"‘"-
\ National
Collegeof

[reland

Configuration Manual

MSc Research Project
MSc. Cybersecurity

Yamah Hanson Shonibare
Student ID: 21106941

School of Computing
National College of Ireland

Supervisor: Jawad Salahuddin

‘-
National College of Ireland \ National

Colleger
Ireland

MSc Project Submission Sheet
School of Computing

Student Name: Yamah Hanson Shonibare

Student ID: 21106941

Programme: MSc. Cybersecurity Year: 2022
Module: Research Project

Lecturer: Jawad Salahuddin

Submission Due

Date: December 15, 2022

Detecting Spear-phishing Attacks using Machine Learning
Project Title:

Word Count: ... 1337, Page Count: 20, .

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Yamah Hanson Shonibare

Date: December 15, 2022.......co it

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project o
submission, to each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, mi

both for your own reference and in case a project is lost or mislaid. Itis
not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Yamah Hanson Shonibare
21106941

1 Introduction

The hardware requirements and software setups, procedures for gathering, organizing, and pre-
processing data, as well as the whole project implementation, are all covered in detail in this
configuration. The project's goal was to use machine learning to detect spear-phishing attacks.

The technical specifications and procedures listed below lead to the project's outcomes.

System Configuration

Overview Displays Storage Support Resources

macOS Monterey

Version 12.6.1

MacBook Pro (Retina, 15-inch, Mid 2015)
Processor 2.2 GHz Quad-Core Intel Core i7
Memory 16 GB 1600 MHz DDR3

Graphics Intel Iris Pro 1536 MB

Serial Number C02S3BP6G8WN

System Report... Software Update...

Figure 1: System Configuration

This project was carried out using a PC with a 2.2GHz quad-core Intel Core i7 processor, 16GB of
RAM, and a 1TB hard drive running macOS Monterey.

Environment Setup

The software setup needed to run the project includes:
1. Anaconda IDE
2. Jupyter Notebook

3. Python

For the implementation of this project, Python was chosen as the programming language. And
Jupyter Notebook in Anaconda was also used in all phases of this project including data pre-
processing, model training, testing, and assessment.

Python

The latest version of python was downloaded and installed from the official website'

Release version Release date Click for more

Python 3.11.0 Oct. 24, 2022 & Download Release Notes
Python 3.9.15 Oct. 11, 2022 & Download Release Notes
Python 3.8.15 Oct. 11, 2022 & Download Release Notes
Python 3.10.8 Oct. 11, 2022 & Download Release Notes
Python 3.7.15 Oct. 11, 2022 & Download Release Notes
Python 3.7.14 Sept. 6, 2022 & Download Release Notes
Python 3.8.14 Sept. 6, 2022 & Download Release Notes
Duthan 2014 Cont & NI £ Dawn lnad Daloaea Matac

View older releases

Figure 2: Python download

1.1 Anaconda Individual Edition

As Anaconda already has the Jupyter Notebook pre-installed, the next step is to download
Anaconda from its official website. The minimal system requirements and instructions for
downloading and installing Anaconda can be found on the anaconda distribution and installation

page’.

» Home

¥ Anaconda Distribution
Installing on Windows
Installing on macOS
Installing on Linux

Installing on AWS Graviton2
(arm64)

Installing on Linux-s390x (IBM
2)

Installing on Linux POWER
Installing in silent mode
Installing for multiple users
Verifying your installation
Anaconda installer file hashes

Updating from older versions

Installation

Review the system requirements listed below before installing Anaconda Distribution. If you don't want the hundreds of packages included with
Anaconda, install Miniconda, a mini version of Anaconda that includes just conda, its dependencies, and Python.

Looking for Python 3.5 or 3.6? See our FAQ.

System requirements

License: Free use and redistribution under the terms of the EULA for Anaconda Distribution.

Operating system: Windows 8 or newer, 64-bit macOS 1013+, or Linux, including Ubuntu, RedHat, CentOS 7+, and others.

If your operating system is older than what is currently supported, you can find older versions of the Anaconda installers in our archive that might work
for you. See Using Anaconda on older operating systems for version recommendations.

System architecture: Windows- 64-bit x86; MacOS- 64-bit x86 & M1, Linux- 64-bit x86, 64-bit aarch64 (AWS Graviton2), 64-bit Power8/Power9, s390x
(Linux on IBM Z & LinuxONE).

