~

National
Collegef
[reland

Botnet Detection in 10T Devices using Gradient and Ada Boosting Algorithm

MSc Research Project
Cybersecurity

Sririshi Veeranam Shanmugam
Student ID: x21167672

School of Computing
National College of Ireland

Supervisor: Michael Pantridge

National College of Ireland National

Project Submission Sheet College of
School of Computing Ireland
Student Name: Sririshi Veeranam Shanmugam
Student ID: X21167672
Programme: Cybersecurity
Year: 2022
Module: MSc Research Project
Supervisor: Michael Pantridge
Submission Due Date: 15/12/2018
Project Title: Botnet Detection in 10T Devices using Gradient Boosting and
Ada Boosting Algorithm
Word Count: 672
Page Count: 10

| hereby certify that the information contained in this (my submission) is information
pertaining to research | conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Sririshi Veeranam Shanmugam

Date:

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. Itis not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed into
the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Botnet Detection in 10T Devices using Gradient and Ada Boosting Algorithm

Sririshi Veeranam Shanmugam
X21167672

1 Introduction

The setting guide provides a detailed account of the whole setup procedure. Specifications for the hardware
and software used in the study titled "Botnet Detection in IoT Devices using Gradient and Ada Boosting

Algorithm" are provided. Using machine learningmodels like Gradient boosting and the Ada Boosting
Algorithm, this research aims to achieve high precision.

2 System Specification

Google Collaboratory, often known as Colab, a cloud-based platform, hosted this project. Both graphical
processing units and tensor processing units are welcome in the shared workspace. Bisong (2019)

2.1 Hardware

e Google Colab: 2vCPU @ 2.2GHz
e The GPU Instance was 250GB
* The RAM was 13 GB

* The Disk Space was 32GB

2.2 Software

In order to put the project into action, the Python programming language was utilized. Python
was used to carry out all of the operations necessary for the pre-processing stage, including
cleaning, encoding, dimension reduction implementation, and evaluation.

3 Importing Libraries

The cloud platform already has pre-defined versions of several of the necessary libraries.
When it was necessary, the import of the other relevant libraries was performed. Importing
the necessary libraries is the task at hand for this stage.

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
%matplotlib inline

import seaborn as sns
import statsmodels.api as sm

from sklearn.ensemble import RandomForestClassifier

from imblearn.over_sampling import SMOTE

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

from sklearn.utils import shuffle

from sklearn.ensemble import AdaBoostClassifier

from sklearn.ensemble import GradientBoostingClassifier

from sklearn import metrics

from sklearn.metrics import accuracy_score, plot_confusion_matrix, classification_rep(

from sklearn.model_selection import train_test_split,GridSearchCV,KFold, cross_val_scd
from sklearn.preprocessing import LabelEncoder, OneHotEncoder, MinMaxScaler

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import roc_curve, precision_recall curve, auc, make scorer, reca

Figure 1: Importing Libraries

4 Data Extraction

4.1 Importing Files

The next phase involves loading the data set from the hard drive and loading the file from the
downloaded directory.

[] data = botnet_data.copy()
print('This dataset contains ',data.shape[@], 'ro
print('This dataset contains ',data.shape[1], 'columns')

This dataset contains 200000 rows
This dataset contains 18 columns

Figure 2: Importing Data

4.2 Set Path

Here, we specify the location of the dataset and retrieve the information.

[] botnet_data = pd.read_csv('malware_description_df.csv')

Figure 3: Working directory path

4.3 Reading the data

botnet_data = pd.read_csv('malware_description_df.csv')

Figure 4: Reading Data

5 Exploratory Data Analysis (EDA)

Python's pandas profiling was used for the exploratory data analysis. Pandas profiling is a
single line of code that unlocks new insights from your data. It examines the data and
generates a report in HTML format detailing any discrepancies, outliers, class balance,

correlations, etc.

pandas_profiling.ProfileReport (raw)

52 Number of variables 22
Number of observations 20240
Total ing (%) 6.1

Average record size in memory 169.0 B
riables types

Unsupported

Figure 5: Exploratory Data Analysis

5.1 Removing null values

At this point in the process, the null values in the raw dataset are going to be removed from
the database. This will result in an enhancement in the quality of the dataset, which, in turn,
will help deliver findings that are more accurate.

