~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Ayushi Bajaj
Student 1D: x20242638

School of Computing
National College of Ireland

Supervisor: Aaloka Anant

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Ayushi Bajaj
Student ID: x20242638
Programme: Data Analytics
Year: 2018
Module: MSc Research Project
Supervisor: Aaloka Anant
Submission Due Date: 20/12/2018
Project Title: Configuration Manual
Word Count: XXX
Page Count: S

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 15th December 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Ayushi Bajaj
x20242638

1 Introduction

This paper’s goal is to describe the coding procedure for the project. The hardware and
software setups required to duplicate the research in the future are outlined. This section
describes the steps required to execute the script, as well as the design and implementation
procedures required for effective executable code.

2 System Configuration

This segment will discuss the system configuration of the project.

2.1 Hardware Configuration

The hardware configuration of the device used is as follows.

Device specifications

Device name Lappy

Processor 11th Gen Intel(R) Core(TM) i5-1155G7 @ 2.50GHz 2.50 GHz
Installed RAM 8.00 GB (7.75 GB usable)

Device ID 2D2761BE-9F25-4F52-8705-50D504B9132A

Product ID 00342-20751-14610-AAOEM

System type 64-bit operating system, x64-based processor

Pen and touch No pen or touch input is available for this display

Figure 1: Device configuration

2.2 Software Configuration

The software used for this project is Jupyter Notebook. This software was launched
using Anaconda Navigator. This coding platform is open source, easy to use and web
interactive. Figure 2 shows the Anaconda navigator.

3 Data Preparation

Following steps will show the code that was sequenced and run in Jupyter Notebook

T

) ANACONDA NAVIGATOR © uosroce

ﬁ Home

Applications on [base (root) v Channels
ﬁ Environments
L L
® »

* Learning 'A

Jupyter
o0 L

C it
am» Sommuniy Notebook Powershell Prompt
A 645 0.0.1

Web-based, interactive computing notebook Run a Powershell terminal with your current
— environment. Edit and run human-readable environment from Navigator activated

docs while describing the data analysis.
ncrimanrarinn

Anaconda Rlna

' T @ Launch Launch

Figure 2: Software Required

3.1 Data Selection

Six data files are used in this project they all are in CSV format and are been downloaded
from a open source site, Kaggle.

3.2 Importing Libraries

As shown in figure 3 Following libraries were imported initially in the project. SHAP
library requires older version of numpy, Hence numpy is later imported in the project.

In [1]: #importing Llibraries
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

explainability

import shap

print the J5 visualization code to the notebook to check for any missing Library
shap.initjs()

import os

import warnings

warnings.filterwarnings("'ignore")

Figure 3: libraries imported

3.3 Importing Data

As shown in figure 4, The data is imported to different data frames.

3.4 Data Pre-processing

For ptr processing the data, As shown in figure 5 and 6, the null value of data is checked
and a primary is form to merge the data.

In [76]: #importing data
train_df = pd.read_csv('Training.csv')
submission = pd.read_csv('score.csv')
matches=pd.read_csv('Matches IPL.csv")
pre_matches= pd.read csv('pre Matches IPL.csv")
squads = pd.read_csv('IPL Squads.csv',encoding= 'unicode escape')

Figure 4: Importing CSV files

In [3]: train_df[‘player'] = train_df['Id']
train_df[‘number'] = train_df['Id"]
for i in range(®, len(train_df)):
train_df['player'][i] = train_df['Id"][i].split("_")[-1]
train_df['number'][i] = int(train_df['Id'][i].split('_")[:1]1[0])

In [4]: submission['player'] = submission['Id"]
submission['match_number’] = submission["Id"]
for i in range(®, len(submission)):
submission['player'][i] = submission['Id']J[i].split("_")[-1]
submission["match_number’][i] = int(submission['Id*][i].split(’'_*)[:1][@])
submission['season'] = 2020

Figure 5: creating primary key

In [24]: #checking for missing values
df.isnull().sum().sum()

Out[24]: @
Figure 6: checking for null value in final data frame.

