.2,
zoom_range = @.2,
horizontal_flip = True)

test_datagen = ImageDataGenerator(rescale = 1./255)

Figure 14: Image data transformation

6 Model Implementation:

6.1 Long-Short term memory:

The Figure |15 below depicts an LSTM model with 128 LSTM layers, an input gate value
of 300, a forget gate value of 300, and an output gate value of 140.

Define parameter
n_lstm = 128

emb = len(embedding matrix)+1

Define LSTM Model

modell = Sequential()

modell.add(Embedding(emb, EMBEDDING DIM, input_ length=Max_caption_len))
modell.add(LSTM(n_lstm, return_sequences=False))

modell.add(Dense(1, activation='sigmoid'))

Figure 15: LSTM model for Caption Analysis

Finally compiling the model with ”binary_crossentropy” as loss and ”"adam” optimizer.

modell.compile(loss = 'binary_crossentropy',optimizer = 'adam',metrics = ('accuracy'))

Figure 16: LSTM model compile and model.fit

The LSTM model is enhanced by the addition of CNN for improved performance.
Before the LSTM layers, CNN layers with filter 32, activation 'relu’, and pool size 2 are
added. The Figure [I7 below depicts this.

model_m2 = Sequential()

Embedded layer

model_m2.add (Embedding(len(embedding_matrix), EMBEDDING DIM, weights=[embedding matrix],input_length=Max_caption_len, trainable=False))
Convolutional Layer

model_m2.add(ConviD(filters=32, kernel_size=3, padding='same', activation='relu’))

model_m2.add (MaxPoolinglD(pool_size=2))

model_m2.add (Dropout (8.2))

LSTM Layer

model_m2.add(LSTM(360))
model_m2.add(Dropout (8.2))
model_m2.add(Dense(1, activation='sigmoid'))

Figure 17: LSTM with CNN Model

6.2 VGGI16:

The below Figure [18|illustrates the implementation of VGG16 model. While implement-
ing the model, last layer of the model is removed.

add preprocessing layer to the front of VGG
vegg = VGG16(input_shape=IMAGE_SIZE + [3], weights='imagenet', include_top=False)

Figure 18: Pre-trained VGG1 model

our layers - you can add more if you want
x = Flatten()(vgg.output)
prediction = Dense(len(folders one_hot_enc), activation='sigmoid")(x)

create a model object
model = Model(inputs=vgg.input, outputs=prediction)

Figure 19: VGG1 model

fit the model

br = model.fit_generator(
training_set,
validation_data=test_set,
epochs=18,
steps_per epoch=len(training set),
validation steps=len(test set)

Figure 20: VGG16 Model fit

7 Model Evaluation:

The models are then evaluated by comparing train and test accuracy and loss using
various graphs. Then, for each evaluation, a separate classifier report is generated to
provide a better understanding of accuracy, precision, and recall.

Plot for Model Accuracy
plt.plot(hist_ml.history['accuracy'])
plt.plot(hist_ml.history['val accuracy'])

plt.title('model accuracy')

plt.ylabel('accuracy')

plt.xlabel('epoch”)

plt.legend(['train', ‘validation'], loc="upper left')
plt.show()

Figure 21: Model Accuracy Plot

Plot for model Loss
plt.plot(hist_ml.history['loss'])

plt.plot(hist ml.history['val loss'])
plt.title("'model loss')

plt.ylabel(loss")

plt.xlabel{ epoch")

plt.legend{['train’, 'test'], loc="upper left')
plt.show()

Figure 22: Model Loss plot

labels pred = modell.predict(data test)

labels_pred = np.round(labels_pred.flatten())
accuracy = accuracy_score(labels_test, labels_pred)
print{"Accuracy: %.2f%%" ¥ (accuracy*18@))

Figure 23: Model Prediction

print(classification_report(labels_test, labels_pred))

Figure 24: Model classification

8 Testing:

The implemented model is then tested individually against a text and image dataset to
determine the predictability of the developed models. Models that have been saved are
reloaded and checked by passing an image to determine whether it is or is not suicidal.

model = load_model('/content/drive/MyDrive/colab_data/InstagramSuicidalldeationImages.hs")
img = cv2.imread("/content/drive/MyDrive/colab_data/face_detect/face/insta46.jpg")
plt. imshow(img)
image_x = 224
image_y = 224
img = cv2.resize(img, (image_x, image_y))
img = np.reshape(img, (1,224,224,3))
pred_probab = model.predict(img)[e]
pred_class = list(pred_probab).index(max(pred_probab))
if (pred_class==0):

print("Suicidal")
else:

print(“Non Suicidal")

Figure 25: Model reload and testing

The classification of suicidal and non-suicidal identification is shown in the images
below.

Non Suicidal Suicidal
0 0
200 100 4
400 200 1
600 300 -
800 400 7
1000 300 1
—
1200 4 ‘- . 0 . . : : . ,
0 200 400 600 800 1000 0 100 200 300 400 500 600
Figure 26: Non-suicidal post Figure 27: Suicidal post

10

	Overview
	Hardware/Software Requirements
	Hardware Requirements
	Software Requirements

	Setting up environment
	Google Colab

	Data Selection
	Data transformation and Model Building
	Upload data on Google Drive:
	Package installations and library importing
	Google drive and Google Colab connection:
	Data read, transform and splitting:
	Text Data
	Image Data

	Model Implementation:
	Long-Short term memory:
	VGG16:

	Model Evaluation:
	Testing:

