“—-
\ National

Configuration Manual

MSc Research Project
Data Analytics

Gayathri Chengalakkattu Ajayan
Student ID: X21157103

School of Computing
National College of Ireland

Supervisor: Prof. Jorge Basilio

~

College
Ireland

National College of Ireland
Project Submission Sheet
School of Computing

National
College
Ireland

Student Name:

Gayathri Chengalakkattu Ajayan

Student ID: X21157103
Programme: Data Analytics

Year: 2022

Module: MSc Research Project
Supervisor: Prof. Jorge Basilio
Submission Due Date: 15/12/2022

Project Title: Configuration Manual
Word Count: 1025

Page Count: [18]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Date:

15th December 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

copy on computer.

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | J
each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both for | I

your own reference and in case a project is lost or mislaid. It is not sufficient to keep a

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Gayathri Chengalakkattu Ajayan
X21157103

1 Introduction

The configuration manual provides detailed instructions for putting the study topic
”Genuine Online Reviewer Identification using Machine Learning Techniques” into practice.
The next sections outline the necessary hardware and software for implementation. The
necessary programming code, related goal, and output outcomes are shown in order. The
main goal of the study is to create a CNN-LSTM Hybrid DL Sentiment Analysis model
that, using the collected data, can identify the Genuine Reviewer with a comparatively
high accuracy rate. It is essential to recognize the fake comments and remove them from
the dataset. In this project, many Natural Language Processing (NLP) techniques can be
used for this filtering. A review dataset is utilized to train the hybrid Convolution Neural
Network-Long Short Term Memory (CNN-LSTM) Machine Learning (ML) system to
determine if a comment or review is favorable or negative using the sentimental analysis
method. The Genuine Reviewer is selected using the combined results of the crowdsourcing
method utilized in this study. The many technologies employed to produce the results are
described in the sections that follow.

2 System Requirements

The project’s system requirements are discussed in this section, and prior to conducting
computing experiments, knowing of the system requirements is always advantageous.

2.1 Hardware Requirements

@ Device specifications

Device name DESKTOP-0BJ3MP1

Processor 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz 2.42 GHz
Installed RAM 8.00 GB (7.74 GB usable)

Device ID DAEAB467-A91B-4742-85A9-50A1873D8788

Product ID 00356-24528-29602-AA0EM

System type 64-bit operating system, x64-based processor

Pen and touch ~ No pen or touch input is available for this display

Figure 1: Hardware Requirements

2.2 Software Requirements

1. Python 3 - The whole implementation step, including dataset cleaning and final
model deployment, was done in Python.

2. MicrosoftOffice365 Excel —Gipson (2022) Datasets were imported and expor-
ted using Excel. This study made use of datasets in .CSV file type.

3. Google Colab — Python code was created and put to use in the
Colab component of the Google Cloud Platform. In the Google Colab, the classification
model’s evaluation was also done. In essence, it is a Google Cloud collaboration of the
Jupyter environment. To reserve a colab session, all you need is a Google account.

(welcome 10 Colaboratory ® share £ .
File Edit View Insert Runtime Tools Help :
+ Code + Text # Copy to Drive Connect * Editing ~
‘EE Table of contents O Xx > 7 ¢
Ve s w
Q Getting started
Data science Welcome to Colab!
@ Machine learning 5 . N N N N N N
If you're already familiar with Colab, check out this video to learn about interactive tables, the executed code history view, and the command
=) More Resources palette.

Featured examples

Section

What is Colab?

Colab, or "Colaboratory", allows you to write and execute Python in your browser, with

« Zero configuration required
« Access to GPUs free of charge
<> « Easy sharing

= Whether you're a student, a data scientist or an Al researcher, Colab can make your work easier. Watch Introduction to Colab to learn more, or
just get started below!

Figure 2: Software Requirements

3 Data Pre-Processing

3.1 Google Colab - Step wise Instructions

1. In order to set up an environment in Google Colab, an account must first be created.
2. After creating the account, we will be on the main page as depicted in figure 2.