4 Data Mining

This part will show the data modelling part of the project. Figure 7 shows the library
used for data mining. Figure 8 shows how data was transformed and divided into training

Data Modelling

In [29]: #Libraries for data modelling are imported
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.ensemble import RandomForestRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.svm import SVR
from sklearn import metrics
from sklearn.preprocessing import LabelEncoder
import xgboost as xgb
import optuna
import numpy as np

Figure 7: Libraries used

and testing.

4.1 Random Forest Regression Model

Figure 9 shows how Random Forest Regression Model was implemented and RMSE value
was checked.

In [31]: X =df.drop(['Id’, 'match_number®,'team’,'total score'],axis=1)

le =LabelEncoder()

X.player = le.fit_transform(df.player)

X.teaml = le.fit _transform(df.teaml)

X.team2 = le.fit_transform(df.team2)

X.venue = le.fit_transform(df.venue)

X.season = le.fit_transform(df.season)

X = X[:15916]

y = df['total_score']
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2, random_state=10)

Figure 8: Data used for training and testing

RFR= RandomForestRegressor()
RFR.fit(X_train,y_train)

RFR_predictiontrain=RFR.predict(X_train)
RFR_predictiontest=RFR.predict(X_test)

dfRFR = pd.DataFrame({'Actual’: y_train, 'Predicted': RFR_predictiontrain})
print(dfRFR.head())

print('RMSE train:', np.sgrt(metrics.mean_squared_error(y_train, RFR_predictiontrain)))
print('MSE train:', metrics.mean_squared_error(y_train, RFR_predictiontrain))

print('RMSE test:', np.sgrt(metrics.mean_squared_error(y_test, RFR_predictiontest)))
print('MSE test:', metrics.mean_squared_error(y_test, RFR_predictiontest))

Figure 9: Random Forest Regression Model

4.2 Decision Tree Regression Model

Figure 10 shows how Random Forest Support Regression Model vector machine (SVM)
was implemented and RMSE value was checked.

DTR = DecisionTreeRegressor()
DTR.fit(X_train,y train)

DTR_predictiontrain=DTR.predict(X_train)
DTR_predictiontest=DTR.predict(X_test)

dfDTR = pd.DataFrame({'Actual': y_train, 'Predicted': DTR_predictiontrain})
print(dfDTR.head())

print('RMSE train:', np.sqrt(metrics.mean_squared_error(y_train, DTR_predictiontrain)))
print('MSE train:', metrics.mean_squared_error(y_train, DTR_predictiontrain))

print('RMSE test:', np.sgrt(metrics.mean_squared_error(y_test, DTR_predictiontest)))
print('MSE test:', metrics.mean_squared_error(y_test, DTR_predictiontest))

Figure 10: Decision Tree Regression Model

4.3 Support vector machine (SVM)

Figure 12 shows how Support vector machine (SVM) Regression Model was implemented
and RMSE value was checked.

SVRmodel = SVR()
SVRmodel.fit(X_train,y_train)

SVR_predictiontrain=SVRmodel.predict(X_train)
SVR_predictiontest=SVRmodel.predict(X_test)

dfSVR = pd.DataFrame({'Actual’': y_train, 'Predicted': SVR_predictiontrain})
print(dfSVR.head())

print('RMSE train:', np.sgrt(metrics.mean_squared_error(y_train, SVR_predictiontrain)))
print('MSE train:', metrics._mean_squared_error(y_train, SVR_predictiontrain))

print('RMSE test:', np.sqrt(metrics.mean_squared_error(y_test, SVR_predictiontest)))
print('MSE test:', metrics.mean_squared_error(y_test, SVR_predictiontest))

Figure 11: Support vector machine (SVM)

4.4 XGBoost Regression Model

Figure 12,13 and 14 shows how XGBoost Regression Model was implemented, hyperpara-
metric tuning applied and RMSE value was checked.

