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Botnet Detection in 10T Devices using Gradient and Ada Boosting
Algorithm

Sririshi Veeranam Shanmugam (x21167672)
National College of Ireland, Mayor Street, IFSC, Dublin 1, Ireland

Abstract:

Most people think of "Internet of Things" (10T) gadgets as unusual computers that can send and receive
data across a network through wireless connections. As a result of the convenience they provide, 10T
devices have become commonplace in people's daily routines. Considering that the vast majority of loT
gadgets aren't computers, they lack basic security features. It's because of this that hackers target
people's 10T gadgets in an effort to get their hands on their passwords and financial information. In this
study, we use the public I0T botnet dataset to investigate the prevalence of botnets in 10T devices and
propose a machine learning approach for detecting them quickly and accurately. In this study, we
employed the Gradient boosting technique to efficiently process a massive dataset while maintaining
high standards of precision, throughput, and detection. Also, the Ada boosting algorithm has been
integrated for a higher prediction speed in the botnets.

Keywords: 10T (Internet of Things) devices, Attack, Botnet, detection, Boosting algorithm,
Gradient Boost, Ada Boost

1 Introduction:

The ground-breaking technology known as the Internet of Things (1oT) enables any object in the
world to be linked to the web and speak with one another in real time. A recent analysis estimates
that "the world of 10T" will be worth $1567 million by the year 2025. It predicted that by 2030
there might be 75 billion connected devices.
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Fig 1: 10T Security market



The graph states that the global security market is expected to grow at a healthy clip between 2017 and
2022, as seen by the following graph. The significant danger of impacting loT devices has contributed
to the growth of the 10T security industry from $703 million in 2017 to $4.4 billion in 2022.

However, a network-based approach is preferable for protecting 10T devices from cyberattacks. These
are attacks are classified into three types basically:

1. Signature based detection method
2. Anomaly based detection method
i. Statistics based detection
ii. Machine learning based detection method
iii. Knowledge based detection method
3. Specific based detection method

1. Signature based detection method:
Detects and stops attacks by comparing network traffic to a database of rules.
2. Anomaly based detection method:
Develops a profile for each device on the network based on an analysis of its regular network traffic
pattern. Any glaring deviation from the usual is considered an anomaly. More specifically, it may be
broken down into
i Statistics based detection method:
By analyzing the statistical distribution of dangers, this technique was able to uncover
abnormalities.
ii. Machine Learning Based detection method:
The packets and payload characteristics are used to identify anomalies. Typically, this approach
uses machine learning to detect and thwart attacks.
iii. Knowledge based detection method:
Here, network knowledge is used to spot unusual occurrences. This information is obtained
from the many test cases employed to uncover network anomalies.
3. Specific based detection method:
It's a user-defined collection of criteria that can spot outliers.
While signature-based approaches to botnet identification in loT devices have proven effective in the
past, the experiments conducted here evaluate and detect both known and undiscovered botnets.

In this study, we employed Boosting algorithms to rapidly and accurately identify the botnets. Boosting
algorithms, such as the Gradient boosting method and the Ada boosting algorithm, have been employed.
In this case, we apply the gradient boosting approach to quickly and accurately discover patterns in a
big dataset. The Ada boosting algorithm uses the predicted values derived from the gradient boosting
approach.

This study provides a solid introduction to and background on the topic of botnet detection in loT
devices by reviewing the work of prior researchers in the field. Then, the research procedures and
criteria are outlined.



2 Related works:

This section elucidates the other researchers' efforts to identify botnets in the 10T through the use of
devices. The literature review provides a comprehensive explanation of the research methodology,
methods, and future potential of the study. In this research, we provide many methods for identifying
botnets in the Internet of Things. This section describes the research process and the researchers'
constraints. Based on the research and analysis, botnet detection is broken down into three distinct
categories: machine learning-based, deep learning-based, and hybrid feature-based botnet
identification. Following is a study and investigation of the relevant literature, informed by the work
already done on Botnet detection in the Internet of Things.

A. Machine learning used for Botnet Detection:

In this study (Garg, Kaushik, Panwar, & Gupta, 2021) we provide an examination of machine learning
technique for loT botnet. Researchers have used a machine learning system to distinguish between
typical and aberrant traffic patterns. A wide range of machine learning algorithms, including Random
Forest 1G, Random Forest Gini, Decision Tree, SVM, Logical Regression, and Gaussian NB, have been
employed. The UNSW-NB15 dataset has been used for the analysis utilizing these machine learning
algorithms. Analysis of Random Forest reveals that Gini achieves 92.65% accuracy, whereas Gaussian
NB achieves only 50.46 %.