3. A new notebook needs to be created in order to start the coding. As illustrated in
figure 3, we must first open the file before selecting New Notebook.

4. As seen in figure 4, the Google Colab provides the ability to switch the runtime
from a local machine to a GPU in order to run the code more rapidly and without
any latency.

|Fi|e Edit View Insert Runtime Tools Help

| Locate in Drive E
!

Open in playground mode

New notebook
Open notebook Ctrl+0
Upload notebook

Rename
Move

Move to trash

Save a copy in Drive
Save a copy as a GitHub Gist

Save a copy in GitHub

Save Ctrl+S

Figure 3: Colab Notebook

Runtime Tools Help All changes saved I

Run all Ctri+F9 Notebook settings
Run before Ctrl+F8
Run the focused cell Ctri+Enter
Hardware accelerator
Run selection Ctri+Shift+Enter
GPU v @
Run after Ctrl+F10 —
None |
Interrupt execution Ctri+M | ium GPUs?
Restart runtime Cirl+M . TPU

Purchase additional compute units here.

Restart and run all
Disconnect and delete runtime

. D Omit code cell output when saving this notebook
Change runtime type

Manage sessions

View runtime logs Cancel Save

Figure 4: Changing the runtime and GPU allocation

3.2 Installion of Packages and Importing Raw Data

The base dataset which is the sentiment dataset was acquired from https://www.kaggle!
com/datasets/yasserh/amazon-product-reviews-dataset.

Then second dataset for the Genuine Reviewer identification is generated by the researcher
herself using Mockaroo https://www.mockaroo.com/, which is an online data generator
tool.Each of the two datasets is obtained from its respective source and saved in .csv format
on a local drive. Installing packages is necessary before importing and pre-processing
data.

import warnings
warnings.filterwarnings("ignore™)

import pandas as pd
pd.set_option('display.max_columns',hone)

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

plt.rcParams|'font.size']=15

%matplotlib inline

from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy score,classification report,confusion matrix
from tqdm.notebook import tqdm

import pickle

from tensorflow; keras.models import load model

from tensorflow.keras.preprocessing.text import Tokenizer

from tel sequence import pad_sequences
from tensor

from

from

from tensorf izers import RMSprop,Adam

Figure 5: Importing Libraries

3.3 Importing of the Datasets

The necessary datasets are imported from Google Drive after being uploaded there. Data
is imported using the Panda library, which is imported as pd.

The first dataset is named as 7817-1.csv and the second dataset is named as
mockaroo-dataset.csv.

[] from google.colab import drive
drive.mount('/content/drive")

Mounted at /content/drive

Figure 6: Importing data into Google Colaboratory

Variable Description:
As shown in figure 7 and figure 8 df is the variable into which the base dataset is loaded
and data is the variable into which the second dataset, which is created using Mockaroo:
an online data generator tool, has been loaded.

https://www.kaggle.com/datasets/yasserh/amazon-product-reviews-dataset
https://www.kaggle.com/datasets/yasserh/amazon-product-reviews-dataset
https://www.mockaroo.com/

Dataset Loading

o df=pd.read csv("/content/drive/MyDrive/7817 1.csv")
df.head()

Figure 7: First Dataset Loading
Data Loading
[] data=pd.read csv('/content/drive/MyDrive/GenuineRevienClassification/input/mockaroo dataset.csv')

data=data.dropna()
data.head()

Figure 8: Second Dataset Loading

3.4 Data Pre-processing
3.4.1 EDD - Exploratory Data Analysis

1. The dataframes are first examined for the shape and printed as seen in figures 9
and 10.

[] #Print the total number of rows and columns in the dataset/dataframe
df.shape

(1597, 27)

Figure 9: Shape of DatakFrame ”df” associated with first dataset

[] data.shape
(1894, 3)
Figure 10: Shape of DataFrame ”"data” associated with second dataset
2. Storing only those columns to the dataframe ”df” that are necessary for the following

steps, as shown in figure 11.