In [41]:
def objective(trial):
params = {
‘random_state': 9@,
‘n_estimators®: trial.suggest_categorical('n_estimators', [1000]),
‘max_depth®: trial.suggest_int('max_depth', 3, 8),
‘learning_rate': trial.suggest_float('learning_rate’, ©.001, 1.0),
‘reg_lambda': trial.suggest_float('reg_lambda®, 0.0, 10),
‘reg_alpha’: trial.suggest_float('reg_alpha', 0.0, 10),
'gamma': trial.suggest_float('gamma', 0.0, 10),
‘subsample’: trial.suggest_categorical('subsample’, [0.8, 0.9, 1.0]),

‘colsample_bytree': trial.suggest categorical('colsample_bytree®, [0.1, 0.2, 0.3, 0.4, 8.5]),
3

model = xgb.XGBRegressor(**params)

medel.fit(X train, y train, eval set=[(X_test,y test)], early stopping rounds=1000, verbose=@,)
y_pred = model.predict(X_test)

rmse = mean_squared_error(y_test, y_pred, squared=False)
return rmse

In [42]: |%%time
study = optuna.create_study(direction="minimize",sampler=optuna.samplers.TPESampler(seed=0))
study.optimize(objective, n_trials=100)
print('Number of finished trials:', len(study.trials))
print('Best parameters:', study.best_trial.params)
print(‘Best RMSE:', study.best_trial.value)

Figure 12: Applying XGBoost

In [43]: params = study.best_params
params['random_state'] = @
params['n_estimators'] = 10000
#params['tree_method'] = 'gpu hist”

finalmodel = xgb.XGBRegressor(**params)
finalmodel.fit(X_train,y train,eval set=[(X_test, y test)],early stopping_rounds=1000,verbose=2)

Figure 13: Hyperparametric tuning

In [45]:
print('min’,y_pred.min())
print('max",y_pred.max())

print("RMSE’',np.sqrt(mean_squared_error(y_test,y_pred)))
print("MSE :",mean_squared_error(y_test,y_pred))

min 14.670556
max 52.735462
RMSE 28.97214917658526
MSE : 839.3854279103098

Figure 14: Checking RMSE

4.5 Prediction

In fig 15 roles and price is assign to players and mean of theire points is taken to score
them for overall season.

5 Explainable Al

In this segment explainable AI part of the code is discussed.

5.1 Random Forest

Figure 16 shows the implementation of explainable AI in Random Forest Regression
Model. Here, heat map is produced along with beeswarm and bar graph.

In []: submission['Total Points'] = ys_pred

In []: Role =pd.read_csv('Player role.csv')

In []: Role= Role.drop(['country','batting style’, 'bowling style', 'Price in Rupees(lakh)'],axis=1)
In []: Role.head()

In []: listRole = pd.merge(submission,Role, right_index=False, left_index=False)

In []: listRole.head()

In []: test2 = listRole.groupby(['player’,'role’, 'Price in Dollar'])['Total Points'].mean()
test2.head()

Figure 15: Final Prediction
In []: explainerRn = shap.Explainer(RFR)
shap_valuesRn = explainerRn(X)
In []: shap.plots.bar(shap_valuesRn)

In []: shap.plots.beeswarm(shap_valuesRn)

In []: shap.plots.heatmap(shap_valuesRn[:1000])

Figure 16: Random Forest

5.2 Decision Tree

Figure 17 shows the implementation of explainable Al in Decision Tree Regression Model.
Here, beeswarm and bar graph are produced.

In []: explainerDt = shap.Explainer(DTR)
shap_valuesDt = explainerDt(X)

In []: shap.plots.bar(shap_valuesDt)

In []: shap.plots.beeswarm(shap_valuesDt)

Figure 17: Decision Tree

5.3 XGBoost

Figure 16 shows the implementation of explainable Al in XGBoost Regression Model.
Here, waterfall, beeswarm and bar graph are produced.

Explainable Al

In []: explainer = shap.Explainer(finalmodel)
shap_values = explainer(total_df)
shap.plots.bar(shap_values)

In []: shap.plots.beeswarm(shap_values)

In []: shap.plots.waterfall(shap_values[@])

Figure 18: XGBoost

	 Introduction
	 System Configuration
	 Hardware Configuration
	 Software Configuration

	 Data Preparation
	 Data Selection
	 Importing Libraries
	 Importing Data
	 Data Pre-processing

	 Data Mining
	 Random Forest Regression Model
	 Decision Tree Regression Model
	 Support vector machine (SVM)
	 XGBoost Regression Model
	 Prediction

	 Explainable AI
	 Random Forest
	 Decision Tree
	 XGBoost