In this study (Wang et al., 2020), the authors present a method for automating botnet identification
based on the traffic's flow- and graph-based characteristics. Using a combination of flow analysis and
graph theory, the researchers developed an automated model called "BotMark" to identify botnets. They
have developed a botnet detection system by extracting three graph-based characteristics and fifteen
statistical flow-based traffic features. They thought about how comparable and stable C- flow
measurement is for flow-based detection. Using the least square method and LOF (local outlier factor),
graph-based detection may compute an anomaly score to highlight any discrepancies between
neighbouring nodes. The researchers have combined five recently established botnets to simulate
extremely high volumes of network traffic for their studies. Detection accuracy is at 99.94%.

10T botnet detection using a frequency-based dependency graph is presented in this work (Yassin et al.,
2019). Scientists have gathered evidence of a botnet attack's suspicious registry entries. In this case, the
researcher has used the graph approach to examine the mirai assault. Using the dependency graph, they
were able to determine what parts of the botnet were responsible for the attack and what parts were
unrelated. Seeing that they mimic his every move, they have deduced his strategy. This discovery is put
to use in order to detect otherwise undetected botnets in the Internet of Things.

This work uses botnet fingerprinting to detect botnets (Blaise, Bouet, Conan, & Secci, 2020). BotFP is
one detection method presented by researchers; it is employed for assessing host behavior using
frequency distribution signatures. Clustering and supervised machine learning may be used to
understand how benign hosts and bots behave. The CTU-13 dataset is used to verify the BotFP by the
research community. This dataset includes 13 different infection scenarios, such as establishing a
command and control channel and starting a DDoS assault or port scan. BotFP's small size and low
computational cost make it suitable for large datasets, allowing it to be used with impressive precision.
In addition, researchers have developed two Bot FP, BotFP-Clus for overfitting host signs and BotFP-
ML for learning from the algorithm and analyzing and detecting new bots. Thus, this delivers results
near to 100%, since it has identified all 13 bots in the datasets where it is deemed lightweight compared
to graph-based methods.

In this study (Soe et al., 2020), the authors suggest a sequential architecture and machine learning
method for detecting 10T botnets. Researchers have implemented a machine learning method with



sequential design to identify attacks in an Internet of Things setting. The N-BaloT dataset is used for
the study, and associated feature selection is employed to cut down on extraneous information. Using
an artificial neural network, naive bayes, and a J48 decision tree—three distinct machine learning
algorithms—we were able to increase the total detection performance to 99%.

In this study (Jeelani, Rai, Maithani, & Gupta, 2022), the authors suggest a machine learning-based
method for detecting 10T botnets. The experiment was carried out using the 10T-23 dataset. The places
where they've utilized naive bayes, SVM, a decision tree, or a convolutional neural network
(Convolutional neural network). Naive Bayes performed the lowest of the compared machine learning
algorithms, whereas the decision tree achieved the highest level of accuracy (73%) in the shortest
amount of time (less than 10 seconds).

In this study (Prokofiev, Smirnova, & Surov, 2018), the authors present a strategy for identifying an
Internet of Things botnet. An IoT botnet detection algorithm based on Logistic Regression has been
created by researchers. Accuracy, precision, recall, and the F-measure will be used to evaluate the
success of the suggested strategy.

In this study (Malik et al., 2022), they present a method for detecting botnets based on a single
categorization. This technique use a one-class KNN classifier to detect 10T botnets early on and with
high precision. The researchers developed a lightweight approach that selects characteristics by utilizing
popular filter and wrapper methods. Many datasets gathered from various networks are used to test the
researcher's proposed technique. Using the filter and wrapper technique, we were able to shrink the
feature space by as much as 72% across all datasets, freeing up computational resources in the process.
The suggested technique has been shown to detect IoT botnets with a success rate of 98% to 99% and
an F1 score of 0.9 or higher.

In their publication, (Siboni & Cohen, 2020), the authors suggested a method for detecting anomalies
in individual sequences with practical implications. Anomaly detection for one-dimensional time series
has been employed by researchers; this method can learn the system's behavior and then raise an alarm
if that behavior suddenly changes. The Lempel-Ziv algorithm has been implemented to effectively
analyze and categorize system data for behavioral analysis. They observed that employing this
technique, botnets might be recognized without requiring extensive analysis.