3. Figure 12 given above illustrates how null values are identified and eliminated from
dataframes.

4. The names of the selected columns are changed to "text” and ”label,” and figure 13
given above displays the sentiment of the "text” column, which contains the review
content.

° #Storing only the required columns to the dataframe "df"

df=df[["reviews.text", "reviews.rating"]]
#Printing the final datafarame

df.head()
reviews.text reviews.rating ?:
0 I initially had trouble deciding between the p... 5.0
1 Allow me to preface this with a little history... 5.0
2 I am enjoying it so far. Great for reading. Ha... 4.0
3 | bought one of the first Paperwhites and have... 5.0
4 | have to say upfront - | don't like coroporat... 5.0

Figure 11: Storing only the required columns to the dataframe ”df”

#Checking for null values inside the dataframe io th 11 1
df.isnull().sum() #Removlg e nu Values

df=df.dropna().reset_index(drop=True)
reviews.text 5]
reviews.rating 120

Figure 12: Checking and Removing Null Values

#Renaming the columns® names to "text™ & "label™
df .columns=["text"”,"label™]
df .head ()

#Text Sentiment
df["label']=df['label’].apply(lambda x: "positive" if x>=3.0 else "negative")

Figure 13: Text Sentiment

5. The exploratory data analysis stage reveals that the variable "label,” which represents
the sentiment of the review text, has a class imbalance. The solution to this class
imbalance is upsampling as shown in figure 14.

from sklearn.utils import resample
oversampled=| |
for label in df['label'].unique():
oversampled. append(resample(df . loc[df["label"]==1abel],n samples=1500))
df=pd.concat(objs=oversampled,ignore index=True)
df=df . sample(frac=1).reset index(drop=True)

Figure 14: Upsampling

3.4.2 Text Cleaning

The column "text” that holds the customer reviews text in the base dataset and the
column ”Review” that holds the reviews in the second dataset are cleaned using same
set of procedures as shown in figure 15. Both datasets are cleaned using the same set of
procedures to avoid misclassification.

#from cleantext import clean
#tqdm is a library in Python which is used for creating Progress Meters or Progress Bars.
from tqdm.notebook import tqdm
cleaned sentence=[]
for sentence in tqdm(df['text'].values):
sent=expandContractions(sentence)
sent=nlp(sent.lower())
cleaned sentence.append(text cleaning(sent))
df['text']=cleaned sentence
df["text ']=df["text'].apply(str)

Figure 15: Text Cleaning

Texts were normalized then puncuations, stopwords were removed and the contractions
were expanded with the fuctions textcleaning() and expandContractions() with the follow-
ing codes as shown in figure 16 in the next page. In the expandContractions(), we have
used a pickle file named as cword-dict.pkl. It is basically a dictionary with contractions
as key and their expansions as the value. It has been created by the researcher herself
after referring few resources.

def text cleaning(docx):

sentence=[word.lemma_.strip() if word.lemma_ != "-PRON-" else word.lower_ for word in docx]
sentence=[word for word in sentence if word not in stopwords and word not in punctuations]
sentence=[word for word in sentence if len(word)>1 and word.isalpha()]

sentence=" ".join(sentence)

return sentence

#Expand the contractions
import re
import pickle

with open("/content/drive/MyDrive/GenuineReviewClassification/input/cword dict.pkl”,mode="rb") as file:
cList=pickle.load(file=file)
c_re = re.compile('(%s)" % "|".join(cList.keys()))

def expandContractions(text, c re=c re):
def replace(match):
return cList[match.group()]
return c_re.sub(replace, text)

Figure 16: textcleaning() and expandContractions()

3.4.3 Word Cloud

With the use of a word cloud and the code in figure 17, significant textual data points are
highlighted. The frequency or relevance of each word is indicated by its size in a word
cloud, a data visualization tool for displaying text data.