Minimum 5 GB disk space to download and install

On Windows, macOS, and Linux, it is best to install Anaconda for the local user, which does not require administrator permissions and is the most robust
type of installation. However, with administrator permissions, you can install Anaconda system wide. _

Figure 3: Anaconda Documentation

Upon the completion of installation, Jupyter Notebook can be launched from within Anaconda by
clicking the Jupyter Notebook icon and the Anaconda Navigator symbol, respectively. Below is a
snapshot of the process.

! https://www.python.org/downloads/
2 https://docs.anaconda.com/anaconda/navigator/install/

2

00 @ B @ ' [

icrosoft Excel Microsoft OnsNote: Grammarly Daskiop The Unarchiver PyCharm CE

>

Figure 4: Launch Anaconda Navigator Figure 5: Launch Jupyter Notebook

2 Data Collection

The dataset utilized in this study was put together and created by the CALO (Cognitive Assistant
that Learns and Organizes) Project which contains emails that the Federal Energy Regulatory
Commission (FERC) initially made publicly accessible online as part of an investigation?.

3 Pre-processing

To prepare the data for modeling, it is crucial to pre-process it after downloading the dataset. As a
result, three key pre-processing procedures were completed. These actions were all carried out in
the "spearphishing.ipynb" file of the same Jupyter notebook. The first step would be to import the
required packages as depicted in Figure 6 in order to execute the code. As seen in Figure 7 below,
several packages that have not yet been installed on the Anaconda environment can be installed
using the "!pip install module name>" command from within Jupyter Notebook:

3 https://www.cs.cmu.edu/~enron/

Import Libraries

In [1]: # Libraries for data processing
import pandas as pd
import numpy as np
import random
import re

Library for loading mbox file
import mailbox

Libraries for Natural Language Processing

import nltk

from nltk.tokenize import RegexpTokenizer

from collections import Counter

from sklearn import preprocessing

import string

from nltk.corpus import stopwords

from sklearn.feature_extraction.text import TfidfVectorizer

Libraries for chart visualisation

import seaborn as sns

from prettytable import PrettyTable

import matplotlib.cm as cm

import matplotlib.pyplot as plt

Libraries for Model Training & Testing

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier, VotingClassifier
from sklearn.tree import DecisionTreeClassifier

Libraries for Model Evaluation

from sklearn.metrics import roc_curve, auc

from sklearn.metrics import classification_report, confusion_matrix, ConfusionMatrixDisplay
Other libraries

import warnings

warnings.filterwarnings(‘ignore")

import os

import datetime

Figure 6: Import Modules/ Dependencies

Installing Modules

In []: !pip install opencv

Figure 7: Pip Install Modules

Data Organization and Exploration

The dataset is programmatically loaded from the mbox file saved in the PC and subsequently, the
emails saved in a CSV file are loaded into the environment (and the first five (5) emails are
displayed) for testing, training, and validation as shown in figures 8 and 9 below.

Email File

Load mbox file

In [2]: mbox_file = 'dataset/emails-enron-legal-mails.mbox'

Read Emails in Mbox File

In [3]: mbox = mailbox.mbox(mbox_file)
for key in mbox.iterkeys():
try:
message = mbox [key]
except mbox.errors.MessageParseError:
continue # The message is malformed. Just leave it.
print(mbox[key])

print ("seksok * ")

Figure 8: Load Email Files

Data Processing / Exploration

Load Emails from CSV

In [4]: data = pd.read_csv('dataset/dataset.csv')

First 5 rows of the dataset

In [5]: data.head()

Out([5]: : -
Unnamed: Message-ID Date From To Subject X

0 From

2001- Phillip

0 0 <18782981.1075855378110.JavaMail.evans@thyme> 05-14 frozenset({'phillip.allen@enron.com'}) frozenset({'tim.belden@enron.com'}) NaN K
23:39:00 Allen

2001- Phillip

1 1 <15464986.1075855378456.JavaMail.evans@thyme> 05-04 frozenset({'phillip.allen@enron.com'}) frozenset({'john.lavorato@enron.com'}) Re: K
20:51:00 Allen

2000- Philip

2 2 <24216240.1075855687451.JavaMail.evans@thyme> 10-18 frozenset({'phillip.allen@enron.com'}) frozenset({'leah.arsdall@enron.com'}) Re: test K
10:00:00 Allen

2000- Phillip

3 3 <13505866.107586: JavaMail yme> 10-23 frozenset({'phillip.allen@enron.com'}) frozenset({'randall.gay@enron.com'}) NaN K
13:13:00 Allen

2000- Re: Phillip

4 4 <30922949.107 JavaMail h 08-31 frozenset({'phillip.allen@enron.com'}) frozenset({'greg.piper@enron.com'}) . K
12:07:00 Hello pjien

5 rows x 52 columns
Figure 9: Data Processing/Exploration

The next step is to check the shape of the dataset to ascertain the total number of emails within
the dataset. The number of spear-phishing emails and the number of normal emails was also
determined as shown in figures 10 and 11 below.