B. Deep Learning used for Botnet Detection:

The authors of this research (Nguyen, Ngo, & Le, 2019) present a lightweight approach or procedure
for identifying 10T (internet of things) botnets by extracting a high-level feature from various function-
call graphs using a technique called PSI-Graph. For the purpose of this study, the multi-architectural
challenge is addressed by employing a characteristic that allows researchers to sidestep the control flow
graph employed by conventional methods. The dataset used in this study consists of 11,200 ELF files
and comprises 7199 examples of 10T botnets, with an accuracy of 98.7%.

In this study (Nugraha, Nambiar, & Bauschert, 2020), the authors suggest a deep learning technique for
gauging botnet detection efficiency. In order to conduct their study, researchers have employed four
distinct deep learning approaches, including Convolutional Neural Networks (CNNs), Long Short-
Term Memories (LSTMSs), a hybrid CNN-LSTM, and Multilayer Perceptrons (MLPs) (Multi Layer
Perception). The studies performed on the CTU-13 botnet traffic dataset. They have retained several
metrices, such as accuracy, sensitivity, specificity, precision, and F1 score, to test for identifying known
and unknown botnet traffic patterns. This study's findings demonstrate that a deep learning model is
capable of reliably identifying both well-known and previously novel forms of botnet data traffic.



In this study (De La Torre Parra, Rad, Choo, & Beebe, 2020), the authors suggest employing distributed
deep learning to identify attacks on the Internet of Things. The researchers have utilized a distributed
deep learning algorithm that runs on the cloud to identify phishing and botnet attempts. In this study,
we employ DCNN (Distributed Convolutional Neural Network) and LSTM (Long Short-Term
Memory) as two of the security key mechanisms (Long Short-Term Memory). While LSTM is stored
on the host's backend and used to detect botnet attacks, DCNN is utilized in 10T devices to identify
phishing attacks. The suggested CNN model was trained using a dataset containing both phishing and
non-phishing URLSs, and the NBaloT dataset was used for backend training of LSTM in the context of
the botnet. The experiment shows that the accuracy for detecting phishing URLS is 94.3% and the F1
score is 93.58%. With an accuracy of 94.80 percent for the LSTM model on the back end, the procedure
may be utilized to spot intrusion attempts.

In this study, the authors (Ahmed, Jabbar, Sadiq, and Patel, 2020) offer a methodology for identifying
a botnet assault. This technique has been used to the study of zero-day botnet attacks and their detection
in real time. Researchers employ the following procedures to identify botnet assaults utilizing the
suggested deep learning DNN and the ANN feed- forward propagation technique: dataset selection,
feature selection, training, data normalization, validation, and testing. The investigation was conducted
using the CTU-13 dataset. According to the results of this experiment, detecting botnets can be done
with 99.6 percent accuracy.

In this research (Maeda et al., 2019), the authors suggest utilizing deep learning to detect botnets on
SDNs. Malware traffic data obtained from the current network has been evaluated, and normal and
malicious traffic has been categorised using deep learning. To stop host infections and spot collateral
harm in infected hosts, they propose using deep learning to the SDN (software-defined network). As a
result, the researchers not only created an isolation network to protect against internal infection, but
they also blocked connections to the outside network. In the end, a detection rate of 99.2% is discovered,
which is higher than that of any other available technique.

In order to improve the detection of botnet assaults in numerous sensors, the authors of this study
(Hezam et al., 2021) recommend merging deep learning models. The BiLSTM-CNN model combines
LSTM and CNN. CNN is used for data optimization while BiLSTM is utilized for classification. The
experiment is run using the N-BaloT dataset, yielding a success rate of 89.79%, an error rate of 0.1546,
and a precision rate of 93.92%. Its 89.50% accuracy rate is lowest of all classifiers when compared to
that of the CNN.

Network-based anomaly detection with deep auto encoder was proposed in a recent research (Meidan
et al., 2018). For the experiment, researchers infected nine consumer-grade 10T gadgets using popular
loT botnets like Mirai Bashlite. Using Local outline factor, support vector machine, and Isolation
Forest, the researchers were able to evaluate how well each method performed in detecting the attack.