from wordcloud import WordCloud, STOPWORDS
stopwords=set(STOPWORDS)

#The Freqbist function gives the user the frequency distribution of all the words in the text
from nltk import FregDist

doc_list = list(df[text'])

words = [sublist for sublist in doc_list]
word= FreqDist(words)
plt.figure(figsize=(18,8))

wordcloud = WordcCloud(width = 10@@,background_color ='lightcyan', height = 50, stopwords=stopwords).generate(",".join(str(v) for v in word))
plt.imshow(wordcloud)

plt.axis("off")
plt.title(label="wordcloud for frequency words',fontsize=2@)
plt.show()

Figure 17: Word Cloud

3.4.4 Label Encoding

The following code encoded the label column.
Positive: 0
Negative:1

df['label']=df['1abel’].map({ positive':@, 'negative':1})
#Shuffle DataFrame rows
df=df.sample(frac=1).reset_index(drop=True)

df.head(5)

Figure 18: Label Encoding

3.4.5 Vectorization Technique to create Bag-of-Words

Text can be represented in vectors most simply as a collection of words. Each column in
a vector represents a word. How many times a word appears in a sentence is shown by
the values in a row’s cells. The texts are turned into sequences using the following code,
which is displayed in figure 19. The total number of unique tokens is then reported.

tokenizer=Tokenizer()
tokenizer.fit on texts(df['text'].values)
sequence data=tokenizer.texts to sequences(df[“text'].values)

print(sequence data[:5],"\n")
vocab size=len(tokenizer.word index)+1
print("Unique Tokens size : {}".format(len(tokenizer.word index)+1))

Figure 19: Vectorization

Pad sequences is then used to ensure that all sequences in a list have the same length
with the following code as shown in figure 20.

#Pad sequences 1s used to ensure that all sequences in a list have the same length.
pad text=pad sequences(sequences=sequence data,maxlen=200,padding="post’,truncating="post")
print(pad text[:5])

Figure 20: Pad Sequences

The whole text cleaning and vectorization techniques are applied for both
datasets to avoid misclassification.

Figure 21 illustrates how the column ”label,” which was originally a numpy array of integers
to represent the various categories in the data, was converted using the to-categorical()
function into a numpy array or matrix with binary values and as many columns as there
were categories in the data.

y=to_categorical(y=y,num classes=2)
print(y)

Figure 21: to-categorical()

3.4.6 Data set Splitting into train, validation and testing

The base dataset is then splitted into train, validation and test sets as depicted in figure
22.

[] X train,X test,y train,y test=train test split(pad text,y,test size=0.3,random state=37)
#random_state=42
print(X train.shape,X test.shape,y train.shape,y test.shape)

(2100, 200) (990, 200) (2100, 2) (960, 2)
Figure 22: Dataset splitting into train and testing sets

3.4.7 Glove word Embedding

GloVe is an unsupervised learning method for building word vector representations (Global
Vectors for Word Representation). In other words, GloVe gives us the ability to naturally
map each word in a corpus of text to a location in a high-dimensional space. As a result,
related terms will be put in one group.

The GloVe file glove.6B.50d.txt has been obtained from: https://www.kaggle.com/
datasets/watts2/glove6b50dtxt and stored in the folder GenuineReviewerldentifica-
tion.

embeddings_index = {}
with open('/content/drive/MyDrive/GenuineReviewClassification/input/glove.6B.56d.txt", encoding="utf-8") as f:
for line in f:
values = line.split()
word = values[@]
coefs = np.asarray(values[1:], dtype='float32")
embeddings index[word] = coefs
f.close()
embedding_dimention = 50
def embedding matrix creater(embedding dimention, word_index):
embedding_matrix = np.zeros((len(word index)+1, embedding dimention))
for word, i in word_index.items()
embedding vector = embeddings index.get(word)
if embedding vector is not None:
embedding_matrix[i] = embedding vector
return embedding_matrix
embedding matrix = embedding matrix_creater(5@, word index=tokenizer.word index)
print(“Glove Loded!")