Shape of the dataset

In [6]: # Showing number of rows and columns
data.shape

outl6]: (517401, 52)

Figure 10: Shape of the Dataset

Number of Normal vs Spearphising Emails

In [7]: datal'labeled'].value_counts()

Out([7]: False 515699
True 1702
Name: labeled, dtype: int64

Visualise Number of Normal vs Spearphising Emails

In [8]: sns.countplot(data=data, x="labeled")
Out[8]: <matplotlib.axes._subplots.AxesSubplot at @x7fdd3d9db2be>

500000

400000

300000

count

200000

100000

Tue
labeled

Figure 11: Visualization of Normal and Spear-phishing emails

Subsequently, the columns representing all of the features within the dataset are selected (Figure
12) and the dataset is selected for its varying type of data types as well as the number of null rows
and the number of non-null rows as shown in Figures 13 and 14 below. Figure 15 showed columns
that were empty were dropped.

Columns / Features in the Dataset

In [9]: # Columns/features in data
data.columns

Out[9]: Index(['Unnamed: 8', 'Message-ID', 'Date', 'From', 'To', 'Subject', 'X-From',
'X-To', 'X-cc', 'X-bcc', 'X-Folder', 'X-Origin', 'X-FileName',
'content', ‘'user', 'Cat_1_level 1', 'Cat_1_level_2', 'Cat_1_weight",
'Cat_2_level_1', 'Cat_2_level_2', 'Cat_2_weight', 'Cat_3_level 1',
'Cat_3_level_2', 'Cat_3_weight', 'Cat_4_level_1', 'Cat_4_level _2',
'Cat_4_weight', 'Cat_5_level 1', 'Cat_5_level 2', 'Cat_5_weight',
'Cat_6_level_1', 'Cat_6_level_2', 'Cat_6_weight', 'Cat_7_level _1',
'Cat_7_level_2', 'Cat_7_weight', 'Cat_8_level_1', 'Cat_8_level_2',
'Cat_8_weight', 'Cat_9_level_1', 'Cat_9_level _2', 'Cat_9_weight',
'Cat_10_level_1', 'Cat_10_level_2', 'Cat_10_weight', 'Cat_11_level_1',
'Cat_11_level_2', 'Cat_11_weight', 'Cat_12_level_1', 'Cat_12_level 2",
'Cat_12_weight', 'labeled'],

dtype='object')

Figure 12: Columns/Features in the Dataset

Data Information

In [10]: # Data information showing the data type, number of non-null rows and names for each column
data.info()

Figure 13: Data Information

Check for Null Rows

In [11]: # Number of null rows in each column.
This will help identify columns with many null values which can be dropped
data.isnull().sum()

Figure 14: Checking for Null and Non-Null Row

Drop Columns with Null Rows

In [12]: col = data.iloc[:, 15:51].columns
data = data.drop(col, axis=1)
data = data.drop(
columns=["'Unnamed: @', 'X-To', 'X-cc', 'X-bcc', 'X-Folder', 'To'l])

In [13]: # Display first 5 rows after dropping the null columns from the dataset
data.head()

Figure 15: Dropping of Null Rows
Data Preparation

Data for this project was prepared by taking 1500 random samples of spear-phishing emails and
1500 normal emails resulting in a balanced dataset of 3000 emails to form a new dataset (data1).
The dataset is shuffled to ensure randomness when picked for training and testing (Figure 16).
Figure 17 shows a visual representation of the balanced data set and Figure 18 showed the removal
columns that would not be used.