C. Hybrid model used for Botnet Detection:

In this study (Desai, Shi, & Suo, 2021), the authors provide a combined strategy for detecting loT
Botnets. Multiple supervised and unsupervised machine learning algorithms have been employed by
researchers, creating what is known as a hybrid model. In these settings, the supervised and
unsupervised algorithm will be used together to identify the latest assault in the stream of
communication. The unsupervised algorithm is constructed first, and then the findings of the experiment
are fed into the supervised machine learning algorithm. K-means clustering serves as the unsupervised
method, while Decision Tree provides the supervision.



In this research, we present a hybrid approach to botnet identification based on host and network
analysis (Almutairi, Mahfoudh, Almutairi, & Alowibdi, 2020). Researchers have built up their concept
on both the host and network ends. They have included IP hopping to cover botnet-related
communication protocols like HTTP, P2P, IRC, and DNS. In this case, they've employed a different
algorithm, the HANABot algorithm, to preprocess the trustworthy behavior of the botnet in order to
extract the necessary characteristic for the botnet's activity. As a result, the experiment is conducted
using a real-world dataset collection that includes both harmful and reliable data. The end product has
a very small false positive rate and a high accuracy. A network analyzer now keeps tabs on how far a
botnet has spread and how often bots are communicating with their C&C server. Over time, a host
analyzer will track changes to registry keys, files, and active processes to provide a detection report on
compromised systems.

As a means of identifying the 10T botnet, the authors of a forthcoming study (Memos and Psannis,
2020) suggest a hybrid Al (Artificial Intelligence) honeypot. Researchers have turned to cloud
computing to identify IoT botnets. Additionally, the presence or absence of the IoT botnet may be
predicted using Logical Regression (LR). Good efficiency in terms of precision, accuracy, recall, fall-
out, and F-measure are achieved by combining artificial intelligence, machine learning algorithm, and
cloud computing with honeypot.

In this study (Francois et al., 2011), they propose utilizing MapReduce to identify botnets. The
researchers employed a distributed computing framework based on a host dependence model and a
modified version of the page rank algorithm. Using a Hadoop cluster, they were able to obtain the
desired outcome, and the advantages of use actual network traces were discussed. Good detection,
accuracy, and efficiency utilizing Hadoop clusters have been demonstrated by the research community.

3 Methodology:

In this study, the public datasets are utilized to identify 10T devices that are part of a botnet. Here python
and pandas is used for coding where in using google collab to execute the code, After the datasets have
been imported from the computer necessary library files have been installed and data being pre-
processed, they will be divided in half for use in both development and testing. After that, it goes
through a series of machine learning techniques including the gradient boosting method and the Ada
boosting algorithm, before being put through an evaluation phase. (An Introduction to the Gradient
Boosting Algorithm) (2022). The process of methodology goes by initialization and pre-processing,
splitting of dataset and giving the split dataset into the machine learning algorithm and then model
process and gives the result of the accuracy rate of detection.

The primary idea behind gradient boosting algorithms is to construct a new model based on the error
information obtained from an existing model in order to lower the existing model's error. It helps with
faster, more accurate identification of massive, complicated data.

The Ada boosting algorithm is a machine learning ensemble method that may be used to correct the
errors introduced by the gradient boosting approach.
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Fig 2: Research Methodology

4 Design Specification:

The things how it works is shown in the above research methodology diagram. For this there are several
way of process to be followed to execute. That process is explained below
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Fig 3: Design Specification



i. Initialization:
Initialization is the process of collection or downloading the public dataset from the Internet and loading

into our programming code and making arrangements for the next step.

ii. Data Pre-processing:
The first step in pre processing is removing duplicate records and data from the dataset, as doing so
simplifies the analysis and shortens the processing time this is called as Data wrangling after the data
validation process is carried out , following that feature engineering process takes place after that
univariate analysis is taken place where it gives the statistical analysis of the dataset of each category,

then normalization takes place where to make the uneven dataset into even dataset.

iii. Splitting the dataset:
During this step, the dataset is often subdivided for use in experiments. As we divide, for example, to
conduct separate training and evaluation sessions, we find that we need to break into two groups.
Perhaps we can split into training and testing groups of 50%.
After this is complete, the testing dataset is forwarded to the machine learning algorithm stage, and the

results are evaluated in the next step.

iv. Machine Learning algorithms:
Machine learning algorithm used here is Gradient boosting and Ada boosting algorithm where - it works
by sequentially adding predictors to an ensemble, each one correcting its predecessor. However, instead
of tweaking the instance weights at every iteration and in AdaBoost method tries to fit the new

predictor to the residual errors made by the previous predictor.

