

Configuration Manual

MSc Research Project

MSc in Data Analytics

Ria Arora

Student ID: x20231385

School of Computing

National College of Ireland

Supervisor: Prof. Prashanth Nayak

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Ria Arora

Student ID:

20231385

Programme:

MSc in Data Analytics

Year:

2021-22

Module:

Research Project

Lecturer:

Prof. Prashant Nayak

Submission Due

Date:

15-12-2022

Project Title:

Cotton Plant Disease Prediction Using ResNet50

Word Count:

 1596 Page Count: 10

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

authors’ written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Ria Arora

Date:

15-12-2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on the computer.

□

Assignments that are submitted to the Programme Coordinator’s Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Ria Arora

Student ID: x20231385

1 Introduction

This handbook is a step-by-step manual that shows all the steps performed while doing this

project on Cotton Plant Disease detection using Transfer Learning. This report helps the

reader to check the results and analyze the outputs. This manual may also be useful for team

members who want to learn more about the capabilities and features of the project.

1.1 Project Overview

This project aims to identify cotton disease in its leaves and plants. The model that is used

for it is ResNet50 architecture. Data augmentation is done by rotating the images to 15, 30,

and 90 degrees both clockwise and anti-clockwise. Data augmentation is performed in the

ratio 1:1, 1:2, and 1:3. Fine tuning is performed by adjusting the hyperparameters, Adam

optimizer is used and the loss function is categorical_crossentropy.

2 Pre-requisites

Programming Language: Python.

Development Tools: Jupyter Notebook

3 Software Installation

This is a list of instructions for installing and setting up the Anaconda Distribution, which is a

popular platform for data science and machine learning. The instructions are as follows:

1. Install and download the Anaconda Distribution by visiting the Anaconda website and

following the instructions on the download page.

2. Download the Anaconda Distribution package by selecting the appropriate package

for your operating system and following the instructions on the download page.

3. Install the Anaconda Distribution by following the instructions provided with the

downloaded package.

4. From the Anaconda Navigator, create a new Anaconda environment by clicking the

"Create" button and specifying the desired settings for the environment.

5. Establish a setting for Jupyter Notebook by opening the Anaconda Navigator and

navigating to the "Environments" tab. Select the environment where you want to use

Jupyter Notebook, and then click the "Install" button next to the "Jupyter" package.

2

6. To use Jupyter Notebook, open the Anaconda Navigator and click the "Launch"

button next to the Jupyter package in the environment where you want to use it. This

will open Jupyter Notebook in your web browser, where you can create and run

notebook files.

Installed GPU:

Figure 1. GPU installation

Data Augmentation is performed using Roboflow:

Outputs per training example: 1,2,3

90° Rotate: Clockwise, Counter-Clockwise

Rotation: Between -15° and +15°

Bounding Box: Rotation: Between -30° and +30°

Figure 2. Roboflow used for data augmentation

4 Project Implementation Guide

This section shows all the codes and its explanation and includes the steps taken for project

completion.

3

4.1 ResNet50 baseline model

This code below is a Python script that is importing several libraries, such as NumPy, pandas,

seaborn, matplotlib, and TensorFlow. These libraries are used for machine learning and data

science tasks. The code also includes some other lines that set up some basic parameters for

image processing, such as setting the matplotlib inline backend and importing a ResNet50

model from Keras. It also sets up a basic neural network using the Sequential API in Keras.

Finally, it imports some utility functions from the sklearn library for evaluating machine

learning models.

Figure 3. Importing all the libraries

The below code is used for checking the GPU.

Figure 4. Code to check GPU

The below code is used to re-size all the images.

Figure 5. Code for image resizing

Importing the ResNet50 model and pre-processing the layer to the front of the ResNet.

Figure 6. ResNet50 model

4

Training the existing models. Here, the trainable layer is taken as false which means we are

not training existing weights.

Figure 7. Model training

To get the output classes the below code is used.

Figure 8. Output classes are obtained

In this line of code, the Flatten layer from the TensorFlow library is being used to flatten the

output of the resnet model. The Flatten layer takes the output tensor from the previous layer

and flattens it into a 1-dimensional tensor, which can be used as input to the next layer in the

neural network. This is a common step in the preprocessing of data for use in a neural

network, and it allows the output of the previous layer to be fed into a dense layer, which is a

fully connected layer of neurons in the neural network.