Data Preparation

Data Balancing

In [14]: # Take 1508 random samples for the Normal & Spearphing Emails each
normal = dataldata['labeled'] == False].sample(n=150@0, random_state=123)
spear = dataldatal'labeled'] == Truel.sample(n=1500, random_state=123)

In [15]: # Merge the samples into a new dataset.
Resulting in a balanced dataset of 3000 combined emails
datal = []
datal = pd.concat([normal, spear])

Next the dataset in shuffled to ensure the models are able to train and test properly
datal = datal,sample(frac=1, random_state=123).reset_index(drop=True)

In [16]: datal.shape

Figure 16: Balancing of Data

Visualise Number of Normal vs Spearphising for New Dataset

In [17]: sns.countplot(data=datal, x='"1labeled")

Out[17]: <matplotlib.axes._subplots.AxesSubplot at @x7fdd3ce928b0o>

1400

1200

False Tue
labeled

Figure 17: Visual representation of the balanced data

In [18]: #datal.to_csv('Spearphising_Final.csv', index=False)

In [19]: # Read column names from file
#cols = list(pd.read_csv("Spearphising_Final.csv", nrows=1))
#print(cols)

Use list comprehension to remove the unwanted column 1In *xusecolxx
#datal = pd.read_csv("Spearphising_Final.csv",
usecols=[1 for i in cols if i != 'Unnamed: @'])

Figure 18: Removal of unwanted Columns

As a part of the data processing, encoding is carried out which involves turning the columns from
non-numeric to numeric numbers so that they can be read by the machine learning model. If the
columns are not in numbers it will result in an error. The new dataset is subsequently pre-processed
by removing punctuations and repeating characters and the processPost is applied to the subject
and content of the new dataset. The subject and content of the emails were tokenized and
scanned for stopwords which were taken out to ensure they are machine readable. After that, a
list of the top 15 words in the emails was selected and a visual display was presented using a
rainbow color format.

Encode Columns

In [20]: # Column encoding is important so the data is machine readable
encode = preprocessing.LabelEncoder().fit_transform(datall'Message-ID'])
datall'Message-ID'] = encode

encode = preprocessing.LabelEncoder().fit_transform(datall'Date’])
datall'Date'] = encode

encode = preprocessing.LabelEncoder().fit_transform(datall'From'])
datall'From'] = encode

encode = preprocessing.LabelEncoder().fit_transform(datall'X-From'])
datall'X-From'] = encode

encode = preprocessing.LabelEncoder().fit_transform(datal['X-Origin'])
datall['X-0Origin'] = encode

encode = preprocessing.LabelEncoder().fit_transform(
datall'X-FileName'].astype('str'))
datal['X-FileName'] = encode

encode = preprocessing.LabelEncoder().fit_transform(datall'user'])
datal['user'] = encode

encode = preprocessing.LabelEncoder().fit_transform(datall'labeled'])

datal['labeled'] = encode
datal

Figure 19: Encoding of Columns

In [21]: # Preprocess data on Descripcion
english_punctuations = string.punctuation

punctuations_list = english_punctuations + english_punctuations

def remove_punctuations(text):
translator = str.maketrans('', '', punctuations_list)
return text.translate(translator)

In [22]: # Remove_repeating_char

def remove_repeating_char(text):
return re.sub(r'(.)\1+', r'\1', text)

In [23]: # ProcessPost for applying all functions

def processPost(text):
text = re.sub('@[™\s]+', ' ', text)
text = re.sub(’((www\.["\s]+)|(https?://[™"\s]+))', ' ', text)
text = re.sub(r'#(["\sl]+)', r'\1', text)

text = remove_punctuations(text)
text = remove_repeating_char(text)

return text

Figure 20: Pre-processing of Data

In [24]): # Applying processPost function for preprocessing

datal["content"] = datal["content"].astype(str)
datal["content"] = datal["content"].apply(lambda x: processPost(x))

In [25]: datal["content"]

Figure 21: Application of the pre-processed data in Content

In [26]: datal["Subject"]
datal["Subject"]

datal["Subject"].astype(str)
datal["Subject"].apply(lambda x: processPost(x))

In [27]: datal["Subject"]

Figure 22: Application of the pre-processed data in Subject

In [28]: # Getting Tokenization

tokenizer = RegexpTokenizer(r'\w+')
datal["content"] = datall"content"].apply(tokenizer.tokenize)

datal["content"].head()
Figure 23: Tokenization

In [29]: # Stop words of english

nltk.download('stopwords"')
stopwords_list = stopwords.words('english')

stopwords_list

[nltk_datal Downloading package stopwords to /Users/remi/nltk_data...
[nltk_datal] Package stopwords is already up-to-date!