V. Evaluation:

The obtained results are made in accuracy ,precision ,recall ,F-measure.

Accuracy:

The term "accuracy" refers to the proportion of right forecasts to total forecasts.

Accuracy = TP+TN
TP+ FN + FP + TN
Precision:
Precision is the fraction of true positives that are actually calculated.

Precision = True positives

True positives + False Positives



Recall:

A subject's recall is a calculation of the number of true positives she or he was able to
identify.

Recall = True positives

True positives + False Negative

F-measure:

This metric represents a ratio of how well a test was completed. The measuring sticks for this
examination are known as "test precision” and "test recall."

F- measure = 2* Precision * Recall

Precision + Recall
5 Implementation:
The implementation process is which it consist of the step by step process of the botnet detection .

The first process consists of downloading the dataset and reading it in our programming code.

] botnet_data = pd.read_csv('malware_description_df.csv')

© botnet_data.head()

Attacked URLHaus Collection count of
Bot Address CnC Address Attack(Y/N) address Tags Date(DD/MM/YYYY) elf Mirai upx bashlite Gafgyt ‘\:;::::: No. Time Source Destination Protocol
0 192168.17.134 198.9859.176 N 0 elfMial 03072018 1 1 0 0 0 1 10 0000000  192168.100.8 239255255250  SSDP
1 182.168.11.47  51.38.99.208 N 0 effMial 15072018 1 o o 0 1 1 20 0368036 Inventec_de:5b:0c Broadcast ARP
2 192168.9485 167.114.194.6 N 0 effMiai 210012020 1 0o o 0 0 2 30 0513337 1921681008  52.94.216.116 Tcp
3 192168.99.73 193.239.147.66 N 0 elfMiai 30102018 1 10 0 0 1 40 0668077  5294216.116  192.166.100.8 TCP
4 192.168.161.202  65.220202.53 N 0 effMiai 170712020 © 10 0 0 1 50 0776972  192168.1008  2.17.169.125 TCP

Fig 4: Uploading the dataset

In the above figure shows the collection of dataset and it has been read through the programming
code.

Now before pre-processing is done where it consists of data wrangling where it finds for loading the
data, check for cleanliness and trimming process.



[ ] data = botnet_data.copy()
print('This dataset contains ',data.shape[®@], 'rows")
print('This dataset contains ',data.shape[1], 'columns")

This dataset contains 206086 rows
This dataset contains 18 columns

[ ] # Remove trailing whitespaces

def remove spaces(df):
for col in df.columns:
if df[col].dtypes == 'object':
df[col] = df[col].str.strip()

remove_spaces(data)

Fig 5: Code for removing unwanted space

Removing the unwanted spaces in the dataset while creating

) # Checking the missing values

missing df =data.isnull().sum(axis=0).reset_index()

missing_df.columns = ['Column Name', 'Missing Values Count']

missing df['Filling Factor (%)']=(data.shape[@]-missing df['Missing Values Count'])/data.shape[@]*160
missing_df.sort_values('Filling Factor (%)').reset_index(drop = True)

Fig 6: Code for finding the missing values

This code is applied for finding the missing values in the dataset

Checking for duplicates

[ ] data.duplicated().sum()

64142
Drop the existing duplicates.

[ ] data.drop duplicates(keep="first', inplace =True)

Fig 7: Code for checking Duplicates

This code is written for the purpose of checking the duplicate value and deleting the duplicate values
in the code



def missing zero values table{df):
zero_val = (df == @.0@).astype(int).sum(axis=0)
mis val = df.isnull().sum()
mis_val_percent = 100 * df.isnull().sum() / len(df)
mz_table = pd.concat([zero_val, mis_val, mis_wval_percent], axis=1)
mz_table = mz_table.rename(
columns = {@ : 'Zero Values', 1 : 'Missing values', 2 : '% of Total values'})
mz_table['Total Zero Missing values'] = mz_table['Zero values'] + mz table[ 'Missing values']
mz_table[ "% Total Zero Missing values'] = 10@ * mz_table[ 'Total Zero Missing Values'] / len(df)
mz_table[ 'Data Type'] = df.dtypes
mz_table = mz_table[
mz_table.iloc[:,1] 1= @].sort values(
'% of Total values®, ascending=False).round(1)
print ("The selected dataframe has " + str{df.shape[1]) + " columns and " + str(df.shape[@]) + " Rows.\n"
"There are " + str(mz_table.shape[8]) +
" columns that have missing values.™)
print("The selected dataframe has {} duplicates”.format(df.duplicated().sum()))
mz_table.to excel('validaticn summarry.xlsx', freeze panes=(1,8), index = False)
return mz_table

missing_zero_values_table(data)

Fig 8: Code for Data validation
Data validation have been done with the process of this above mentioned code.