th'].fillna(data.Length.median(), inplace=True)
ocol'].fillna(data.Protocol.mode()[@], inplace=True)
e'].fillna(data.Source.mode(), inplace=True)

- ¥

data = data.dropna(how='all’, axis=0)
data.isnull().sum()

Attack
elf

Mirai

upx
bashlite
Gafgyt
Count of Attacked Address
Protocol
Length
Source Ip
CNC Ip
Bot Host
Month
Date

OO0 OO0 OOOO®

w
N
(o))
v

Figure 6: Removing null values

5.2 Checking Class Imbalance

Under sampling or oversampling may occur depending on the data, however for optimal
results the class size should be about right. The distribution of abilities was typical of the
class in this data set.

= iClass|

@ crc_class = data['CNC Ip'].value_counts()
cnc_class

public 132276
private 3582
Name: CNC Ip, dtype: inté4

plt.figure(figsize=(10,6))
sns.barplot(x = cnc_class.index, y = cnc_class.values)
plt.xticks(rotation = 60);

120000 +

100000 +

80000 4

60000 4

40000 A1

20000 A

&
&
=
&

‘q’};, o

Figure 7: Class Imbalance check

5.3 Dropping the unwanted columns
The columns that include special characters and those that are deemed to be irrelevant

are eliminated.

- remove_spaces(df):
for col in df.columns:
if df[col].dtypes == 'o
df[col] = df[col].str.

remove_spaces(data)

Figure 8: Removing unwanted columns

5

6 Pre-processing

6.1 Encoding the data
6.2

LabelEncoder()
OneHotEncoder (sparse=False)

L_en
O_en

one__hot_categories = ['Protocol’, "Source Ip',"'CNC Ip"'] #attributes to convert to 1hot

for category in one_hot_categories: #iterate over attributes
outl = L_en.fit_transform(data[[category]]-values.ravel())
out2 = O_en.fit_transform(outl.reshape(-1,1)).astype("int")

for i, name in enumerate(L_en.classes_):
data[name] = out2[:,i] # make new cc

Figure 10: Label Encoding

7 Training and testing dataset

In this step, a 50/50 split was made between the data set used for training and the one used for
testing.

Split the data into training and testing sets

[1 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 8.3, sh

Figure 11: Training and testing data

8 Machine learning models

There are two machine learning models implemented in this project Like the Ada
Boosting algorithm, the Gradient boosting algorithm.

8.1 Ada Boosting algorithm.

1r_list = [@.85, ©.875, 0.1, ©.25, 8.5, 0.75, 1]

for learning_rate in 1lr_list:
gb_clf = GradientBoostingClassifier(n_estimators=20, learning_rate=learning_rate, max_featu
gb_clf.fit(X_train, y_train)

print("” I
print("A S r g {e: format(gb_clf.score(X_train, y_train)))

print("Accur score (v ion): .format(gb_clf.score(X_test, y_test)))

Learning rate: ©.05

Accuracy score (training): ©.836
Accuracy score (validation): ©.830
Learning rate: ©.875

Accuracy score (training): ©.836
Accuracy score (validation): ©.830
Learning rate: ©.1

Figure 13: Ada Boosting Algorithm

8.2 Gradient Boosting Algorithm

1r_list = [@.05, ©.875, 8.1, ©.25, 0.5, 0.75, 1]

for learning_rate in 1r_list:
gb_clf = GradientBoostingClassifier(n_estimators=20, learning_rate=learning_rate, m
gb_clf.fit(X_train, y_train)

print("”Learn rate: ", learning_rate)
print(’ a core (training): {@:.3f}".format(gb_clf.score(X_train, y_train)))
print("Accur core (validation): {@:.3f}".format(gb_clf.score(X_test, y_test)))

Figure 14: Gradient Boosting Algorithm

References

Google colaboratory (no date) Google Colab. Google. Available at:
https://colab.research.google.com/drive/1GJjmc_gAD2hRyVBXynWuvEP28FnysG76#scroll To=718Rp

L-Nf5IH (Accessed: December 15, 2022).