Figure 23: Glove word Embedding

4 Model Implementation

The steps involved in putting the model into practice are discussed in this section. There
are various libraries that must be installed before the model construction process can
begin. In figure 24, those libraries are depicted.

Figure 24: Model implementation libraries

10

https://www.kaggle.com/datasets/watts2/glove6b50dtxt
https://www.kaggle.com/datasets/watts2/glove6b50dtxt

4.1 CNN-LSTM Model Implementation

The CNN-LSTM model’s implementation procedures are displayed in the figure 25. The
processes needed to create the CNN-LSTM model initialization are shown in the figure,
along with the steps involved in model compilation. The model initialization was then
started using the following parameters using the model.fit() function. Finally, the optimizer
is initialized for model training. Thus the Sentiment Analysis System is built using the
Training Data with the CNN-LSTM model.

model=Sequential()

model . add(Embedding(input_dim=vocab_size, output_dim=56, input_length=pad_text.shape[1],weights=[embedding_matrix]))
model ., add(ConviD(filters=64,kernel_size=3,padding="valid’,activation="relu’))

model . add(ConviD(filters=64,kernel_size=3,padding="valid’,activation="relu"))

model . add(MaxPoolinglD())

model. add(Bidirectional (LSTM(260,return_sequences=True,dropout=0.2)))

model . add(Bidirectional (LSTM(260)))

model . add(Flatten())

model . add(Dropout(©.32))

model. add(Dense(512,activation="relu"))

model . add(Dense(2,activation="sigmoid"))
model.compile(loss="binary_crossentropy’,optimizer=Adam(learning_rate=le-4),metrics=["accuracy'])

model . summary ()

history=model.fit(x=X_train,y=y_train,batch_size=32,epochs=8,validation_data=(X_test,y_test))

Figure 25: Model Building

5 Evaluation of Implemented Model

The necessary steps for the evaluation of the model are discussed in this section.

5.1 Evaluation of CNN-LSTM model
5.1.1 Accuracy and Loss Plots

The figure 26 in the next page shows the code with the all required steps for implementing
the accuracy and loss plots for the model.

Both accuracy plot and loss plots have plotted using the following snippet of code.
Validation accuracy and validation loss plots are also plotted with this code as shown in
figure 26.

11

with plt.style.context(style="fivethirtyeight'):
plt.figure(figsize=(18,8))
plt.rcParams['font.size"]=20
plt.subplot(121)
plt.plot(history.history[accuracy'],label="Accuracy")
plt.plot(history.history['val_accuracy'],label="val Accuracy')
plt.title("Accuracy Plots")
plt.xlabel("Epochs™)
plt.ylabel("Accuracy")
plt.legend()
plt.subplot(122)
plt.plot(history.history['loss'],label="Loss")
plt.plot(history.history['val loss'],label='val Loss")
plt.title("Loss Plots")
plt.xlabel("Epochs™)
plt.ylabel("Loss")
plt.legend()
plt.show()

Figure 26: Accuracy and Loss Graphs

5.1.2 Model Prediction

Figure 27 given below shows the code for the model prediction.

[] model_pred=model.predict(x=X_test,batch_size=32,verbose-1)
print(model pred)

Figure 27: Model Prediction

As shown in the figure 28 argmax() is used to convert the probabilities or the categorical
values back to the labels.

[] pred label=[]
for 1 in range(len(model pred)):
pred label. append(np.argmax(model pred[i]))
true label=]
for 1 in range(len(y test)):
true label.append(np.argmax(y test[i]))
print(true label[:50])

Figure 28: argmax()

12

5.1.3 Result Analysis

As illustrated below in the figure 29, figure 30 and figure 31, metrics including the classi-
fication report, confusion matrix and accuracy score imported from the Sklearn package
are used to evaluate the classification model.