Figure 24: Stopwords using NLTK

In [30]: len(stopwords_list)
Out[30]: 179

In [31]: datal["content"] = datall"content"].apply(
lambda x: [item for item in x if item not in stopwords_list])

datal["content"].head()

Figure 25: Length of Stopwords

In [32]: # Description of text information

all_words_content = [word for tokens in datal["content"] for word in tokens]
sentence_lengths = [len(tokens) for tokens in datal["content"]]

VOCAB = sorted(list(set(all_words_content)))

print("%s words total, with a vocabulary size of %s" %
(len(all_words_content), len(VOCAB)))
print("Max sentence length is %s" % max(sentence_lengths))

1289642 words total, with a vocabulary size of 67635
Max sentence length is 20215

In [33]: # Top 15 words in email text
counter = Counter(all_words_content)

counter.most_common(15)

Figure 26: List of top 15 words in the email text

In [34]: counted_words = Counter(all_words_content)

words = []

counts = []

for letter, count in counted_words.most_common(15):
words.append(letter)
counts.append(count)

In [35]: colors = cm.rainbow(np.linspace(@, 1, 10))
#rcParams['figure.figsize'] = 20, 10

plt.title('Top words in Content')
plt.xlabel('Count")
plt.ylabel('Words")

plt.barh(words, counts, color=colors)

Figure 27: Visual display of top words in the content

In [36]: # Getting Tokenization

tokenizer = RegexpTokenizer(r'\w+')
datal["Subject"] = datal["Subject"].apply(tokenizer.tokenize)

datal["Subject"].head()

Figure 28: Tokenization of data in the subject

In [38]: # Description of text information

all_words_subject = [word for tokens in datal["Subject"] for word in tokens]
sentence_lengths = [len(tokens) for tokens in datal["Subject"]]

VOCAB = sorted(list(set(all_words_subject)))
print("%s words total, with a vocabulary size of %s" %
(len(all_words_subject), len(VOCAB)))

print("Max sentence length is %s" % max(sentence_lengths))

13062 words total, with a vocabulary size of 4600
Max sentence length is 38

In [39]: # Top 15 words in email text
counter = Counter(all_words_subject)

counter.most_common(15)

Figure 29: List of top 15 words in the subject

In [40]: counted_words = Counter(all_words_subject)
words = []
counts = []
for letter, count in counted_words.most_common(15):

words.append(letter)
counts.append(count)

In [41]: colors = cm.rainbow(np.linspace(@, 1, 10))
#rcParams('figure.figsize'] = 2@, 10

plt.title('Top words in Subject')
plt.xlabel('Count")

plt.ylabel('Words')
plt.barh(words, counts, color=colors)

Figure 30: Visual display of the top words in the subject

Feature Extraction

Next, we carried out feature extraction on the new dataset through the application of
vectorization on the subject and content of emails. This involves the reduction of redundant data
by checking the number of times a word appears in an email against the number of emails it
appears in. Words that appear often within and across several emails are given less weight in
comparison to words that are not common in emails. Here the top 500 most weighted words
within the email content and body are extracted and compared with contents within the rest of
the emails. To increase the speed of learning and the accuracy of the model, the email and subject
column contents are dropped after they have been vectorized and the vectorized features are
subsequently concatenated with the new dataset.

10

Feature Extraction

Define Vectorizer

In [42]: # Vectorizer checks the number of times a word appears in an email against how many emails it is presnt in.
Thus, words that are common within & across emails are given less weight.

vectorizer = TfidfVectorizer(sublinear_tf=True,
strip_accents='unicode',
analyzer='word',
token_pattern=r'\w{l,}',
stop_words='english',
ngram_range=(1, 1),
max_features=500)

Applying Vectorizer on Email Contents

In [43]: # Applying vectorizer on email contents.
This extract the top 500 most weighted words within & across the email contents.
unigram = vectorizer.fit_transform(datal['content'].astype('str'))
unigram = unigram.toarray()
vocab = vectorizer.get_feature_names()
unigram_content = pd.DataFrame(np.round(unigram, 1), columns=vocab)

unigram_content [unigram_content > @] = 1
unigram_content.head()

Figure 31: Vectorizer Defined and applied to Email Contents

Applying Vectorizer on Email Subject

In [44]: # Applying vectorizer on email subject.
This extract the top 500 most weighted words within & across the email subject.