Feature engineering process is carried out as for the addition, manipulation and deletion which is used
to increase the accuracy and performance of the model.

def source ip add type(x):

x = str(x)

if x.split('.")[e] == '192":
return 'private’

else:

return ‘public’

def attacked add count(x):
x = str(x)
if x == '@":
return @
else:
addr_count = len(x.split(';"))
return addr_count

Fig 9: Code for Feature Engineering

Feature engineering is done with the above-mentioned code.

Now we are going to use the univariate analysis so that it can be used to show the statistical form of
the dataset according to the attack, protocol, CNC, source ip address, below mentioned graph are the
following analysis from the dataset.



target var = data[ 'Attack'].value counts()
labels = target var.index
values = target var.values

plt.pie(x = values, labels = labels, autopct='%1.1f%%"', startangle=@, counterclock= False)
plt.axis('square')
plt.show()

Fig 10: Code and Representation of Statistical analysis of the attack
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Fig 12: Representation of statistical analysis of the CNC address from the datasets.

Now on coming the actual pre-processing of the dataset where we convert all the target variable into
the binary

one_hot_categories = ['Protocol’, "Source Ip','CNC Ip'] #attributes to convert to 1hot
for category in one_hot_categories: #iterate over attributes
outl = L_en.fit_transform(data[[category]].values.ravel())

out2 = 0_en.fit_transform(outl.reshape(-1,1)).astype('int")

for i, name in enumerate(L_en.classes_):
data[name] = out2[:,i] # make new column filled with @s, 1s

data.drop(one_hot_categories , axis=1, inplace=True) #drop original colsdf

data.head()

Attack elf Mirai upx bashlite Gafgyt Count of Attacked Address Length Bot Host Month ... NTP QUIC SSDP TCP TLSv1.2 TLSvl.3 UDP NaN private public
0 0 1 1 0 0 0 0 217.0 134 3.0 .. 0 0 1 0 0 0 0 0 0 1
1 0 1 [P 0 1 0 60.0 47 7.0 0 0 0 0 0 0 0 0 0 1
2 0 1 0o o0 0 0 0 55.0 85 9.0 0 [ [¢] 1 0 0 0 0 0 1
3 0 1 1 0 0 0 0 54.0 73 10.0 0 0 [¢] 1 0 0 0 0 4] 1
4 O] 1 ] 0 0 0 55.0 202 7.0 ] 0 0 1 0 0 0 0 0 1

5 rows x 36 columns

data.drop('Date’, axis=1, inplace=True)

Fig 13: Code for Pre-processing

This code shows the pre processing of the dataset that converting the variable into integer. After the
pre-processing then the normalisation is done.



Normalization

[ 1 # Normalizing the dataset

X
y

data.drop("Attack’, axis=1)
data[ 'Attack'].values

minmax_scale = MinMaxScaler()
X = minmax_scale.fit_transform(X)

[ 1 print(X.shape)
print(y.shape)

(135858, 34)
(135858, )

Fig 14: Code for Normalization

Now splitting the datasets into two for training and splitting:

[ 1 X train, X_test, y _train, y test = train_test_split(X, y, test size = 0.3, shuffle=True)

Fig 15: Code for Splitting Dataset

Using above code splitting the dataset into two for train and test.

print(np.any(np.isnan(data)), np.all(np.isfinite(data)))

True False

data.fillna(data.mode(), inplace=True)

data.columns[data.isnull().any()]

Index([ ‘"Month', ‘yvear', 'Day'], dtype='object')

# Clearing infinite values

data.replace([np.inf, -np.inf], np.nan, inplace=True)
# datal = np.nan_to num(datal)
data.fillna(999, inplace=True)

# Resampling the minority class.
sm = SMOTE(sampling strategy="minority', random state=42)

x_datal = data.drop('Attack', axis=1)

y_datal = data[ 'Attack’]

# Fit the model to generate the data.

oversampled X, oversampled Y = sm.fit resample(x datal, y datal)

oversampled = pd.concat([pd.DataFrame(oversampled Y), pd.DataFrame(oversampled X)], axis=1)

Fig 16: Code to imbalance target variable

The above code is used to handle the imbalance of the target variable



At last now putting our dataset into the our models to train and test with the following code.