Classification Report:

print(classification_report(y_true=true label,y pred=pred label,target names=['positive', 'negative']))

precision recall fl-score support

positive 9.96 09.98 9.97 465
negative 0.98 09.96 .97 435
accuracy 9.97 900
macro avg 9.97 8.97 9.97 =l %]
weighted avg 8.97 8.97 .97 900

Figure 29: Classification Report

Confusion Matrix:

° from sklearn.metrics import confusion matrix
matrix = confusion_matrix(y_ true=true label,y pred=pred label)
print("\n")
print(matrix)
print("\n");
import seaborn as sns
class names = ["positive"”,"negative"]
fig,ax = plt.subplots()
tick marks = np.arange(len(class names))
plt.xticks(tick marks,class _names)
plt.yticks(tick marks,class names)
cm=confusion_matrix(y true=true label,y pred=pred label)
df cm = pd.DataFrame(cm, index=class names, columns=class names,)
sns.heatmap(df_cm,annot=True,cmap="Blues",fmt="d")
sns.set(style="whitegrid', palette="muted', font scale=1.5)
ax.xaxis.set label position('bottom")
plt.tight layout()
plt.ylabel('Actual label')
plt.xlabel('Predicted label®);
#plt.show()

Figure 30: Confusion Matrix

13

Accuracy score:

[] model accuracy=accuracy score(y_true=true label,y pred=pred label)
print("overall validated accuracy of the model is {:.2f}%".format(model accuracy*10.0))

Figure 31: Accuracy score

5.1.4 Model Saving

The Sentiment Model is saved as shown below in the figure 32.

Model Saving

[1 model.save(filepath="model/ConvolutionallongShortTermMemory.h5")

Figure 32: Model Saving

5.1.5 Model Loading

The Sentiment Model is then loaded for the Genuine Reviewer Identification as shown
below:

[] model=load model(filepath="/content/drive/MyDrive/GenuineRevienClassification/model/ConvolutionalLongShortTermienory.h5")

Figure 33: Model Loading

6 Genuine Reviewer Identification

The sentiment associated with each reviews in the second dataset is found and is merged

to the dataframe under the column name ”sentiment” using the following snippet of code.
Labels:

Positive Sentiment: 0
Negative Sentiment: 1

[1 #Sentiment
data["sentiment® J]=pred_label

data=data.sample(frac=1).reset_ index(drop=True)
data.head()

Figure 34: Sentiment Identification

In the next step, a list of all the unique products are developed from the second dataset

14

unique products=1ist(data[product name'].unique())
print(unique products)

Figure 35: Unique Products List

with the column ”product name”.

Then a product dictionary is created with product name as the key and value is a
list that contains the sentiment as shown in figure 36 and figure 37

product dictionary={}

for product in unique products:
product_dictionary[product]=[]

print(product dictionary)

Figure 36: Empty Product Dictionary Creation

for index,features in data.iterrows():
for key,values in product dictionary.items():
if features['product name’]==key:
if features['sentiment']==0:
product dictionary[key].append(@)
else:
product_dictionary[key].append(1)
else:
continue

Figure 37: Product Dictionary

15

Then the overall sentiment is calculated for the each product is calculated which is
the product crowd sentiment analysis. The whole procedure is depicted in figure 38.

overall sentiment=[]
for key,value in product dictionary.items():
positive=value.count(@)
negative=value.count(1)
if positive>negative:
overall sentiment.append('positive’)
else:
overall sentiment.append("negative")

unique overall df=pd.DataFrame(data={'product_name':unique products, 'overall status':overall sentiment})
unique overall df.head()

Figure 38: Product Crowd Sentiment Analysis

Nextly, User Crowd Sourcing Behavior is evaluated. A list of all the unique users
are developed from the second dataset with the column ”"Name”.

unique users=data['Name’].unique()
print(list(unique users))

Figure 39: Unique Users List

Then an user dictionary is created as shown in figure 40 and figure 41 with user name as
the key and value is a list that contains the information that whether the user sentiment
is with the product crowd sentiment or the user sentiment is against the product crowd
sentiment.