unigram = vectorizer.fit_transform(datall'Subject'].astype('str'))
unigram = unigram.toarray()

vocab = vectorizer.get_feature_names()

unigram_subject = pd.DataFrame(np.round(unigram, 1), columns=vocab)
unigram_subject[unigram_subject > @] = 1

unigram_subject.head()

Figure 32: Applying Vectorizer on Email Subjects

Final Data Preprocessing

Drop Email Content & Subject columns

In [45]: # As the vectorizer has extracted the main words from the content & subjec.
We have no need for those columns so they are dropped from the dataset

datal = datal.drop(columns=['content’', 'Subject'l)
datal = datal.reset_index()

del datal['index']
datal

Figure 33: Dropping off the Email Content and Subject Columns

Concatenate Extracted Features

In [46]: # Now the vectorized features are included in the dataset
to replace the email content & subject which were dropped

final_df = pd.concat([datal, unigram_content, unigram_subject], axis=1)
final_df
Resulting in a dataset with 3000 rows and 1008 columns

Figure 34: Concatenation of Extracted Features

11

Modelling

Machine learning is a powerful tool for analyzing data and extracting patterns and
anomalies. However, these algorithms need usable data in order to draw valid
conclusions

Modelling

Assign independent & dependent variables
In [47]: target_names = ['Normal', 'Spearphising']

In [48]: X = final_df.drop(columns=['labeled'])
y = final_df['labeled']

Spliting dataset into training and testing

In [49]: X_train, X_test, y_train, y_test = train_test_split(X,
Y
random_state = 123,
test_size=0.35)

Figure 35: Dependent and independent variables are assigned
Experiment 1 - Random Forest Modelling

Experiment 1 involved comparing the engagement levels 0, 1, 2 and 3. The frames depicting these
states were extracted from the pre-processed folder and stored into a new train and test folder.

Random Forest Modelling

Training

In [50]1: #Define the random forest model
Ran_For = RandomForestClassifier(random_state = 123)

#Train the random forest model using training data

Ran_For = Ran_For.fit(X_train, y_train)
Ran_For

Figure 36: Training of Dataset

Testing
In [51]: #Test the random forest model using the testing data
y_predl = Ran_For.predict(X_test)

rn = Ran_For.score(X_test, y_test)
print('Accuracy = {:.2f}%'.format(rn * 100))

Accuracy = 95.33%

Figure 37: Testing of Dataset

Classification Report

In [52]: classification = classification_report(y_test, y_predl, digits=4, target_names = target_names)

print(classification)

precision recall fl-score support

Normal 0.9522 0.9540 0.9531 522
Spearphising 0.9545 0.9527 0.9536 528
accuracy 0.9533 1050
macro avg 0.9533 0.9533 0.9533 1050
weighted avg 0.9533 0.9533 0.9533 1050

Figure 38: Classification Report of Dataset

12

Confusion Matrix

In [53]: conf_mat = confusion_matrix(y_test, y_predl)

cm_plot = ConfusionMatrixDisplay(confusion_matrix = conf_mat,
display_labels = target_names

)
fig, ax = plt.subplots(figsize=(7,7))

cm_plot.plot(ax = ax, cmap = 'Blues')
#plt.show()

Figure 39: Random Forest Confusion matrix

ROC Curve

In [54]: ran_prob = [@ for _ in range(len(y_test))]

rf_fpr, rf_tpr, _ = roc_curve(y_test, y_pred1)
rp_fpr, rp_tpr, _ = roc_curve(y_test, ran_prob)

auc(rf_fpr, rf_tpr)
auc(rp_fpr, rp_tpr)

rf_roc_auc =
rp_roc_auc =
plt.figure()
plt.subplots(figsize = (9,6))

plt.plot(rp_fpr, rp_tpr, linestyle='—-', color = 'Red', label = 'Random Probability (area = %@.4f)' %rp_roc_auc)
plt.plot(rf_fpr, rf_tpr, color = 'Blue', lw = 1, label = 'Random Forest ROC curve (area = %0.4f)' %rf_roc_auc)
plt.xlim([@0.0, 1.0])

plt.ylim([0.0, 1.0]1)

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title{('ROC CURVE")

plt.legend(loc = "bottom right")

plt.show()