Figure 9. Flatten layer is added

In this line of code, a Dense layer is added to the neural network. This layer is connected to

the output of the Flatten layer, and it has 4 output units and uses the softmax activation

function.

Figure 10. The dense layer is added and the softmax activation function is used

The model object is created as below.

Figure 11. The model object is created

The loss function and optimizer are defined here.

Figure 12. Model.compile()

5

Used the Image Data Generator to import the images from the dataset.

Figure 13. ImageDataGenerator

Here, the target size is taken the same as the image size which is 224,224, batch size is taken

at 20 and the loss function used is categorical cross-entropy.

Figure 14. Target size, batch size, and class mode are defined

During training, the fit_generator method will iterate over the batches of data generated by

the generator function and use them to update the model's weights. After each batch, it will

evaluate the model's performance on a validation set, if one is provided, and adjust the

model's internal parameters accordingly. At the end of the training, the model will have

learned to make predictions on new data based on the patterns it has identified in the training

data.

Figure 15. Model fit generator

6

The training and validation accuracy graph is plotted.

Figure 16. The training and validation accuracy graph is plotted

The training and validation loss graph is plotted.

Figure 17. The training and validation loss graph is plotted.

4.2 Fine-tuning data augmentation dataset (1:1)

The below steps show the additional changes made for running the fine-tuning model with

data augmentation 1:1.

The location is changed here for training on different data. The target size should be the same

as initiated for the image size.

Figure 18. New data location

7

The trainable layer in this case is taken True which means we are training existing weights.

Figure 19. Existing weights are trained

This code defines a function called create_model that creates a Keras model using the

Sequential API. The model consists of several layers. A pre-trained ResNet model, which is

imported but not shown in this code snippet. This is typically a convolutional neural network

(CNN) trained on a large dataset to recognize a wide range of images. By using a pre-trained

model, the model created by this function can benefit from the knowledge and features

learned by the pre-trained model. A flatten layer, which flattens the output of the ResNet

model from a 3D tensor to a 1D tensor. This is necessary because the next layer in the model

is a dense (fully-connected) layer, which requires a 1D input tensor. A dropout layer with a

dropout rate of 0.5. This layer randomly sets half of the input units to 0 at each update during

training, which helps prevent overfitting and improves the generalizability of the model. A

dense layer with 64 units and the ReLU activation function. This layer is a fully-connected

layer that maps the output of the dropout layer to a 64-dimensional space. The ReLU

activation function ensures that the output of this layer is always non-negative. Another

dropout layer with a dropout rate of 0.5. This is the same as the previous dropout layer and

serves the same purpose. A dense layer with 4 units and the softmax activation function. This

is the output layer of the model, which maps the output of the previous layer to a 4-

dimensional space and applies the softmax activation function to produce probabilities for

each of the 4 classes. After the layers are added to the model, the compile method is called to

configure the model for training. This function specifies the Adam optimizer, categorical

cross-entropy loss, and accuracy metric for evaluating the model. The create_model function

returns the constructed model.

Figure 20. Model architecture

Figure 21. Loading and creating the model

8

This code defines an EarlyStopping callback in Keras. The EarlyStopping callback is used to

stop the training of a model when it stops improving, which is determined by monitoring a

given metric over time. In this case, the EarlyStopping callback is configured to monitor the

validation loss (i.e., the loss on a validation dataset) and to stop the training when the loss

stops decreasing for 5 consecutive epochs. Additionally, when the training is stopped, the

callback restores the weights of the model that resulted in the lowest validation loss. This

helps prevent overfitting and ensures that the model with the best performance on the

validation set is used.

Figure 22. Model fit

Figure 23. The model is saved in TensorFlow format

Figure 24. Loading the saved model

Figure 25. Metrics evaluation

4.3 Fine-tuning data augmentation dataset (1:2)

 The data location is changed for the new data.

9

Figure 26. New dataset location

This code defines a function called load_model that loads a pre-trained Keras model from a

file on disk. The function uses the load_model method from the tf. Keras. models module,

which takes the path of the file containing the pre-trained model as an argument. The function

then returns the loaded model.

Figure 27. Model loading

The new model is saved and loaded.

Figure 28. The new model is saved and loaded

10

4.4 Fine-tuning 1:3

The Dataset location is changed again and the new model is saved and loaded.

Figure 29. New data location

Figure 30. The model is saved and the new model is loaded