1r list = [@.es5, 0.675, 0.1, 0.25, 0.5, 8.75, 1]

for learning_rate in 1lr_list:
gb_clf = GradientBoostingClassifier(n_estimators=20, learning_rate=learning_rate, max_features=2, max_depth=2, random_state=8)
gb_clf.fit(X_train, y_train)

print("Learning rate: ", learning_rate)
print("Accuracy score (training): {e:.3f}".format(gb_clf.score(X_train, y_train)))
print(“Accuracy score (validation): {@:.3f}".format(gb_clf.score(X test, y test)))

Fig 17: Code for Gradient boosting algorithm
Gradient Boosting code is used to find the evaluation process

Now separately doing for the Ada boost algorithm with the result of gradient boosting

ada_clf = AdaBoostClassifier(
GradientBoostingClassifier(n_estimators=20, learning_rate=0.5, max_features=2, max_depth=2, random_state=0))
ada_clf.fit(x_train, y_train)

Fig 18: Code for Ada boosting algorithm

Hence the dataset is successfully loaded into the model to give the accuracy of the dataset

Learning rate: ©.@5

Accuracy score (training): ©.836
Accuracy score (validation): @.83e
Learning rate: ©.075

Accuracy score (training): ©.836
Accuracy score (validation): ©.83e
Learning rate: 0.1

Accuracy score (training): ©.836
Accuracy score (validation): @.83e
Learning rate: ©.25

Accuracy score (training): .836
Accuracy score (validation): ©.830
Learning rate: @.5

Accuracy score (training): 0.836
Accuracy score (validation): @.83e
Learning rate: ©.75

Accuracy score (training): ©.836
Accuracy score (validation): @.830
Learning rate: 1

Accuracy score (training): ©.836
Accuracy score (validation): ©.830

Fig 19: Accuracy of Gradient boosting

The above-mentioned accuracy value is for the gradient boosting algorithm

print(“"Classification Report™)
print(classification report(y test, ada y pred))

The accuracy score of Ada Boost: ©.83049

Fig 20: Accuracy of Ada Boosting algorithm

Hence the accuracy of the Ada boost is shown.

6 Evaluation:

The accuracy, precision, recall and F1 score is evaluated by training and testing the model.



Confusion Matrix:
[[33848 0]
[ 6910 0]]
Classification Report
precision recall fi1-score  support
e 9.83 1.00 8.91 338438
1 0.00 0.00 6.0 6910
accuracy 6.83 40758
macro avg 0.42 0.50 ©.45 40758
weighted avg 0.69 .83 8.75 40758

Fig 21: confusion matrix and result of Gradient boosting algorithm

From the above diagram we come to know the gradient boosting algorithm have the accuracy of 0.83
or 83%, and the F1 score is 0.91, recall value is 1.00, and precision is 83% shown

After this again the model evaluates with the Ada boosting algorithm and the confusion matrix of that
is given below.

The accuracy score of Ada Boost: ©.83049

Confusion Matrix:
[[33657 191]

[ 6718 192]]
Classification Report

precision recall f1-score  support

5] 9.83 9.99 8.91 33848

1 2.50 9.e3 0.05 6910

accuracy 8.83 18758
macro avg 2.67 8.51 0.438 40758
weighted avg 9.78 09.83 9.76 40758

Fig 22: confusion matrix and result of Ada boosting algorithm

After evaluating the gradient boosting result with the Ada boosting algorithm gives the result of
accuracy is 83%, F1 score of 91%, recall value of 99% and precision value of 83%. This gives the
clear note that combing the two-machine algorithm gives the higher evaluation metrics.

Hence It proves our research question that botnet detection in iot devices using the machine algorithm
such as gradient and Ada boosting algorithms combined.

7 Conclusion and Future work:

The combination of Gradient boosting and Ada boosting algorithm helps in boosting the failed models
and train them to give the clear values, hence this study helps in the prediction of botnet in lot devices
network traffic can be efficiently detected with the greater accuracy value. For the future work we can
able to build a model that which helps in indicating the changes in network traffic will be found and
alert the user or user enterprises.
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