<Figure size 432x288 with @ Axes>

Figure 40: Random Forest Roc Curve

Experiment Il — Ensemble Learning using Voting Classifier

Ensemble Learning using Voting Classifier

Training
In [58]: DTC = DecisionTreeClassifier(random_state = 123)

eclf = VotingClassifier(estimators=[('rf', Ran_For), ('dt', DTC)],
voting = 'hard')
eclf = eclf.fit(X_train, y_train)

Figure 41: Training of Dataset

Testing

In [59]: y_pred2 = eclf.predict(X_test)
el_acc = eclf.score(X_test, y_test)
print('Accuracy = {:.2f}%'.format(el_acc * 100))

Accuracy = 94.38%

Figure 42: Testing of Dataset

13

In [69]:

In [60]:

In [61]:

Classification Report

classification = classification_report(y_test, y_pred2, digits=4, target_names = target_names)

print(classification)

precision recall fl-score support

Normal 9.9217 09.9693 0.9449 522
Spearphising 0.9681 0.9186 0.9427 528
accuracy 9.9438 1050
macro avg 0.9449 0.9440 9.9438 1050
weighted avg 0.9450 0.9438 09.9438 1050

Figure 43: Classification Report

Evaluation

conf_mat = confusion_matrix(y_test, y_pred2)

cm_plot = ConfusionMatrixDisplay(confusion_matrix = conf_mat,
display_labels = target_names
)

fig, ax = plt.subplots(figsize=(7,7))

cm_plot.plot(ax = ax, cmap = 'Blues')
#plt.show()

Figure 44: Ensemble Learning Confusion Matrix

ROC Curve

ran_prob = [@ for _ in range(len(y_test))]

roc_curve(y_test, y_pred2)
roc_curve(y_test, ran_prob)

el_fpr, el_tpr, _ =
rp_fpr, rp_tpr, _ =
el_roc_auc = auc(el_fpr, el_tpr)
rp_roc_auc = auc(rp_fpr, rp_tpr)

plt.figure()
plt.subplots(figsize = (9,6))
plt.plot(rp_fpr, rp_tpr, linestyle='--', color = 'Red', label = 'Random Probability (area = %0.4f)' %rp_roc_auc)

plt.plot(el_fpr, el_tpr, color = 'Green', lw = 1, label = 'Ensemble Classifier ROC curve (area = %0.4f)' %el_roc_auc
plt.xlim([0.0, 1.0]1)

plt.ylim([0.0, 1.0])

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('ROC CURVE')

plt.legend(loc = "bottom right")

plt.show()

<Figure size 432x288 with @ Axes>

Figure 45: Ensemble Learning Roc Curve

ROC Curve

In [62]: plt.figure()

plt.subplots(figsize = (9,6))

plt.plot(rp_fpr, rp_tpr, linestyle="—', color = 'Red', label = 'Random Probability (area = %@.4f)' %rp_roc_auc)
plt.plot(rf_fpr, rf_tpr, color = 'Green', lw = 1, label = 'Random Forest Classifier ROC curve (area = %0.4f)' %rf_ro
plt.plot(el_fpr, el_tpr, color = 'Blue', lw = 1, label = 'Ensemble Classifier ROC curve (area = %0.4f)' %el_roc_auc)
plt.xlim([0.0, 1.0])

plt.ylim([0.0, 1.0])

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('ROC CURVE')

plt.legend(loc = "bottom right")

plt.show()

<Figure size 432x288 with @ Axes>

Figure 46: Roc Curve for Random Forest Classifier and Ensemble Learning

14

	1 Introduction
	The hardware requirements and software setups, procedures for gathering, organizing, and pre-processing data, as well as the whole project implementation, are all covered in detail in this configuration. The project's goal was to use machine learning ...
	The technical specifications and procedures listed below lead to the project's outcomes.
	System Configuration
	This project was carried out using a PC with a 2.2GHz quad-core Intel Core i7 processor, 16GB of RAM, and a 1TB hard drive running macOS Monterey.
	Environment Setup
	For the implementation of this project, Python was chosen as the programming language. And Jupyter Notebook in Anaconda was also used in all phases of this project including data pre-processing, model training, testing, and assessment.
	Python
	1.1 Anaconda Individual Edition

	2 Data Collection
	3 Pre-processing
	Data Organization and Exploration
	Subsequently, the columns representing all of the features within the dataset are selected (Figure 12) and the dataset is selected for its varying type of data types as well as the number of null rows and the number of non-null rows as shown in Figure...
	Experiment 1 – Random Forest Modelling