users_dictionary={}

for user in unique users:
users_dictionary[user]=[]

print(users dictionary)

Figure 40: Empty User Dictionary Creation

16

for indicesl,featuresl in data.iterrows(): #user
for indices2,features2 in unique_overall df.iterrows(): #product_ crowd

if featuresi[" product_name’]==features2['product_name"]:
sent=""

if featuresi['sentiment’']==0:
sent="positive’
else:
sent="negative”
if sent==features2['overall status']:
for key,value in users_dictionary.items():
if featuresl['Name']J==key:

users_dictionary[key].append(“wWwithCrowd")
else:

for key,value in users dictionary.items():
if featuresl['Name' J==key:
users_dictionary[key].append(“AgainstCrowd")

Figure 41: User Dictionary

Then two empty lists are created to store the total numbers of users’ whose sentiment
is with the product crowd sentiment and whose sentiment is against the product crowd
sentiment as shown in the figure 42.

with crowd=[]

against crowd=[]

for key,value in users dictionary.items():
with crowd.append(value.count(WithCrowd"))
against_crowd.append(value.count('AgainstCrowd'))

Figure 42: User lists

Finally, users are rewarded with marks depending on user sentiment. Each user will be
provided with +2 marks for each genuine review and it will be stored in the variable
”GenuineReviewCounts”. Then each user will be provided with -2 marks for each non
genuine review and it will be stored in the variable ”NotGenuineReviewCounts”. The
difference of both will give the genuine review score. Genuine Reviewer Rating is done

using the snippet code given in the figure 43. The top K Genuine Reviewers are listed in
the descending order of their scores.

#Users are given +2 marks for genuine reviews and -2 marks for fake reviews
#Difference of both scores will give the Genuine Score for each user

result=pd.DataFrame(data={Users":users dictionary.keys(), GenuineReviewCounts': with crowd, ‘NotGenuineRevienCounts': against crowd})
result=result.fillna(e)

result['GenuineScore']= (result['GenuineReviewCounts']*2) - (result['HotGenuineReviewCounts']*2)

result=result.sort values(by="GenuineScore',ascending=False).reset index(drop=True)
result.head()

Figure 43: Genuine Reviewer Rating

17

7 Conclusion

Therefore, if any interested third parties recreate the step-by-step implementation described
in this paper, it will always function. As a result, the research was successful in achieving
its stated goals.

References

fuat (2018). Google Colab Free GPU Tutorial, https://medium.com/
deep-learning-turkey/google-colab-free-gpu-tutorial-e113627b9f5d. [On-
line; accessed 10-December-2022].

Gipson, S. (2022). How to Import/Convert CSV to Excel, https://www.guru99.com/
import-csv-data-excel.html. [Online; accessed 10-December-2022].

18

https://medium.com/deep-learning-turkey/google-colab-free-gpu-tutorial-e113627b9f5d
https://medium.com/deep-learning-turkey/google-colab-free-gpu-tutorial-e113627b9f5d
https://www.guru99.com/import-csv-data-excel.html
https://www.guru99.com/import-csv-data-excel.html

	Introduction
	System Requirements
	Hardware Requirements
	Software Requirements

	Data Pre-Processing
	Google Colab - Step wise Instructions
	Installion of Packages and Importing Raw Data
	Importing of the Datasets
	Data Pre-processing
	EDD - Exploratory Data Analysis
	Text Cleaning
	Word Cloud
	Label Encoding
	Vectorization Technique to create Bag-of-Words
	Data set Splitting into train, validation and testing
	Glove word Embedding

	Model Implementation
	CNN-LSTM Model Implementation

	Evaluation of Implemented Model
	Evaluation of CNN-LSTM model
	Accuracy and Loss Plots
	Model Prediction
	Result Analysis
	Model Saving
	Model Loading

	Genuine Reviewer Identification
	Conclusion

